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PART I: ON SYSTEMS






r I Yhis book, FAR FROM EQUILIBRIUM, is book II of a trilogy, and its
purposes are the following:

e To act as a brief introduction to science (or, a "crash course" in
science!) for the general reader in the 21* century.

e To help resolve important issues in the philosophy of science,
including epistemological issues and analogical teleological issues.

e To make clear to the general reader both the importance and
implications of nonlinearity in 21* century science.

e And, finally, to propose a nonlinear theory of biological evolution to
replace the essentially linear neo-Darwinian theory of evolution.

The intended audience of FAR FROM EQUILIBRIUM is the general reader,
so don’t be afraid of the equations contained in some of the chapters in this
book! If you’ve taken high-school calculus, or perhaps even just high-school
algebra, you should have no trouble following along if you read the chapters
sequentially. Also, you don’t have to have read book I of this trilogy, titled
WORLDVIEWS, in order to understand book II (though book I is a useful
prelude to book II, and it discusses teleological, religious, and especially
ethical issues in far more detail than is possible in book II). Note also that,
while figures are numbered sequentially throughout this entire book,
equations (a.k.a. formulas) are numbered only within major chapter headings.
(So don’t go too far back in looking for intra-chapter references to prior
equations!)

Book I, WORLDVIEWS, makes the important point that scientific methods
bracket out the subject in order to arrive at a universal objective view of the
universe. By contrast teleological / religious methods bracket out the object
in order to arrive at a universal subjective view of the universe. We also saw
in book I that both scientific methods and teleological / religious methods are
necessary and have their respective competencies, and that neither set of
methods can subsume the other. Finally, we tried to make it clear in book I
that both the universal objective viewpoint and the universal subjective
viewpoint can always be applied to the same phenomena, so that (for
example) it is not the case that the universal subjective viewpoint must avoid
considering phenomena that the universal objective viewpoint has succeeded
in "conquering".

The above considerations open the possibility for a new dialog between
science and religion, based not on a "God of the gaps" approach, whereby
religion deals only with whatever science has not already explained, but
rather an integrated approach in which science and religion jointly consider
the same phenomena from their respective points of view, and offer what help



they can towards solving each other’s problems. Dialog between science and
religion based on an integrated approach is possible because of the existence
of parallels between the structure of physical systems (scientifically
considered) on the one hand and the structure of corresponding teleological
systems (religiously considered) on the other.

For example, one such parallel is that between temporal points of constrained
chance in the physical system and temporal points of decision in the
corresponding teleological system. (By speaking of "constrained" chance, I
simply mean that the physical system can go in one of some finite number of
directions, often just one of rwo directions, as opposed to just "anything
goes".)

Another such parallel between the physical and the teleological is that
between internal conditional equifinality in the physical system and goal-
seeking purpose (Aristotle’s final cause) in the corresponding teleological
system.

In the discussion that follows we will be dealing at various times with various
subject-matters (physics, chemistry, astronomy, biology, and so on), but the
overall focus will be on the scientific theory of the systems underlying those
various subject matters. This approach to science is sometimes called general
systems theory. General systems theory is primarily associated with Ludwig
von Bertalanffy,' but it is also associated (often under different names and
with different emphases) with economist Kenneth Boulding, biomathematician
A. Rapoport, Erich Jantsch, Ilya Prigogine (winner of the Nobel prize for his
work on far-from-equilibrium thermodynamics), and many others.

Most of the chapters in this book (those found in PART 1: ON SYSTEMS)
will discuss a certain type of physical system, as described by science. At the
end of each such chapter an attempt will be made to relate that type of
physical system to a corresponding type of teleological system. The second
part of this book, PART 2: ON EVOLUTION will then use this joint
physical / teleological systems approach to deal with the controversial issue
of biological evolution. Finally, two notes in this book’s APPENDIX will
deal very briefly deal with the issues of proportionalism / consequentialism
and miracles.

By the time you’re done reading FAR FROM EQUILIBRIUM, 1 hope you
truly feel that you’ve had an introduction to science for the 21* century!

In my subsequent book III of this trilogy, HUMAN SOCIETY, I hope to use
the insights from the earlier books I and II to aid in the discussion of the
problems of history and human society.



Classical Mechanical Systems






’I‘he scientific theory which successfully explains classical mechanical
systems was established through the work of Galileo and Sir Isaac
Newton. Such systems are often called Newtonian systems. What are the
important characteristics of Newtonian systems and the theory which explains
them?

The fundamental postulates of the theory of classical mechanics are
Newton’s Three Laws of Motion:

1. Newton’s First Law of Motion (the Law of Inertia): “Every
body persists in its state of rest or of uniform motion in a
straight line unless it is compelled to change that state by forces
impressed on it.” [Newton’s Principia]

2. Newton’s Second Law of Motion: Force = Mass times
Acceleration, where Force is the vector sum of all of the forces
acting upon a body, Mass is the inertial mass of that body (a
scalar), and Acceleration is the resultant acceleration of the
body as a vector. (“Vectors” specify direction as well as a
numerical amount, while “scalars” specify only a numerical
amount.)

3. Newton’s Third Law of Motion: “To every action there is
always opposed an equal reaction, or, the mutual actions of two
bodies upon each other are always equal, and directed to
contrary parts.” [Newton’s Principia] In other words, when one
body exerts a force on a second body, the second body always
exerts a force on the first body that is equal in numerical
amount, but opposite in direction.

Because classical mechanics is such a vast subject, and because the
basics of classical mechanics are taught to almost everyone, I will not
discuss the actual content of classical mechanics any further, except to
note Newton’s most famous law deriving from his three laws of motion,
namely, the Law of Universal Gravitation:

Newton’s Law of Universal Gravitation states that: The gravitational force
between any two particles having masses m, and m, separated by a distance
r is an attraction acting along the line joining the particles whose
magnitude F is given by the following formula: F = G (m, m,/r*), where G
is a universal constant having the same value for all pairs of particles.?

A more-detailed picture of the actual subject-matter of classical linear
Newtonian dynamics will be presented as part of our later chapter on
Nonlinear Dynamic Systems. The remainder of this chapter will instead
focus on classical Newtonian mechanics from the point-of-view of general



ON SYSTEMS

systems theory, and only indirectly will it deal with the actual content of
classical mechanics.

Weak and/or Transient Interaction of Parts

Classical mechanical systems consist of parts that interact weakly and/or
transiently, rather than strongly and persistently.

For example, the gravitational attraction between two billiard balls is
persistent but weak, while an elastic collision between these same two billiard
balls is strong but transient. Both of these types of interactions between the
billiard balls can be incorporated easily within the framework of classical
Newtonian mechanics. However, the gravitational attraction between two
stars orbiting around each other as a binary star is strong and persistent.
Similarly, the magnetic attraction between a bar magnet and a piece of metal
is likewise strong and persistent Such strong and persistent interactions
between the parts of a system can create serious difficulties for Newtonian
mechanics when three or more parts of the system strongly and persistently
interact.

Because classical mechanical systems consist of parts that interact weakly
and/or transiently, both the behavior and important physical characteristics
of these parts tend to be the same in isolation as when they are incorporated
into a larger whole. A further consequence of this weak or transient
interaction of parts is that classical mechanical scientific laws are the same
(or very similar) for both parts and wholes. Finally, because of the weakness
or transience of the inter-part interactions, what Ludwig von Bertalanffy calls
summative characteristics strongly predominate over constitutive
characteristics in classical mechanical systems, so that it can truly be said of
these systems that the whole is merely the sum of its parts:

[SJummative characteristics . . . are those which are the same within and
outside the complex; they may therefore be obtained by means of
summation of characteristics and behavior of elements as known in
isolation. Constitutive characteristics are those which are dependent on
the specific relations within the complex; for understanding such
characteristics we therefore must know not only the parts, but also the
relations.

Physical characteristics of the first type are, for example, weight or
molecular weight (sum of weights or atomic weights respectively), . . .An
example of the second kind are chemical characteristics (e.g., isomerism,
different characteristics of compounds with the same gross composition
but different arrangement of radicals in the molecule).

The meaning of the somewhat mystical expression, “The whole is more
than the sum of parts” is simply that constitutive characteristics are not
explainable from the characteristics of isolated parts. The characteristics
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Classical Mechanical Systems

of the complex, therefore, compared to those of the elements, appear as
“new” or “emergent”. . .While we can conceive of a sum as being composed
gradually, a system as total of parts with its interrelations has to be
conceived of as being composed instantly.’

Two important points need to be made here: The first is that concepts such as

“constitutive characteristics”, “emergent properties”, “irreducible
complexity”, and “the whole is more than the sum of its parts”, though they
have often been put forward as part of attempts to smuggle teleology and
subjectivity back into scientific methodology (via theories of “vitalism”,
“intelligent design”, and the like), in fact need not entail any particular
teleology whatsoever. Rather, such concepts have a perfectly objective
meaning. As Bertalanffy puts it:

L INT

We must strongly emphasize that order or organization of a whole or
system, transcending its parts when these are considered in isolation, is
nothing metaphysical, not an anthropomorphic superstition or
philosophical speculation; it is a fact of observation encountered whenever
we look at a living organism, a social group, or even an atom.*

Consider Figure 1, below, taken from Bertalanffy’, which schematically
depicts the differences between three sets of systems: The difference between
system 1a and system 1b lies simply in the difference in the number of
elements, while the difference between system 2a and system 2b consists in
the fact that the second system (2b) contains different types (or species) of
elements, while the first system (2a) does not. The differences between all
four of these systems (1a, 1b, 2a, and 2b) arise solely because of summative
characteristics of these systems.

a. o0 o o o b. o o o o o

1
2 a. o o o o b. o o o e
3

a. O=——O0—0—0 bI:I

Figure 1 (after Bertalanffy, General Systems Theory, p. 54)

But now consider the third set of systems, 3a and 3b. In these two systems
strong, persistent interactions between the elements (which arise from strong
attractive forces that are persistent in duration) are represented by lines
joining the elements together. As a result of these strong, persistent
interactions, the elements in system 3a arrange themselves in the form of a
line, while in system 3b they arrange themselves in the form of a square. The
key point here is that the global “linearity” of system 3a and the global
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“squareness” of system 3b are constitutive characteristics (i.e., emergent
properties) of those systems. The constitutive characteristics of systems
cannot be “reduced” to the properties of their individual elements, even if the
strong, persistent interactions between those elements are themselves treated
as additional individual elements. This is actually a rather simple objective
fact that does not depend in any way on teleological presuppositions, such as
vitalism or intelligent design.

Of course, by creating an elaborate description of the parts and their
relationships (for example, “Draw a small circle, draw a line extending from
it, draw another small circle, make a sharp right turn and draw another line . .
...” etc.) you can almost become convinced that you’ve “explained” any
given holistic constitutive characteristic in terms of its parts, but in the end
this “explanation” is always unconvincing.

The second important point that needs to be reinforced is that summative
characteristics strongly predominate over constitutive characteristics in
classical Newtonian mechanical systems precisely because of the weak or
transient interaction between the parts of those systems. Indeed, the
Enlightenment founders of classical physics (i.e., classical mechanics) were
strongly predisposed to emphasize summative over constitutive system
characteristics as being of the very essence of their scientific methodology.
Again, Bertalanffy:

The second maxim of Descartes’ Discours de la Methode was ““to break
down every problem into as many separate, simple elements as might be
possible”. This, similarly formulated by Galileo as the “resolutive” method,
was the conceptual “paradigm” of [modern] science from its foundation:
that is, to resolve and reduce complex phenomena into elementary parts
and processes.5

Indeed, it was Aristotle who had said that “the whole is more than the sum of
its parts”, and the decisive rejection of Aristotle’s point-of-view was a large
part of what the modern “scientific revolution” was all about.

But are the interactions between the parts of classical mechanical systems
really all that weak or transient?

Fairly evident is the transience of interaction between the parts of classically
considered particle systems (systems of colliding billiard balls, randomly
colliding molecules in a gas, etc.). But what about simple mechanical
machines, such as levers, pulleys, springs, and Rube Goldberg combinations
thereof (‘“Push lever A, which disengages spring B” etc.)? Such machines
may seem to have a strong, even purposeful, interaction between their parts,
but only when considered as an extension of a far-more complex system, such
as a human designer or user. If we consider the machine in isolation from its
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human designer or user, we see that its parts are indeed weakly or transiently
interacting, merely transmitting in a predetermined way a force that has been
applied from outside the machine.

A “borderline case” here is that of a machine which has been designed to
flexibly respond to its environment via complex sensors and computer-
controlled feedback mechanisms. Such robotic machines have been used to
climb down the sides of volcanoes and to explore the Moon and Mars. But
even in this borderline case the responsiveness of these robots has been
significantly constrained (sometimes with disastrous results) by the limits of
what their human designers could anticipate in advance. By contrast, living
systems, as we shall see later, are in general much more complex, responsive,
and adaptive than robotic machines. And to the extent that robots and
computers do succeed in displaying the responsive behavior of living systems,
they are no longer classical mechanical systems.

But (it may be objected) what about Newton’s famous law of gravitation?
Doesn’t gravitational force provide for strong, persistent interactions
between bodies of sufficiently large mass? Doesn’t this disprove the
proposition that all classical mechanical systems have weakly or transiently
interacting parts?

There are several answers to this objection. The first is that gravity is, in fact,
a very weak physical force within Newtonian physics. The second answer is
that Newton’s theory of gravity was most successful in explaining the earth’s
attraction of objects near its surface and the sun’s attraction of the planets
and comets. In both of these cases a single element within the system is so
massive relative to the other system elements that gravitation can be regarded,
practically speaking, as a property of that single massive element alone,
rather than as a strong, persistent interrelation between elements within the
system. In other words, the gravitational attraction between objects near the
earth’s surface is negligible, as is the gravitational attraction between the
planets and comets.

The third answer to this objection is that Newton’s law of gravitation can
only be successfully applied where one or two bodies of significant mass are
involved. For nearly 200 years countless fruitless attempts were made to
extend Newton’s theory so that it could describe the gravitational attraction
between three bodies of significant mass (or even between two bodies of
significant mass and one body of insignificant mass). This is the famous
three-body problem. Finally, at the end of the nineteenth century, Bruns and
Poincare proved that the three-body problem cannot be solved by classical
Newtonian methods.” Instead, Poincare showed that the three-body
gravitational system is a nonlinear chaotic system. (A nonlinear chaotic

23



ON SYSTEMS

system, unlike a Newtonian classical mechanical system, is extremely
sensitive both to initial conditions and to subsequent perturbations of the
system. We will discuss nonlinear chaotic systems in detail in our later
chapters on Nonlinear Dynamic Systems and Nonlinear Complex Physical
Systems.)

Although it was not realized at the time, this surprising inability of Newton’s
theory of classical mechanics to solve the three-body problem decisively
marked the end of the grand dream to explain all of the systems of nature in
terms of classical deterministic physics: The scientific picture of the universe
as a vast clock-like machine had to be abandoned (though it lives on in the
ideology and philosophy of many scientists).

Classical Newtonian Methods

But what are these “classical Newtonian methods” that have proved so useful
in explaining some physical systems, but not others?

Scientific laws for classical mechanical systems can be formulated through
the methods of the calculus of variations (invented by Newton and Leibniz)
by using differential equations which are integrable (i.e., solvable), linear,

and (usually) homogeneous.

Addifferential equation with respect to time expresses the instantaneous rate
of change in a certain measurable quantity, which we’ll call ¢, with respect to
a measure of time, which we’ll call . As one important example, the
instantaneous rate of change in the position g of a particle with respect to
time 7 is its instantaneous velocity, expressed by the first derivative, dg/dt.
The rate of change in this instantaneous velocity, in turn, is the instantaneous
acceleration (constant in the simplest case), which is expressible as either the
first derivative of the velocity, dv/dt, where v is velocity and ¢ is time, or as
the second derivative of the position, d*g/dr’.

A differential equation is said to be first-order if the highest derivative of the
quantity ¢ in the equation is its first derivative, while a differential equation is
said to be second-order if the highest derivative of the quantity g in the
equation is its second derivative.

A first-order differential equation is said to be integrable (i.e., solvable) if it
can be solved in such a way as to yield an equation that expresses the value
of g as a function of ¢, plus-or-minus an arbitrary constant C. (For example,
the differential equation dg/dt=2t can be easily integrated in accordance with
the rules of elementary calculus to produce the equation g=r*+C.)
Furthermore, the arbitrary constant C can be made to meaningfully represent
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the initial state of the system, such as the initial value of ¢, which we might
call g,.

A differential equation is defined to be linear and homogeneous if and only if
it exactly satisfies the superposition principle. (Non-homogeneous linear
differential equations satisfy the superposition principle approximately.) And
a differential equation is said to satisfy the superposition principle if and
only if the sum of every pair of solutions yields another solution, and a
constant multiple of every solution yields another solution. In other words, a
differential equation is said to satisfy the superposition principle if its set of
solutions is closed under addition and constant multiplication.

An example of a homogeneous linear differential equation is dg/dt = 3tq. For,
suppose the functions Q (¢) and Q,() are both solutions to this differential
equation. Then they both satisfy the differential equation, and so dQ /dt =
3tQ, and dQ /dt = 3tQ, . Adding these two equations together, we obtain

dQ /dt + dQ /dt = 3tQ + 3tQ,
and, therefore

d(Q +Q,)dt = 31(Q +Q.)

so that (Q +Q,) also satisfies the differential equation and thus must also be a
solution. Thus, the sum of every pair of solutions is also a solution.
Similarly, if ¢ is any constant, we may multiply it into dQ /dt = 3tQ, to
obtain

c(dQ /dt) = c(3tQ,))
and, therefore
d(cQ )dt = 3t(cQ,)

And so cQ, is also a solution, so that a constant multiple of every solution is
also a solution.

The fact that any classical mechanical system can be described by a set of
linear differential equations that obey the superposition principle is
intimately connected with that fact that the parts of a classical mechanical
system are weakly and/or transiently interacting (or are non-interacting).
Suppose, for example, that g, is a measure of g for one part of the system,
while g, is a measure of g for another part of the system. Suppose further that
the rate of change in each of these variables at any moment in time is dg /dt
and dq /dt respectively. If two equations that express the value of these two
derivatives as a function of time are part of a system of homogeneous linear
differential equations, then the integral that solves for the quantity (g + ¢,)
Jjointly as a function of time is simply the sum of the integrals that solve for g,
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and g, separately as a function of time. This is a reflection of the fact that the
parts of a classical mechanical system are weakly and/or transiently
interacting (or are non-interacting), so that the total value of ¢ for the entire
system is always, at every moment in time, simply the arithmetic sum of the
g-values for all of the parts of the system (¢ = g+ ¢,+ g, + ¢ ). In other
words, total g is a summative characteristic of the system, not a constitutive
characteristic. By contrast, systems of nonlinear differential equations,
because they represent physical systems characterized by a strong, persistent
interaction between their parts, do not obey the superposition principle, and
their corresponding physical systems do consequently have important
constitutive characteristics (i.e., “emergent properties”) that are not merely
summative.

If the function contains only one non-time variable, e.g. g, then the most
general form for a homogeneous linear differential equation is dg/dt = f(t)q.
By contrast, nonhomogeneous linear differential equations (sometimes called
driven linear differential equations) have the general form dg/dt = f(t)q+g(t)
and are also called linear, because they almost satisfy the superposition
principle. In these two equations f{t) and g(t) are any arbitrary continuous
functions of ¢. They may also be constants. It is also permissible for g to be
absent from the right side of these equations, so that dg/dt is a function of ¢
only. The laws of classical mechanics are always linear and are usually
homogeneous (i.e., they usually satisfy the superposition principle exactly).

Notice, from the equations in the previous paragraph, that a linear
differential equation cannot contain any power of g or dg/dt higher than 1
and, moreover, cannot contain any other composed function of g or dg/dt. In
other words, if (for example) ¢°, ¢°, ¢*, sin(q), €9, or (dg/dt)* were to appear
in the differential equation, then that differential equation would not be linear.
Among other things, this means that dg/dt=f(t) is always linear, while both
dg/dt=f(q) and dq/dt=f{q,t) are not generally linear. In other words, if the
rate of change in g is recursively dependent on q itself, then the resulting
differential equation is not generally linear. (That is one reason why chemical
systems that involve autocatalysis and biological systems that involve
reproduction are not classical mechanical systems.)

An example of a set of classical linear differential equations are those govern-
ing the electric field. That is why, in calculating the electric field produced by
two point charges, one need only calculate the electric field due to the first
charge, then calculate the electric field due to the second charge, and (finally)
just add them up: There is no “interaction term” between the two point charges
which needs to be factored in.
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By contrast, whenever strong, persistent interactions occur between the parts
of a system, terms that have to do with those interactions always have at least
a squared (or higher degree) factor. This is because one is multiplying a term
corresponding to the first part of the system with a term corresponding to the
second part of the system (and so on, if more than two strongly, persistently
interacting parts are involved). Such differential equations which include
interaction terms are therefore nonlinear and do not obey the superposition
principle.’ In general, nonlinear differential equations are far more difficult to
solve than are linear differential equations, and systems of nonlinear
differential equations are impossible to solve unless limiting “special case”
assumptions are made for purposes of numerical computer simulation.'

Deterministic and Reversible with Respect to Time

Scientific laws for classical mechanical systems are deterministic and
reversible with respect to time.

In a classical mechanical system, the only important point in time that is
characterized by constrained chance is the point in time of the (arbitrary)
initial conditions. This point in time defining the initial conditions is
generally thought of as occurring at the temporal starting point of the
system, but it can be chosen to be any point during the “history” of the
system. Whatever point in time is chosen, the complete state of the classical
mechanical system can be calculated for every other point in time by simply
calculating either forwards or backwards from the initial conditions.

The only other moments of constrained chance in a classical mechanical
system are those moments when a trajectory may become (briefly)
intrinsically indeterminate. For example, if a ball is carefully placed on the
very top of a smooth hill, which way it rolls down the hill will depend on
infinitesimal forces, and its exact future trajectory is therefore uncertain.
Also, depending on minute differences in the force applied, a forced pendulum
may either oscillate or swing around its point of suspension.'' But such brief
moments of indeterminate trajectory were regarded as unimportant
“blemishes” on an otherwise perfect deterministic model.

Most remarkable is the fact that time has no preferred direction in classical
mechanical systems, because its laws are completely time-reversible. As Ilya
Prigogine and Isabelle Stengers have written in their book Order Out of
Chaos:

[R]eversibility may be taken to be the very symbol of the “strangeness” of
the world described by [classical] dynamics. Everyone is familiar with
the absurd effects produced by projecting a film backward — the sight of a
match being regenerated by its flame, broken ink pots that reassemble
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and return to a tabletop after the ink has poured back into them, branches
that grow young again and turn into fresh shoots. In the world of classical
dynamics, such events are considered to be just as likely as the normal
ones.

We are so accustomed to the laws of classical dynamics that are taught us
early in school that we often fail to sense the boldness of the assumptions
on which they are based. A world in which all trajectories are reversible is
a strange world indeed.'?

Completely Described by the Hamiltonian Function

Classical mechanical systems can be described completely by the
Hamiltonian function.

The following brief discussion of the properties of this Hamiltonian function
will both summarize and shed further light on what we have so-far said about
classical mechanical systems. Again, Prigogine and Stengers:

[The Hamiltonian] function is simply the total energy, the sum of the
system’s potential and kinetic energy. However, this energy is no longer
expressed in terms of positions and velocities, conventionally denoted by
q and dg/dt, but in terms of so-called canonical variables — coordinates
and momenta — for which the standard notation is g and p. In simple
cases, such as with a free particle, there is a straightforward relation
between velocity and momentum (p = m dq/dt), but in general the relation
is more complicated.

[This] single function, the Hamiltonian, H(p,q), describes the dynamics
of a system completely. All our empirical knowledge is put into the form
of H. Once this function is known, we may solve, at least in principle, all
possible problems. For example, the time variation of the coordinates and
of the momenta is simply given by the derivatives [i.e., the rate of change]
of H in respect to p or g [respectively]. . .The equations which, through
the derivatives of the Hamiltonian, give the time variation of the
coordinates and momenta are the so-called canonical equations. They
contain the general properties of all dynamic changes. Here we have the
triumph of the mathematization of nature. All dynamic change to which
classical dynamics applies can be reduced to these simple mathematical
equations.”

(We will discuss the Hamiltonian function in more detail in our subsequent
chapter on Nonlinear Dynamic Systems.)

The time-reversibility of classical mechanical laws is made manifest by the
Hamiltonian function because “[t]he canonical equations are reversible: time
inversion is mathematically the equivalent of velocity inversion.”'*

Similarly, the earlier-discussed limitation of the applicability of classical
mechanical laws to systems where the parts interact weakly and/or
transiently is likewise further explained by the Hamiltonian function because,
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by a suitable selection of the pair of canonical variables g and p, we can
usually obtain a description of any classical mechanical system such that the
parts of that system do not interact at all:

[T]here exist many points of view or “representations” in which the
Hamiltonian form of the equations of motion is maintained. They
correspond to various choices of coordinates and momenta. One of the
basic problems of [classical] dynamics is to examine precisely how we
can select the pair of canonical variables g and p to obtain as simple a
description of dynamics as possible. For example, we could look for
canonical variables by which the Hamiltonian is reduced to kinetic energy
and depends only on the momenta (and not on the coordinates). What is
remarkable is that in this case momenta become constants of motion.
Indeed, as we have seen, the time variation of the momenta depends,
according to the canonical equation, on the derivative of the Hamiltonian
in respect to the coordinates. When this derivative vanishes, the momenta
indeed become constants of motion. This is similar to what happens in a
“free particle” system. What we have done when we go to a free particle
system is “eliminate” the interaction through a change of representation.
[Such a] system may thus be represented as a set of units, each changing
in isolation, quite independently of all the others, in that eternal and
immutable motion Aristotle attributed to the heavenly bodies." [italics
mine]

Where such a representation can be found, the Hamiltonian function also
illuminates the deterministic character of classical mechanical systems:

We have already noted that in [classical] dynamics “everything is given”.
Here this means that, from the very first instant, the value of the various
invariants of motion is fixed; nothing may “happen” or “take place”. Here
we reach one of those dramatic moments in the history of science when
the description of nature was nearly reduced to a static picture. Indeed,
through a clever change of variables, all interaction could be made to
disappear. . . Generations of physicists and mathematicians tried hard to
find for each kind of systems the “right” variables that would eliminate
the interactions.'®

As a grand design for all of science, this project failed when Poincare proved
that the three-body problem was unsolvable by classical mechanics.

But Jules-Henri Poincare did much more than just show the insolvability of
the three-body problem. He also demonstrated that most dynamic systems are
unsolvable (i.e., nonintegrable) and are therefore not classical mechanical
systems! Furthermore, he showed why this is so. He did this by proving that
for most dynamic systems it is impossible to find a Hamiltonian
representation such that all of the energy in the system is kinetic energy and
none of the energy in the system is potential energy. (Potential energy is
energy that is dependent on the co-ordinates g.) Furthermore, he showed that
this potential energy that cannot be eliminated from these dynamical systems
is the result of strong, persistent interaction between the parts of the system.

29



ON SYSTEMS

And, finally, Poincare proved that, because all potential energy cannot be
eliminated from these dynamical systems, resonances (now called Poincare
resonances) arise within these dynamic systems which cause the trajectories
of their parts to diverge from any possible pre-computed path! That’s why the
dynamic equations for most mechanical systems are nonlinear,
nonintegrable, and therefore are not solvable. For a long time, however, the
vital importance of Poincare’s findings were overlooked, so unwilling were
scientists to depart from the Newtonian ideal.!” (See our later chapter on
Nonlinear Dynamic Systems for both a further discussion of Poincare’s
findings and a much-more detailed treatment of the actual subject-matter of
dynamics.)

Teleological Implications of Classical Mechanical Systems

Today we know that classical mechanical systems constitute only a small
percentage of the physical systems in the universe that are within our
experience. Moreover, we also have seen that a classical mechanical system
has only one important point in time of constrained chance, namely, the point
in time of the initial conditions (though a few brief points in time also exist
where, say, a ball or pendulum has an uncertain trajectory). Since points of
constrained chance in physical systems are the analogs of decision points in
teleological systems, it is evident that any teleological system which is
analogous to a classical mechanical system will be radically impoverished,
extremely limited in its application, and (therefore, one would think) not of
much interest.

However, for historical reasons such teleological systems are, in fact, of
much interest. The reason is that, from the time that Newton’s Principia was
presented to the Royal Society of London in 1686 through the end of the 19th
century, when Henri Poincare proved the insolvability of the three-body
problem, it was thought by scientists and intelligent lay people alike that all
physical systems are, at bottom, classical mechanical systems, and that it was
only a matter of time before all of astronomy, chemistry, thermodynamics,
biology, psychology, and sociology would be “reduced” to classical
mechanics.

Because it was erroneously thought that both human society and the universe
as a whole are classical mechanical systems, correspondingly erroneous
teleological theories of theology, ethics, and government became both
prevalent and highly influential, and they remain influential to this day!

Newton himself was lionized during his own lifetime, and the vision of the
entire universe as a clock-like classical mechanical system powerfully took
hold in the imaginations of the intelligentsia in all fields of intellectual
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endeavor. Alexander Pope proposed the following epitaph for Sir Isaac
Newton, who died in 1727:

Nature and Nature’s laws lay hid in night:
God said, let Newton be! and all was light.'

And, in 1728, J.T. Desaguliers wrote the following about Newton in a poem
entitled, “The Newtonian System of the World, the Best Model of
Government: an Allegorical Poem™:

Nature compelled, his piercing Mind obeys,
And gladly shows him all her secret Ways;
‘Gainst Mathematicks she has no Defence,
And yields t’experimental Consequence. "

There were a few dissenting voices. In 1802 the poet and artist William Blake
wrote to Thomas Butts:

.. .May God us keep
From single Vision and Newton’s sleep!®

But until the twentieth century such voices “crying in the wilderness” were
few and far between.

Historically, the most important teleological theory that tried to correspond to
classical mechanical theory was the social contract theory. (We have
discussed this theory in Book I, WORLDVIEWS, and we will deal with it in
far more detail in Book III, HUMAN SOCIETY.)

The strong analogies between social contract theory and classical Newtonian
mechanics are clear: Just as a classical mechanical system consists of
independent, weakly (and/or transiently) interacting parts, so the social
contract theory viewed society as consisting of radically autonomous human
individuals whose freedom was limited only by contracts that they themselves
explicitly made. And, just as a classical mechanical system had no significant
constitutive properties, but only summative properties added up from its
individual component parts, so human society as envisioned by the social
contract theory likewise had no teleologically constitutive properties (such as
group subjectivity), but rather only summative properties added up from the
human individuals who composed it. Furthermore, just as a classical
mechanical system is essentially a linear, near-equilibrium machine, so (in
social contract theory) society is essentially a machine to serve the needs of
the radically autonomous human individuals who comprise it.

Finally, just as the only important moment of constrained chance in a
classical mechanical system is the moment for which its initial conditions are
defined (usually, at the temporal startup of the system), so the only important
decisive moment for society in social-contract theory is that moment when the
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original social contract was made between radically autonomous individual
human beings living completely free in “the state of nature”. Surprisingly,
many Enlightenment social-contract thinkers actually viewed this original
social contract, made in the state of nature at the very beginning of the
formation of human society, to be not just a useful abstraction, but an actual
historical fact — in a sense the only historical fact of any real importance for
social and ethical theory.”!

In all of this, it can easily be seen that the Enlightenment social-contract
thinkers were trying to create, in the social-contract theory, a close
teleological analog to “the latest findings of modern science”, namely,
classical Newtonian mechanics.

Alasdair Maclntyre, in his famous book After Virtue, decisively exposed the
failure of the Enlightenment thinkers to successfully ground ethics on the
basis of the supposedly radically-autonomous human individual > (We
extensively discussed After Virtue in Book I, WORLDVIEWS, and our
critique specifically of social-contract theory will also continue in Book III,
HUMAN SOCIETY.)

But here we need to point out one additional serious problem with social-
contract theory as a teleological analog of classical mechanics: If all physical
systems are, at bottom, classical mechanical systems (as the Enlightenment
thinkers believed), then the parts of a classical mechanical system must
themselves be classical mechanical systems. After all, at the heart of the
excitement over Newton’s Principia was Book I1I, which included Newton’s
universal law of gravitation. Newton titled Book III The System of the World,
and in it he demonstrated that the same gravitational law which explained the
motion of planets around the sun also explained the motion of falling bodies
near the earth.”

Analogically, then, if society is a deterministic, machine-like classical
mechanical system (from the physical point-of-view), then its parts,
individual human beings, should also be deterministic, machine-like classical
mechanical systems (from the physical point-of-view). Yet social contract
theory required that human individuals be viewed as radically autonomous,
not only in the sense of their independence and weak and/or transient
interaction, but also in the sense of being able to decide freely. Individual
human beings (whether conceived of as radically autonomous or not)
frequently make decisions. Corresponding to these many decisions in the
teleological theory of human individuals, one would expect to see many
moments of macroscopic constrained chance in the physical theory of
individual human beings. But if individual human beings are ultimately
deterministic, machine-like classical mechanical systems, then, on the
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contrary, one would expect to see few (or no) moments of constrained chance
in their behavior (except for the one at the moment of their creation).

Enlightenment thinkers themselves recognized this as a serious problem,
which led to many arguments over free-will vs. determinism. These
arguments were interminable and irresolvable, so long as the proposition that
all physical systems are ultimately classical mechanical systems remained
unchallenged. (In this respect of course, the belief that all physical systems
are classical mechanical systems indirectly undermined all teleological
systems of any significance, not just the social-contract theory.)

Social-contract theory is not the only interesting teleological analog to
classical mechanics. A very interesting theological analog to classical
mechanics is deism, which Webster’s New World Dictionary defines to be:

belief in the existence of a God on purely rational grounds without reliance
on revelation or authority; esp., the 17th- and 18th- cent. doctrine that
God created the world and its natural laws, but takes no further part in its
functioning.?

Many Enlightenment thinkers, including many of the American founding
fathers, were deists.

If the entire universe is regarded to be a giant clock-like classical mechanical
system, composed of other clock-like classical mechanical systems, then it is
easy to see how deism is teleologically analogous to classical mechanics. For,
then, the only moment of truly significant constrained chance in the “history”
of the entire physical universe would be the moment of the initial conditions,
which could be identified with the moment of the universe’s creation. Since
moments of constrained chance in physical systems are analogous to
moments of decision in teleological systems, the only moment that God could
decisively act in any teleologically significant way within the universe’s
“history” would then be at the moment of the universe’s creation. At that
point, God could both set the universe’s initial conditions and create the
natural laws according to which it would subsequently function. Thereafter,
however, there would be no significant moments of constrained chance which
could possibly correspond to a decisive action of God, for everything that
happened subsequent to the moment of the universe’s creation would be
deterministically fixed in accordance with the classical-mechanical natural
laws.

Of course, there would still be a few moments of insignificant constrained
chance within a purely classical mechanical universe — moments where a part
might briefly have an indeterminate trajectory. And so God could sometimes
act within the subsequent “history” of such a universe by occasionally giving
a divine nudge to a ball balanced precariously on the top of a hill, or to a
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forced pendulum uncertain whether to rotate or to oscillate. But this would
hardly seem to be a worthwhile occupation for God Almighty! So, given the
assumption that all physical systems are classical mechanical systems, deism
was an eminently “reasonable” theology. However, the subsequent disproof
of this assumption via later scientific discoveries had the indirect effect of
undermining deism.

One final rather whimsical teleological being needs to be mentioned. Although
the great mathematical physicist Laplace had no place for the “hypothesis” of
God within the world system (“Je n’ai pas besoin de cette hypothese”, he
replied to Napoleon®), Laplace did speculate about the possibility of a demon
(“Laplace’s demon”) who would know the positions and velocities of every
mass in the universe for some particular instant in time, from which point in
time that demon could then perfectly calculate (both backwards and
forwards) positions and velocities for all masses for every other instant of
time in the “history” of the physical universe. Prigogine and Stengers write:

Of course, no one has ever dreamed that a physicist might one day benefit
from the knowledge possessed by Laplace’s demon. Laplace himself only
used this fiction to demonstrate the extent of our ignorance and the need
for a statistical description of certain processes. The problematics of
Laplace’s demon are not related to the question of whether a deterministic
prediction of the course of events is actually possible, but whether it is
possible in principle, de jure. This possibility seems to be implied in
mechanistic description, with its characteristic duality based on dynamic
law and initial conditions.

. .. In the context of classical dynamics, a deterministic description may
be unattainable in practice; nevertheless, it stands as a /imit that defines a
series of increasingly accurate descriptions. . .

Nature speaks with a thousand voices, and we have only begun to listen.
Nevertheless, for nearly two centuries Laplace’s demon has plagued our
imagination, bringing a nightmare in which all things are insignificant.
If it were really true that the world is such that a demon — a being that is,
after all, like us, possessing the same science, but endowed with sharper
senses and greater powers of calculation — could, starting from the
observation of an instantaneous state, calculate its future and past, if
nothing qualitatively differentiates the simple systems we can describe
from the more complex ones for which a demon is needed, then the world
is nothing but an immense tautology. This is the challenge of the science
we have inherited from our predecessors, the spell we have to exorcise
today.

Yet we must go on to ask the question, what about nonlinear chaotic systems,
such as the three-body gravitational system mentioned earlier? (Also, we will
see later that there are many other nonlinear far-from-equilibrium systems,
including biological systems such as our own human bodies, which are not
chaotic, but which nevertheless contain many moments of macroscopic
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constrained chance over time.) Such nonlinear systems are far more common
than classical mechanical systems. Where does Laplace’s demon stand in
relation to these systems?

It turns out that such nonlinear physical systems continue to be deterministic
from the point-of-view of a transcendent, all-knowing, and all-powerful God.
However, in spite of modern strained definitions of “determinism” to the
contrary, such systems are not deterministic from the point-of-view of
Laplace’s demon, human beings, or any other imperfect conscious beings
(“imperfect” here meaning “can generally only perceive and calculate to
within a finite number of decimal places, and act with corresponding
imprecision”). One reason for this is that these nonlinear systems are
extremely sensitive to their initial conditions. In other words, the slightest
change in the initial conditions can result in a radical change in the
subsequent behavior of the nonlinear system. As Prigogine and Stengers put
it: “Arbitrarily small differences in initial conditions are amplified.”?’

Moreover (and here’s where even Laplace’s demon ultimately fails), even if
the “initial conditions” of the nonlinear system at some one point in time are
(by some miracle) perfectly known, many subsequent (and/or prior) temporal
points in the evolution of the nonlinear system always exist (called saddle
points, or hyperbolic points) where the precise states of the nonlinear system
at those points must also be perfectly and uniquely specified. This is because
precise nonlinear-system behavior between saddle points cannot be predicted
by any scientific law without infinitely precise re-measurements at each of
these many saddle points: A perfect, transcendent being, such as God, can do
this, but nobody else can even come close.

As a result, the Enlightenment program to interpret all physical systems as
classical mechanical systems (by approaching the knowledge of Laplace’s
demon via a series of increasingly accurate descriptions of initial conditions
and natural laws) completely breaks down: It breaks down because
increasingly accurate descriptions of the initial conditions of nonlinear
systems tells you nothing deterministic or even quasi-deterministic about the
subsequent behavior of those nonlinear systems until you attain a perfect
description of the initial conditions (something which even Laplace admits is
humanly impossible). Furthermore, even if, by some miracle, a scientist (or
Laplace’s demon) could determine perfectly the initial conditions of a
nonlinear dynamic system at some particular point in time and then use that
information (together with the “laws of nature”) to calculate future (or past)
trajectories of the system’s parts, uncertainty at subsequent (or previous)
saddle points in the history of the system would cause those physical
trajectories to diverge widely from the scientist’s predictions.?® In other
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words, the Enlightenment program to achieve a complete deterministic
description of nature by asymptotically approaching the deterministic
knowledge of a perfect, transcendent being turns out to be impossible, since
an irreducible element of absolute chance is a basic feature of immanent
objectivity for all imperfect beings existing within the physical universe. (See
our later chapter on Nonlinear Dynamic Systems for further discussion of
this vital point.)

This does not mean, however, that a scientist can tell nothing about the future
behavior of a nonlinear system from a study of its initial conditions. Often,
for example, if the initial values for the control variables fall within a certain
range, then the nonlinear system will exhibit cyclical behavior, while for
another range of initial values it will exhibit chaotic behavior, and for still a
third range of initial values it will always eventually arrive at a certain stable
state, thus displaying equifinality. But this humanly possible knowledge of
the future behavior of nonlinear systems can never be moment-to-moment
deterministic. For this reason, temporal points of constrained chance (which
occur even on a macroscopic scale) must be regarded as real objective
features of the nonlinear system, from a human, immanent point-of-view:
These moments of constrained chance cannot simply be regarded as “errors”
or “imperfections” which will disappear as human knowledge of “initial
conditions” and “natural laws” becomes more refined.

If we further examine this situation teleologically, we can arrive at a basic
solution to the ancient problem of “free-will vs. determinism” that so bothered
Enlightenment thinkers (and prior thinkers as well): For God, who is assumed
to have both perfect knowledge and the power to determine perfectly all
specific physical conditions and all physical laws, everything that happens is
determined and destined by the decisions of His omnipotent will from a
transcendent point-of-view. But, for man, individual human decisions (which
are teleologically analogous to certain moments of immanently-objective
constrained chance in the physical human-body system) are equally real,
only from an immanent point-of-view rather than a transcendent point-of-
view. Therefore human free-will must (from the human point-of-view) be real
as well. In other words, the teleological reality of our relatively free-will is
correlated with our imperfect knowledge, while the teleological reality of
God’s absolute free-will is correlated with His perfect knowledge.

By the way, this suggests one argument for God’s transcendence, since an
absolute free-will having absolute knowledge has no analogical correlate with
anything within the physical universe, including the physical universe taken

as a whole. Furthermore, the existence of saddle points within nonlinear
physical systems analogically eliminates deism as a viable corresponding
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teleology, since God could not determine the destiny of the universe by simply
deciding on a particular set of “initial conditions” and “natural laws”, and
then leaving the universe to “run itself”. In other words, God does not pre-
determine or pre-destine what happens in the universe, but rather He
determines and destines what happens in the universe at every moment in
time via His timeless omnipotent will. (This includes God’s making use of the
immanently real decisions and immanently real actions of imperfect human
beings within time.) Nor does God’s omnipotent will make the world “an
immense tautology”, since, for man, human free-will is completely real as
well, from an immanent point-of-view.

The foregoing teleological analysis also reveals a deep link between the two
fundamental errors of the Enlightenment: The fundamental physical error of
the Enlightenment thinkers was their belief that human beings could approach
God’s perfect deterministic knowledge of the physical universe by means of
successively better approximations. The correlated fundamental feleological
error of the Enlightenment thinkers was their belief that the free-wills of
individual human beings are as radical, absolute, and authoritative as is
God’s free-will. Both of these fundamental errors, in turn, have their ancient
root in what the Judeo-Christian tradition names as “original sin” — the
eternal temptation of human beings to regard themselves to be “like gods”,
with the power and right to legislate their own individual destinies and
moralities absolutely.
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E 1905 a then-unknown Albert Einstein published no less than five ground-
reaking scientific papers . One of these papers, called “On the
Electrodynamics of Moving Bodies”, proposed what Einstein later called the
Special Theory of Relativity (to distinguish it from the General Theory of
Relativity, which he discovered later).

The Special Theory of Relativity is based on two basic postulates. The first
is:

1. No physical measurement can distinguish one inertial frame of reference
from another.

An inertial frame of reference (in this context) is a three-dimensional system
of coordinates which has a constant velocity with respect to certain other
systems of coordinates. These other systems of coordinates are also regarded
as being inertial frames of reference with respect to one other, and a total set
of these systems of coordinates is called an inertial system. By contrast, if
one three-dimensional system of coordinates is accelerating or rotating with
respect to another such system of coordinates, then those two systems of
coordinates are not in the same inertial system. (A three-dimensional system
of coordinates may be thought of as three abstract number lines crossing at
mutual right angles to one another in three-dimensional space. These are the
x,y, and z axes respectively, and any point in three-dimensional space can be
identified by specifying its signed “distance” from each of the three mutually
perpendicular planes containing these three axes. These three signed
“distances” are the x, y, and z coordinates of the point in space.)

What this postulate essentially means is that there is no absolute or preferred
frame of reference among inertial systems (i.e., systems which are in a state
of constant velocity with respect to one another). Another way of putting this
is that the laws of physics do not change with uniform motion, so that no
physical experiment can distinguish between a state of absolute rest and a
state of constant velocity.

The second basic postulate of the Special Theory of Relativity is:

2. The speed of light (in a vacuum) is constant in all inertial frames of
reference, regardless of any motion of the source.

This means that if, say, a light source is moving at three-quarters of the speed
of light with respect to myself (either away from me or towards me, it doesn’t
matter), [ will still measure the speed of the light I receive from that source as
a constant ¢, which is approximately 300,000 kilometers per second, or
186,000 miles per second. (More exactly, ¢ = 2.99792458 x 10® meters per
second.)
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Needless to say, this second postulate is tremendously counter-intuitive with
respect to everyday experience. According to my ordinary experience, which
corresponds to Galilean relativity rather than Einstein’s relativity, if a light
source is coming fowards me at three-quarters of the speed of light (.75¢),
then I should measure the speed of that light as ¢ + .75¢, or 1.75¢. By
contrast, if the light source is moving away from me at .75¢, then I should
measure the speed of that light as ¢ —.75¢, or .25¢. Instead, I continue to
measure the speed of the light as ¢ !

Einstein initially arrived at this principle of the constancy of the speed of light
in all inertial frames of reference by means of a “thought experiment” in
which he imagined what it would be like if he could “catch up” with light and
observe it “at rest”. He realized that what he would observe in that case
would be an impossibility. Einstein writes:

If T pursue a beam of light with the velocity of ¢ (velocity of light in a
vacuum), I should observe such a beam of light as a spatially oscillatory
electromagnetic field at rest. However, there seems to be no such thing,
whether on the basis of experience or according to Maxwell’s equations.?

This strange constancy of the speed of light can be better understood when we
realize that it really has nothing to do with /ight at all. Rather, it arises
because of the unusual nature of the link between the time dimension and the
other three space dimensions of the four-dimensional space-time continuum.
From this four-dimensional point-of-view, the “speed of light” is simply a
conversion constant for converting time units (such as seconds) into distance
units (such as kilometers), so that all four space-time dimensions can be
measured in the same way.*

Seen from this point-of-view, c is (loosely) analogous to the equally
“arbitrary” geometrical constant T (which, of course, has a value of
approximately 3.14159 and is the ratio of the length of the circumference of
every circle to its diameter).

Some Results of the Special Theory of Relativity

But if the speed of light is constant in all inertial frames of reference, then
measurements of length, time, and mass are not the same in all inertial frames
of reference. Consider an inertial frame of reference F, which we will
arbitrarily regard as being at rest. Consider also another inertial frame of
reference F', which we will arbitrarily regard as being in motion with a
constant velocity of v with respect to F. Then the following Lorentz
transformations can be proved from the two basic postulates of the Special
Theory of Relativity:
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e Lorentz-Fitzgerald Contraction

Suppose that a certain object which is at rest relative to F” has a length of L’
as measured by an observer who is also at rest relative to F". Suppose
furthermore that this length L'is measured along the line of motion of F’
relative to F. Then, according the Special Theory of Relativity, if an observer
who is at rest relative to F measures this same length, he will obtain the
value:

L = L' times the square root of (1 — v*/c?)

where v is the velocity of F'relative to F and c is the constant speed of light
in a vacuum.

In other words, the observer at rest relative to F will measure the length of the
object as shorter than the observer who is at rest relative to F'. This is known
as the Lorentz-Fitzgerald contraction.

o Time Dilation

Suppose instead that the observer who is a rest relative to /' measures a time
interval ¢ between two events. Then this same time interval as measured by
an observer at rest with respect to F is:

t = t' divided by the square root of (1 — V*/c?)

In other words, the observer at rest relative to F will measure the time interval
as longer than the observer who is at rest relative to F'. This is known as time
dilation.

o Mass Dilation

Finally, suppose that an observer who is a rest relative to /' measures the
mass of a certain object m’ which is also at rest relative to F". Then this same
mass as measured by an observer at rest with respect to F is:

m = m' divided by the square root of (1 — v¥/c?)
In other words, the observer at rest relative to ' will measure the object as
heavier than will the observer who is at rest relative to F'.

All of the above formulas, taken together, are called Lorentz transformations.

Notice that all of the above equations depend critically on the expression
square root of (1 — v¥/c?). When v is small relative to ¢ (which is what we
experience in our everyday lives), then this expression is very nearly equal to
1 and we can (practically speaking) ignore all of these relativistic effects. On
the other hand, if we set v = ¢ then this expression is equal to zero and the
results of the above equations become absurd (since lengths contract to 0,
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while time intervals and masses dilate to infinity). This illustrates another
important result of the Special Theory of Relativity: The speed of light is an
absolute speed limit within the physical universe: Nothing can travel faster
than the speed of light.

If v is not small relative to ¢ and moreover v is not equal to ¢ (in other words,
if v is a substantial fraction of c¢), then it becomes very important to take into
account these relativistic effects. Practically speaking, the only time we
observe physical objects moving at such high velocities is either by measuring
high-speed sub-atomic particles (such as natural cosmic rays or sub-atomic
particles that have been artificially accelerated by a particle accelerator), or
by inferring the velocity of far-off galaxies.

Yet another important result of the Special Theory of Relativity is the fact
that two events which are simultaneous for an observer at rest with respect to
an inertial frame F' may not be simultaneous for another observer who is at
rest with respect to a different inertial frame F".

And still another important result of Special Relativity is the principle of
equivalence between energy and mass, expressed by Einstein’s famous
formula E=mc? (where E is energy, m is mass, and c is the constant speed of
light). This means that c is not only a conversion constant enabling the
conversion of time units into distance units: This same constant ¢ also
enables the conversion of mass units into energy units.

All of these intuitively strange results of the Special Theory of Relativity can
be derived from the following statement:

The time dimension, together with the three space dimensions, jointly
constitute a four-dimensional space-time continuum. The “distance”
between any two points in this four-dimensional space-time continuum is
represented by the following formula:

&= (- x)?+ (v, -y + (g, -2 — A, - 1)

where d is the “distance” between two points in the four-dimensional space-
time continuum, c is the constant speed of light, (x, y,, z, t,) are the
coordinates of the first point, and (x,, y,, z,, ,) are the coordinates of the
second point.

Note that d”is the same for all observers within the same set of three-
dimensional inertial frames of reference, regardless of how high their constant
velocities are with respect to one another (limited only by the speed of light).
It can also be proved that @” is invariant under four-dimensional translations
and rotations, and furthermore that the Lorentz transformations (apart from a
different algebraic sign due to the special character of time) are nothing but
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rotations of the four-dimensional co-ordinate system within this four-
dimensional space. In fact, the entire Theory of Special Relativity can be
derived from this formula for ¢* alone!

Notice that this ¢ formula is based on the familiar Pythagorean Theorem that
is used to calculate the distance between any two points within an ordinary
three-dimensional-space coordinate system. Also, notice that the expression
for the time dimension has a negative sign with respect to the corresponding
expressions for the other three space dimensions and that, moreover, this time
dimension uses the conversion factor c to convert time from time units to
distance units (thus making the time dimension compatible with the space
dimensions).

Now, if @® has a positive sign, then this measure of four-dimensional distance
is said to be spacelike. On the other hand, if d” has a negative sign, then this
measure of four-dimensional distance is said to be timelike. Finally, if & is
equal to zero, then this measure is said to be lightlike.*'

It was the mathematician Herman Minkowski who first discovered the four-
dimensional representation of the Special Theory of Relativity. This
representation requires the use of a four-dimensional fensor calculus that is a
straightforward extension of the ordinary Newton/Leibniz vector calculus.

There is one final very important point we need to make concerning Special
Relativistic Systems:

Special Relativistic Systems have almost all of the characteristics of
Classical Mechanical Systems that we discussed in our earlier chapter:
Their parts have only weak and/or transient interactions; their laws can be
expressed as differential equations that are both integrable and linear; they
are deterministic and time-reversible; they obey the principle of
superposition, efc.

The Special Theory of Relativity has been experimentally verified many
times, especially in the day-to-day operations of particle accelerators. Famous
experimental confirmations include the Michelson-Morley experiment (which
showed the speed of light to be identically the same when measured at right
angles within a plane parallel to the surface of the earth, in spite of the motion
of the earth itself) and the Hafele-Keating experiment (in which time as
measured by atomic clocks that were sent around the earth on fast
commercial jets differed from time as measured by atomic clocks that had
remained stationary with respect to the surface of the earth).
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Teleological Implications of Special Relativistic Systems

Because Special Relativistic Systems are identical to Classical Mechanical
Systems in every way that could have analogical teleological significance,
everything we have said about teleology with respect to Classical Mechanical
Systems applies equally to Special Relativistic Systems. And, because Special
Relativity is mainly of interest in the study of fast-moving sub-atomic
particles and far-off galaxies, Special Relativistic Systems are encountered in
everyday life with far less frequency than even Classical Mechanical
Systems. Nevertheless, there are a few additional comments we need to make
concerning Special Relativity and teleology:

The first comment is that the Theories of Relativity, both Special and
General, have nothing whatsoever to do with those teleological theories of
moral relativism, multiculturalism, and moral emotivism which we analyzed,
refuted, and condemned in our Book I, WORLDVIEWS. In other words there
is nothing teleologically significant about the fact that the word “relative” is
used in both of these contexts. This point has been made by a number of
scientists and philosophers of science, but I will quote only one, Hans
Reichenbach:

[W]hat has been called the philosophy of relativity represents, to a great
extent, the fruit of misunderstandings of the theory rather than of its
physical content. Philosophers who regard it as an ultimate wisdom that
everything is relative are mistaken when they believe that Einstein’s theory
supplies evidence for such a sweeping generalization; and their error is
even deeper when they transfer such a relativity to the field of ethics,
when they claim that Einstein’s theory implies a relativism of men’s duties
and rights. . . [T]he parallelism between the relativity of ethics and that of
space and time is nothing more than a superficial analogy, which blurs
the essential logical differences between the fields of volition and
cognition.*?
A second related problem that needs to be commented on arises from the
following objection: “You say that the methods of science cluster centrally
and necessarily around the idea of ‘bracketing out the subject’, as opposed to
religious or teleological methods that ‘bracket out the object’. Yet clearly the
subject is not ‘bracketed out’ by Special Relativity: For measurements of
length, time, and mass within Special Relativity are all relative to the
observer and depend on his velocity with respect to the object(s) he is

observing.”

The answer to this objection is that, while it is true that measurements of
length, time, and mass are relative to the observer in Special Relativity,
fortunately the speed of light in a vacuum is not. This fact enables any
observer in any of the frames of reference within a given inertial system to
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calculate how any other observer within that inertial system would measure
the object(s) he is observing. In other words, the Lorentz transformations
have exactly the effect of “bracketing out the subject” and returning us to a
state in which the measurements of all inertial observers can be referred to a
common, abstract “universal observer”. This is reflected in the fact that the
“distance” d in the four-dimensional formulation of Special Relativity is the
same for all observers within an inertial system, regardless of the magnitude
of their constant velocity of motion with respect to the phenomenon being
observed.

The third comment we need to make is that the widespread acceptance by
scientists of the fact of the non-Euclidean four-dimensional nature of space-
time directly undermined the Kantian rationalist position that space can be
known apriori to be three-dimensional and Euclidean on the basis of the
structure of the radically autonomous human individual’s pure reason alone.
This direct blow to Kantian rationalism in the scientific sphere had the
indirect effect of undermining Kantian rationalism in the ethical and
teleological spheres (the “categorical imperative”, and so on.), thus
contributing to the ethical situation of implicit emotivism in which we find
ourselves today. (See our Book I, WORLDVIEWS, for a more-complete
discussion of this subject.)

Overall, however, the Special Theory of Relativity provides us with no new
opportunities for teleological analogs, over and above what was already
present in classical Newtonian mechanics. However, as we shall see, the
General Theory of Relativity is somewhat more interesting in this regard.
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e Special Theory of Relativity, which we considered in the previous
chapter, deals only with inertial systems, i.e., systems of coordinates
(frames of reference) which are in a state of constant velocity with respect to

one another. But what about frames of reference that are in a state of
constant acceleration, constant rotation, or some other state of non-uniform
velocity with respect to one another? This is the key question dealt with by
the General Theory of Relativity, first presented by Einstein in 1916 in a
paper titled “The Foundation of the General Theory of Relativity”.

Recall that one of the two basic postulates of Special Relativity is that no
physical measurements can distinguish one inertial frame of reference from
another. However, if one frame of reference is uniformly accelerating (as
opposed to merely moving at a uniform velocity) with respect to another
frame of reference, then it would seem that physical measurements can
distinguish between these two frames of reference (i.e., between the non-
inertial frame of reference and the inertial frame of reference).

For example, an observer who is at rest with respect to the accelerating
frame of reference of an accelerating elevator in which he is riding will feel
pressure on his feet, and a dropped object which he releases will accelerate
away from him towards the floor of the elevator, even if we assume that the
elevator is not near any gravitational field. By contrast, if the elevator is
either at rest or is moving at a uniform velocity (and, furthermore, it is away
from any nearby gravitational field), then this same observer feels no such
pressure on his feet, and an object released by him will float near him in a
state of weightlessness. Thus, both physical measurements and the laws of
physics appear to be different for the accelerated observer than they are for
the stationary observer (or the observer moving at constant velocity).

However, Einstein realized that the Theory of Relativity could be extended to
also include non-inertial frames of reference. He came to this realization by
means of “thought experiments” such as the following: Imagine that an
observer is locked inside of a cosmic “elevator” that is floating far out in
space, away from any measurable gravitational field. This elevator is
windowless, so that the observer cannot see outside of it, and the elevator is
either at rest or is moving with constant velocity. Under these conditions, the
observer would feel that he is weightless, and various objects might also float
weightlessly beside him. Suppose, now, that suddenly the observer feels
continuous pressure on his feet, and the objects floating around him fall to the
floor of the elevator. In the imaginary situation just described, the observer
would not be able to tell whether the elevator car was suddenly being
subjected to a force that was accelerating it “upwards”, or whether, on the
contrary, the elevator had suddenly come to rest on a body with large mass
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that was exerting a “downward” gravitational force upon both himself and
the other objects inside the elevator. In other words, this observer would not
know whether he was accelerating in free space or (on the contrary) was at
rest within a significant gravitational field. Furthermore, even our earlier
assumption that the elevator was initially at rest or moving at constant
velocity is suspect from this point-of-view, because if the elevator was instead
initially in a state of free fall within a gravitational field, the observer would
have experienced exactly the same sense of “weightlessness”as if he were at
rest or moving at constant velocity far from any gravitational field.

“Thought experiments” such as the foregoing led Einstein to propose the
following fundamental postulate of the General Theory or Relativity:

The fundamental postulate of the General Theory of Relativity is the
Principle of Equivalence, which states that inertia and gravitation have
essentially the same nature.

We will refine the above rather loose formulation of the Principle of
Equivalence by quoting from Albert Einstein’s 1921 lecture at King’s College
in London, England:

[Cllassical mechanics exhibits a deficiency which directly calls for an
extension of the principle of relativity to spaces of reference which are
not in uniform motion relative to each other. The ratio of the masses of
two bodies is defined in mechanics in two ways which differ from each
other fundamentally; in the first place, as the reciprocal ratio of the
accelerations which the same motive force imparts to them (inertial mass),
and in the second place, as the ratio of the forces which act upon them in
the same gravitational field (gravitational mass). The equality of these
two masses, so differently defined, is a fact which is confirmed by
experiments of very high accuracy (experiments of Eotvos), and classical
mechanics offers no explanation for this equality. It is, however, clear
that science is fully justified in assigning such a numerical equality only
after this numerical equality is reduced to an equality of the real nature of
the two concepts.

That this object may actually be attained by an extension of the principle
of relativity, follows from the following consideration. A little reflection
will show that the law of the equality of the inertial and the gravitational
mass is equivalent to the assertion that the acceleration imparted to a
body by a gravitational field is independent of the nature of the body. For
Newton's equation of motion in a gravitational field, written out in full, is

(Inertial mass) * (Acceleration) = (Intensity of the gravitational field) *
(Gravitational mass)

It is only when there is numerical equality between the inertial and
gravitational mass that the acceleration is independent of the nature of
the body. Let now K be an inertial system. Masses which are sufficiently
far from each other and from other bodies are then, with respect to K, free
from acceleration. We shall also refer these masses to a system of co-
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ordinates K', uniformly accelerated with respect to K . Relative to K’ all
the masses have equal and parallel accelerations, [and] with respect to K’
they behave just as if a gravitational field were present and K’ were
unaccelerated. Overlooking for the present the question as to the “cause”
of such a gravitational field, which will occupy us later, there is nothing
to prevent our conceiving this gravitational field as real, that is, the
conception that K'is “at rest” and a gravitational field is present we may
consider as equivalent to the conception that only K is an “allowable”
system of co-ordinates and no gravitational field is present.

The assumption of the complete physical equivalence of the systems of
co-ordinates, K and K’, we call the “principle of equivalence”; this principle
is evidently intimately connected with the law of the equality between the
inertial and the gravitational mass, and signifies an extension of the
principle of relativity to co-ordinate systems which are in non-uniform
motion relatively to each other. In fact, through this conception we arrive
at the unity of the nature of inertia and gravitation. For, according to our
way of looking at it, the same masses may appear to be either under the
action of inertia alone (with respect to K ) or under the combined action
of inertia and gravitation (with respect to K" ).

The possibility of explaining the numerical equality of inertia and
gravitation by the unity of their nature gives to the general theory of
relativity, according to my conviction, such a superiority over the
conceptions of classical mechanics, that all the difficulties encountered in
development must be considered as small in comparison with this
progress.*

Imagine a finite region of space in which bodies are far enough apart so that
they move with respect to one another with only uniform velocities (i.e., no
acceleration or rotation). Within such a finite region of space we know that
the laws of the Special Theory of Relativity hold with remarkable accuracy.
Einstein calls such a finite region of space a Galilean region. Here is another
excerpt from Einstein’s 1921 lecture at King’s College:

The principle of equivalence demands that in dealing with Galilean regions
we may equally well make use of non-inertial systems, that is, such co-
ordinate systems as, relative to inertial systems, are not free from
acceleration and rotation. If, further, we are going to do away completely
with the vexing question as to the objective reason for the preference of
certain systems of co-ordinates, then we must allow the use of arbitrarily
moving systems of co-ordinates. As soon as we make this attempt seriously
we come into conflict with that physical interpretation of space and time
to which we were led by the special theory of relativity. For let K’ be a
system of co-ordinates whose z-axis coincides with the z-axis of K, and
which rotates about the latter axis with constant angular velocity. Are the
configurations of rigid bodies, at rest relative to K', in accordance with
the laws of Euclidean geometry?

Since K'is not an inertial system, we do not know directly the laws of
configuration of rigid bodies with respect to K', nor the laws of nature, in
general. But we do know these laws with respect to the inertial system K,
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and we can therefore infer their form with respect to K'. Imagine a circle
drawn about the origin in the x" y' plane of K’, and a diameter of this
circle. Imagine, further, that we have been given a large number of rigid
rods, all equal to each other. We suppose these laid in series along the
periphery and the diameter of the circle, at rest relative to K'. If U is the
[total length] of these rods along the periphery, D the [total length] along
the diameter, then, if K’ does not rotate relatively to K, we shall have

U/D=rn

But if K'rotates we get a different result. Suppose that at a definite time ¢
of K we determine the ends of all the rods. With respect to K all the rods
upon the periphery experience the Lorentz contraction, but the rods upon
the diameter do not experience this contraction (along their lengths). It
therefore follows that [with respect to K’, in order to compensate for this
effect within K]:

U/D>rn

It therefore follows that the laws of configuration of rigid bodies with
respect to K’ do not agree with the laws of configuration of rigid bodies
that are in accordance with Euclidean geometry. If, further, we place two
similar clocks (rotating with K" ), one upon the periphery, and the other at
the center of the circle, then, judged from K, the clock on the periphery
will go slower than the clock at the center. The same thing must take
place, judged from K', if we do not define time with respect to K’ in a
wholly unnatural way (that is, in such a way that the laws with respect to
K' depend explicitly upon the time). Space and time, therefore, cannot be
defined with respect to K’ as they were in the special theory of relativity
with respect to inertial systems.

But, according to the principle of equivalence, K' may also be considered
as a system at rest, with respect to which there is a gravitational field
(field of centrifugal force, and force of Coriolis). We therefore arrive at
the result: the gravitational field influences and even determines the
metrical laws of the space-time continuum. If the laws of configuration of
ideal rigid bodies are to be expressed geometrically, then in the presence
of a gravitational field the geometry is not Euclidean.*

In fact, a geometry in which U/ D > & is a type of non-Euclidean geometry
in which space (or space-time) is curved. Of course, the Einstein/Minkowski
geometry for the Special Theory of Relativity is also in a sense non-
Euclidean, because it is four-dimensional, rather than three-dimensional, with
time as a special extra dimension. However, the Einstein/Minkowski
geometry is still quasi-Euclidean because it is a flat geometry in which
space-time is not curved. By contrast, in the General Theory of Relativity
space-time is curved to varying degrees, depending on the local presence of
bodies having significant mass. It can even be said that, according to the
General Theory of Relativity, matter itself can be described as being a
manifestation of this curvature of space-time. Furthermore, bodies “falling”
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within a gravitational field do so because they are simply following a
“straight line” (called a geodesic in non-Euclidean geometry) along the local
curvature of space-time. (This general-relativistic theory of gravity is
obviously radically different from Newton’s classical gravitational theory.)

The idea of the curvature of space-time can be better understood by
considering an analogy in two-dimensional space, namely, the geometry of
measurement on the curved surface of a sphere (e.g., a globe of the earth). If
we regard a “straight line” (i.e., a non-Euclidean geodesic) to be a great
circle (or an arc of a great circle) on the surface of this sphere, then the
following holds true: 1) the curvature of the sphere’s surface is constant and
positive, 2) two geodesics (when extended to the maximum) are each finite &
closed and always meet in exactly two points, 3) the sum of the angles of a
triangle is greater than 180 degrees when measured on the curved surface of
this sphere, and 4) U/ D < & for all circles measured on the surface of the
sphere.

By contrast, if we instead consider the geometry of measurement on a 2-
dimensional surface that is hyperbolic (i.e., shaped like the infinitely extended
surface of a horse’s saddle), then the following instead holds true: 1) the
curvature of the hyperbolic surface is constant and negative, 2) geodesics
(when extended to the maximum) are infinite, 3) two fully-extended geodesics
may meet in at most one point, 4) a fully-extended geodesic is “parallel” to an
infinite number of other geodesics passing through a given point lying outside
the first geodesic, 5) the sum of the angles of a triangle is less than 180
degrees when measured on this curved hyperbolic surface, and 6) U/ D > &
for all circles measured on the hyperbolic surface.

Note that, for sufficiently small areas on either the spherical surface or the
hyperbolic surface, the surface may be approximately regarded as “flat”, so
that the geometrical rules of ordinary Euclidean geometry will then hold with
reasonable precision for triangles, circles, and so on that are small in
comparison with the overall curvature of the surface.

Note also that, while we have visualized both the spherical surface and the
hyperbolic surface as embedded within three-dimensional space, the
properties of these curved surfaces which we have just discussed are actually
internal to the geometry of the surfaces themselves. In other words, if we
were two-dimensional “flatlanders” living on these surfaces and had no direct
experience of the third dimension, we could still detect the effects of the
curvature of our two-dimensional “space” by measuring triangles and circles
of sufficiently large size.

Finally, it is important to note that the non-Euclidean geometry which
Einstein used to describe General Relativistic Systems is actually far more
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complex than the above two-dimensional analogies suggest, because
according to General Relativity the curvature of four-dimensional space-time
is not constant, but rather varies at every point according to the local
distribution of mass. The “Riemannian” mathematical description of this kind
of variable curvature, using tensor calculus, requires the specification of six
separate components for each point within three-dimensional space, or twenty
separate components for each point within four-dimensional space-time.*

Historical Background of the General Theory of Relativity

But, to step back for a moment, how did Einstein arrive at his remarkable
conception of the General Theory of Relativity? Let’s listen to Einstein’s own
words in his “Autobiographical Notes”. He begins by describing the state of
physics as it was taught when he was a student of mathematics and physics at
the Polytechnic Institute of Zurich:

Now to the field of physics as it presented itself at that time. In spite of all
the fruitfulness in particulars, dogmatic rigidity prevailed in matters of
principles: In the beginning (if there was such a thing) God created
Newton’s laws of motion together with the necessary masses and forces.
This is all; everything beyond this follows from the development of
appropriate mathematical methods by means of deduction. What the
nineteenth century achieved on the strength of this basis, especially through
the application of the partial differential equations, was bound to arouse
the admiration of every receptive person. . . What made the greatest
impression upon the student, however, was less the technical construction
of the mechanics or the solution of complicated problems than the
achievements of mechanics in areas which apparently had nothing to do
with [classical] mechanics: the mechanical theory of light, which conceived
of light as the wave-motion of a quasi-rigid elastic ether, and above all
the kinetic theory of gases. . .

‘We must not be surprised, therefore, that, so to speak, all physicists of the
[19th] century saw in classical mechanics a firm and final foundation for
all physics, yes, indeed, for all natural science, and that they never grew
tired in their attempts to base Maxwell’s theory of electro-magnetism,
which in the meantime, was slowly beginning to win out, upon [classical]
mechanics as well. Even Maxwell and H. Hertz, who in retrospect appear
as those who demolished the faith in [classical] mechanics as the final
basis of all physical thinking, in their conscious thinking adhered
throughout to [classical] mechanics as the secured basis of physics. It was
Ernst Mach who, in his History of Mechanics, shook this dogmatic faith.*

In our previous chapter on Classical Mechanical Systems we pinpointed
Henri Poincare’s proof at the end of the 19th century that a three-body
gravitational system is chaotic (and therefore not solvable by classical
mechanics) as the moment when science’s faith that all physical systems are
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really classical mechanical systems became an untenable faith. (In this
assessment we relied on Ilya Prigogine and Isabelle Stengers.) Einstein,
however, sees serious problems with classical mechanics as beginning even
earlier in the 19th century, as a result of the mounting evidence for Maxwell’s
theory of electromagnetism and light. Again, from Einstein’s
“Autobiographical Notes™:

[TThe incorporation of wave-optics into the [classical] mechanical picture
of the world was bound to arouse serious misgivings. If light was to be
interpreted as undulatory motion in an elastic body (ether), this had to be
a medium that permeates everything; . . . This ether had to lead a ghostly
existence alongside the rest of matter, inasmuch as it seemed to offer no
resistance whatever to the motion of “ponderable” bodies. In order to
explain the refraction-indices of transparent bodies as well as the processes
of emission and absorption of radiation, one would have had to assume
complicated reciprocal actions between the two types of matter, something
which was not even seriously tried, let alone achieved. . .

The factor which finally succeeded, after long hesitation, to bring the
physicists slowly around to give up the faith in the possibility that all of
physics could be founded upon Newton’s mechanics, was the
electrodynamics of Faraday and Maxwell. For this theory and its
confirmation by Hertz’s experiments showed that there are electromagnetic
phenomena which by their very nature are detached from every ponderable
matter —namely the waves in empty space which consist of electromagnetic
“fields”. If [classical] mechanics was to be maintained as the foundation
of physics, Maxwell’s equations had to be interpreted mechanically. This
was zealously but fruitlessly attempted, while [Maxwell’s] equations were
proving themselves fruitful in mounting degree.*’

Meanwhile, 19th-century writers such as Ernst Mach were beginning to
critique classical Newtonian mechanics on the basis of the arbitrariness of
certain of its assumptions. Again, Einstein:

From the standpoint of purely geometrical description, all “rigid” co-
ordinate systems are among themselves logically equivalent. The equations
of [classical] mechanics (for example this is already true of the law of
inertia) claim validity only when referred to a specific class of such systems,
i.e., the “inertial systems”. . . It is necessary, therefore, in order to justify
the necessity of the specific choice [of a particular co-ordinate system or
type of co-ordinate system], to look for something which lies outside of
the objects (masses, distances) with which the theory is concerned. For
this reason “absolute space” as originally determinative was quite explicitly
introduced by Newton as the omnipresent active participant in all
mechanical events; by “absolute” he obviously means uninfluenced by
the masses and by their motion. What makes this state of affairs particularly
offensive is the fact that there are supposed to be infinitely many inertial
systems, relative to each other in uniform translation, which are supposed
to be distinguished among all other rigid systems.?®
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According to Einstein, it was H.A. Lorentz who first proposed that an
electromagnetic field exists only in empty space, without the necessity of
postulating a mechanical medium (“ether”) to transmit its effects:

If one compares this with Newton’s system, the change consists in this:
action at a distance is replaced by the field, which thus also describes the
radiation. Gravitation is not usually taken into account because of its
relative smallness; its consideration, however, was always possible by
means of the enrichment of the structure of the field, i.e., expansion of
Maxwell’s law of the field. . .

If one views this phase of the development of [physical] theory critically,
one is struck by the dualism which lies in the fact that the material point
in Newton’s sense and the field as continuum are used as elementary
concepts side by side. Kinetic energy and field-energy appear as essentially
different things. This appears all the more unsatisfactory inasmuch as,
according to Maxwell’s theory, the magnetic field of a moving electric
charge represents inertia. Why not then fotal inertia? Then only field-
energy would be left, and the particle would be merely an area of special
density of field-energy. In that case one could hope to deduce the concept
of the mass-point together with the equations of the motion of the particles
from the field equations — the disturbing dualism would have been
removed.*

In his General Theory of Relativity, Einstein succeeded in accomplishing this
program, but only for gravitational fields: His attempts, throughout the rest
of his life, to integrate the other forces of nature (especially electro-
magnetism) with gravity into a Unified Field Theory were unsuccessful.

The Einstein Field Equations

The laws of the General Theory of Relativity are expressed by the Einstein
Field Equations. These equations are a set of nonlinear differential
equations which (like all sets of nonlinear differential equations) are
nonintegrable (i.e., unsolvable) in the general case.

To be precise, the Einstein Field Equations are a set of ten coupled
hyperbolic-elliptic nonlinear partial differential equations, expressed using
Riemannian tensor calculus and taking many pages to write down.*

From a general-systems point-of-view, this nonlinearity of the Einstein Field
Equations represents an extremely significant break with both classical
mechanics and the Special Theory of Relativity. Why did Einstein choose to
express General Relativity with a set of nonlinear differential equations (and,
moreover, insist that any future successful Unified Field Theory would also
have to be composed of such a set of nonlinear differential equations), even
though he knew in advance that sets of nonlinear differential equations are
unsolvable in the general case?
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The reason was that systems describable by linear differential equations obey
the superposition principle (as we saw in our chapter on Classical
Mechanical Systems), so that their global characteristics are all summative
characteristics (i.e., the whole is simply the “the sum of its parts”, which
parts interact so weakly and/or transiently that their interactions can be
treated theoretically as being nonexistent). By contrast, Einstein knew that he
had to mathematically model strong and persistent interactions between
bodies in order to even begin to accomplish his program of expressing the
laws of physics by means of field equations alone. That is why, in his
“Autobiographical Notes”, Einstein writes:

The [mathematical] group of . . . general relativity is the first one which
demands that the simplest invariant law be no longer linear or
homogeneous in the field-variables and in their differential quotients.
This is of fundamental importance for the following reason. If the field-
law is linear (and homogeneous), then the sum of two solutions is again a
solution, as, for example, in Maxwell’s [electromagnetic] field-equations
for the vacuum. In such a theory it is impossible to deduce from the field
equations alone an interaction between bodies. . . For this reason all theories
up to now required, in addition to the field equations, special equations
for the motion of material bodies under the influence of the fields.*!

With respect to the possible expansion of the General Theory of Relativity to
include electromagnetic and other forces in a Unified Field Theory, Einstein
goes on to write:

What can be attempted with some hope of success in view of the present
situation of physical theory? At this point it is the experiences with the
theory of gravitation which determine my expectations. These equations
give, from my point-of-view, more warrant for the expectation to assert
something precise than all other equations of physics. . . [I]t has, however,
already been emphasized above that the true laws cannot be linear. Such
linear laws fulfill the superposition principle for their solutions, but contain
no assertions concerning the interaction of elementary bodies. The true
laws cannot be linear nor can they be derived from such.* [italics mine]

But, it may be asked, if these nonlinear Einstein Field Equations are
unsolvable in the general case, what good are they? The answer is that these
equations can be solved in certain special cases, by arbitrarily assuming
certain symmetries.

For example, if we consider a gravitational system in which a single, large
spherical body gravitationally dominates the system completely (e.g., a
spherical star at rest, the system of sun plus planets, or the system of the
earth plus the small bodies attracted to its surface), then deterministic (or
quasi-deterministic) solutions are possible and have been found. (This is not
really surprising, since in these cases gravitation can be regarded, practically
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speaking, to be simply a property of the gravitationally dominating body,
rather than as a constitutive characteristic of the system as a whole.)

The first such solution was discovered during the First World War by the
German astrophysicist Karl Schwarzschild for the case of a single perfectly
spherical star at rest, ignoring the effects of the star’s interior. The curvature
of space-time predicted by this solution became known as Schwarzschild
geometry, which was greatly influential on later research into gravitation and
cosmology.

A few weeks later, Schwarzschild discovered another special-case solution to
the Einstein field equations which described the space-time curvature inside a
single star.

A few months after that, Schwarzschild died of a disease contracted at the
Russian front. It took another fifty years before his solutions were expanded
to include the space-time curvature around a single spinning star.

Now, in the 1990s, astrophysicists are using supercomputers to extend
the calculations to more complex space-time geometries, including
spinning objects that no longer retain their spherical symmetry. Such
objects typically exhibit “axisymmetry” — symmetry about one axis (like a
football) — or no symmetry at all. The mathematics, however, becomes
very difficult to state, let alone solve analytically. . .

If one considers an axisymmetric object, one that exhibits symmetry about
a single axis, the equations expand dramatically into dozens of pages. At
this point, the equations are so complex they can only be manipulated
reliably by special computer software.*

Even with supercomputers equipped with special computer software, the
solutions to these more-complex cases are only approximate numerical
solutions, not true analytical solutions. Also, with very few exceptions, these
numerical solutions yield the space-time curvature around only a single
massive body. In a few cases the gravitational interaction between two bodies
of significant mass have been successfully studied (for example, the computer
model of rwo colliding “black holes” constructed in the 1970s by Bryce
DeWitt, Larry Smarr, and Kenneth Eppley at the University of Texas-
Austin*'). But the gravitational three-body problem remains as unsolvable by
the General Theory of Relativity as it was by classical Newtonian mechanics.

Observational & Experimental Confirmation

In spite of the fact that solutions to the Einstein Field Equations exist for
only a few special cases, a great deal of observational & experimental
confirmation of the General Theory of Relativity has built up over the past
85 years or so.
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The first such confirmation came in 1919 when British teams headed by Sir
Arthur Eddington detected and measured the bending of light from the
Hyades star cluster as it passed through the gravitational field of the sun
during a total solar eclipse. The amount of the bending matched Einstein’s
predictions, and Einstein became an instant worldwide celebrity. (This
example of cooperation between German theoretical science and English
observational science gave hope to a world exhausted from the mutual
slaughter of the First World War.)

A similar example of this gravitational lensing effect was later discovered,
the Einstein Cross. Visible only from the southern hemisphere, the central dot
of the Einstein Cross is a galaxy that is 400 million light-years away, while
the four dots around the center are four images of a quasar that is directly
behind the galaxy, only at 8 billion light-years away. These four images have
been bent around the central galaxy by the gravitational field of that galaxy.
(The bending of light by a strong gravitational field is a prediction of the
General Theory of Relativity because light would be expected to follow the
“straight-line” geodesic of curved space-time as it passes in the immediate
vicinity of a massive body. By contrast, of course, Newton’s theory of gravity
does not predict any bending of light in a gravitational field.)

Another confirmation of General Relativity is that the amount of the forward-
shift of the planet Mercury’s perihelion (its closest point to the sun) with each
orbit is correctly predicted by Einstein’s theory of gravity, but not by
Newton’s theory of gravity. (The actual shift is twice as much as Newton’s
theory predicts.)

General Relativity also predicts that light passing through a gravitational field
will have its wavelength shifted towards the red end of the spectrum. This
gravitational red-shift has been observed in a number of contexts:

In 1960, Robert V. Pound and Glen A. Rebka demonstrated that a beam of
very high energy gamma rays was ever so slightly red-shifted as it climbed
out of Earth’s gravity and up an elevator shaft in the Jefferson Tower
physics building at Harvard University. The red-shift predicted by
Einstein’s Field Equations for the 74 ft. tall tower was but two parts in a
thousand trillion. The gravitational red-shift detected came within ten
percent of the computed value. Quite a feat! . . .

In the 1960s, a team at Princeton University measured the red-shift of
sunlight. Though small, given the Sun’s mass and density, the red-shift
matched Einstein’s prediction very closely.*

Much stronger gravitational red-shifts have been measured for light coming
from stars that are much denser than the sun, such as the white dwarf star
Sirius B, and various neutron stars.
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General Relativity has passed many other observational and experimental
tests as well. However, one prediction of General Relativity that is of great
interest to astrophysicists has not yet been directly confirmed, probably due
to the smallness of its effects. That prediction is that disturbances in space-
time should generate gravitational waves analogous to electromagnetic
waves. According to General Relativity, gravitational waves should travel at
or near the speed of light, oscillating the fabric of space-time itself. A
gravitational wave arising from even a very strong source and passing
through the earth is predicted to alternately stretch and shrink measured
distances on the earth by a factor of only 102

Nevertheless, one indirect confirmation of the existence of gravitational
waves has been found:

By the 1960s, theorists had shown that if an object emits gravitational
waves, its mass should decrease. Then, in the mid 1970s, American
researchers observed a binary pulsar system (named PSR1913+16) that
was thought to consist of two neutron stars orbiting each other closely
and rapidly. Radio pulses from one of the stars showed that its orbital
period decreases by 75 microseconds per year. In other words, the stars
are spiraling in towards each other — and by just the amount predicted if
the system were losing energy by radiating gravity waves.*

Another sought-for, but not-yet-found, confirmation of General Relativity
would be the unambiguous observational discovery of an actual black hole.
(Black holes were mentioned above in connection with special-case solutions
to the Finstein Field Equations):

By definition a black hole is a region where matter collapses to infinite
density, and where, as a result, the curvature of space-time is extreme.
Moreover, the intense gravitational field of the black hole prevents any
light or other electromagnetic radiation from escaping. . .

Applying the Einstein Field Equations to collapsing stars, German
astrophysicist Karl Schwarzschild deduced the critical radius for a given
mass at which matter would collapse into an infinitely dense state known
as a singularity. For a black hole whose mass equals 10 suns, this radius
is about 30 kilometers or 19 miles, which translates into a critical
circumference of 189 kilometers or 118 miles. . .

If you envision the simplest three-dimensional geometry for a black hole
that is a sphere (known as a Schwarzschild black hole), the black hole’s
surface is known as the event horizon. Behind this horizon, the inward
pull of gravity is overwhelming and no information about the black hole’s
interior can escape to the outer universe. . .

At the center of the black hole lies the singularity, where matter is crushed
to infinite density, the pull of gravity is infinitely strong, and space-time
has infinite curvature. Here it is no longer meaningful to speak of space
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and time, much less space-time. Jumbled up at the singularity, space and
time cease to exist as we know them. . .

. .. In this bizarre realm in which space and time are broken apart, cause
and effect cannot be unraveled. Even today, there is no satisfactory theory
for what happens at and beyond the singularity.*’

There is some observational evidence for the existence of black holes, but no
unambiguous “sighting”. For example, there is evidence of black holes in
systems like Cygnus X-1 in our galaxy and in two neighboring galaxies called
the Magellanic Clouds.*®

Cosmology and Einstein’s Theory of General Relativity

The publication in 1917 of Einstein’s paper “Cosmological Considerations in
General Relativity Theory” marked the beginning of modern scientific
cosmology, which we may define to be the study of the origin, overall
structure, and destiny of the physical universe as a whole.* Cosmology, as it
is studied today, certainly involves major quantum-mechanical considerations
(especially with respect to theories of the earliest moments of the universe), in
addition to general relativistic considerations. However, we will briefly
consider cosmology in this chapter on General Relativity, since (overall)
general relativistic considerations tend to predominate the discussion of
cosmology at its most basic level.

According to Einstein’s Theory of General Relativity, the structure of space-
time as-a-whole depends on the distribution and motion of matter throughout
the physical universe. Even though the curvature of space-time varies locally
throughout the universe, it makes sense to ask “What is the average
curvature of space (or space-time) as-a-whole, and is that curvature positive,
negative, or zero (flat)?”

Einstein’s 1917 paper made the following three assumptions in trying to
answer such questions:

1.  On the average, matter should be at rest in a suitably chosen co-
ordinate system, and the proper distances of nebulae (i.e., galaxies)
should not change with time.

2. The universe is isotropic. Isotropy means that, in a properly chosen
co-ordinate system, an observer looking in different directions will
never notice that any of those directions are preferred.

3. The universe is homogeneous. Homogeneity means that observers
placed at different locations within the universe, describing its history
in different, but properly chosen co-ordinate systems, will find these
histories to be identical in their contents, so that it is impossible in
this way to distinguish one place in the universe from another.>
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But Einstein found that these three assumptions, taken together, contradicted
his original Einstein Field Equations. He therefore modified his original Field
Equations to include a small term which has come to be called the
cosmological constant, symbolized by the Greek letter “lambda”. Using these
modified Field Equations, Einstein was able to construct a metric for the
universe as-a-whole that had a positive curvature (whose two-dimensional
analog would be either a spherical universe or an elliptical universe) and that
also satisfied his three assumptions. Because of the “closed” nature of a
universe having positive curvature, Einstein’s original metric implied that the
universe is finite in volume and contains a finite amount of mass.’!

Subsequent astronomical observations have confirmed that Einstein’s second
and third assumptions are approximately true: The universe indeed can be
regarded to be (approximately) isotropic and homogeneous. However, his
first assumption (that the proper distances between galaxies should remain
approximately the same over time) was disproved by Edwin Hubble’s
discovery in the late 1920s of the significant red-shift of the light coming
from the galaxies: The farther away a galaxy is from us, the greater is its red-
shift, and this relationship between the distance of a galaxy and its red-shift is
approximately linear for as far as our telescopes can see. The most common
and reasonable interpretation of this red shift is that it is a Doppler effect
resulting from the fact that the galaxies are moving away from us at high
velocities: The farther away a galaxy is from us, the faster it is receding from
us. Of course, because the universe may be regarded to be both isotropic and
homogeneous, we may also say that all of the galaxies (including our own
Milky Way galaxy) are receding away from each other at velocities that are
approximately proportional to their distances from one another. (Equivalently,
we may say that this red-shift occurs because the light waves are “stretched”
as the universe expands.”) If we “wind this movie backwards”, we can
envision a point in time when the entire universe (including all of space) was
once crushed into a single tiny singularity. The “explosion” of this singularity
to create our present universe is called the big bang.

As aresult of Hubble’s observations, Einstein abandoned his cosmological
constant (calling it “the biggest blunder of my life”), since it was not required
to account for an expanding universe. However, some cosmologists (such as
the Belgian priest Father George Lemaitre) continued to use the cosmological
constant, and today it is coming back into favor for a variety of theoretical
and observational reasons. (One reason is that, without the cosmological
constant, calculations based on the Einstein Field Equations estimate that the
big bang occurred around 10 billion years ago, which doesn’t seem to be
enough time to allow for stellar evolution.) Modern field theory associates the
cosmological constant with the energy density of the vacuum.
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The basic development of a cosmological model for a “big bang” universe
was actually begun before Hubble’s red-shift discoveries. In fact, the classical
“big bang” model of the universe was developed by de Sitter (1917),
Friedmann (1922), Lemaitre (1927), and Robertson (1929).>* (The “big
bang” was not, however, generally accepted by scientists until the late 1960s,
since, for philosophical reasons, scientists generally preferred Fred Hoyle’s
competing steady state theory.) The metric which has become the most
popular in describing the universe as a whole (partially because it is purely
kinematic and makes no dynamical assumptions) is the Friedmann-Lemaitre-
Robertson-Walker (FLRW) family of solutions to the Einstein Field
Equations. These solutions (which are not general solutions, but rather are
based on assumed symmetries) are all homogeneous, and are either negatively
curved, positively curved, or flat, depending on the critical density of the
universe that is assumed.”

“Big bang” theory predicts that we should be able to detect a faint, strongly
red-shifted glow from the original big-bang event, no matter which direction
in the sky we measure. In 1965, the discovery by radio astronomers Arno
Penzias and Robert Wilson of a nearly uniform “glow” from everywhere in
the sky of 3-degree-Kelvin cosmic microwave background radiation
(abbreviated CMBR) provided further strong confirmation of the “big bang”
theory, and today either the “hot” big bang theory or a more-recent variant
called the “inflationary” big bang theory is accepted by virtually all
cosmologists. (Recent satellite measurements of the CMBR fall within 99.9%
of what the "big bang" theory predicts: These satellite measurements show the
CMBR to be around 2.728 degrees Kelvin.)*

But while cosmologists and astronomers for the most part agree on the origin
of the universe in a “big bang”, the end, or ultimate fate, of our physical
universe is a much more open question. The answer to this question, like the
answer to the question about the curvature of the universe, depends on
estimates of the critical density of the universe:

[Closmologists envision two possible fates for the universe:
e Endless expansion
e “The Big Crunch”

The evolution of the universe is determined by a struggle between the
momentum of expansion and the pull of gravity. The rate of expansion is
determined by the Hubble constant, H, while the strength of gravity
depends on the density of the universe. If the density of the universe is
less than the “critical density”, which is proportional to the square of the
Hubble constant, then the universe will expand forever. If the density of
the universe is greater than the “critical density”, then gravity will

eventually win and the universe will collapse back on itself. . .
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The density of the universe also determines its geometry. If the density of
the universe exceeds the critical density, then the geometry of space is
closed and positively curved like the surface of a sphere. This implies that
photon paths diverge slowly and eventually return back to a point. If the
density of the universe is less than the critical density, then the geometry
of space is open, negatively curved like the surface of a saddle. If the
density of the universe exactly equals the critical density, then the geometry
of the universe is flat like a sheet of paper. Thus, there is a direct link
between the geometry of the universe and its fate.

The simplest version of the inflationary theory, an extension of the big

bang theory, predicts that the density of the universe is very close to the

critical density, and that the geometry of the universe is flat, like a sheet

of paper.’’
The MAP satellite is currently measuring the very-slight fluctuations which
exist in the cosmic microwave background radiation (CMBR). These
fluctuations depend on the direction in the sky for which the CMBR is
measured. As a result of these measurements, astronomers hope to get further
evidence as to whether the physical universe is positively curved, negatively
curved, or flat.”®

Teleological Implications of General Relativistic Systems

General Relativistic Systems often have significant strong & persistent
gravitational interactions between their parts, and consequently also often
have significant constitutive characteristics (“‘emergent properties”).

Furthermore, since General Relativity is expressed by a set of nonlinear
differential equations that are unsolvable in the general case, we may also say
that General Relativistic Systems are implicitly nondeterministic in the
general case. By this I mean that General Relativity cannot deterministically
predict the behavior of many (probably most) gravitational systems — in
particular, those gravitational systems which involve strong & persistent
gravitational attraction between three or more bodies (at least two of which
have significant mass), as well as other gravitational systems for which no
deterministic solution to the Einstein Field Equations can be found.

There are, of course, special cases for which the Einstein Field Equations
have been solved. (The few such solutions which are analytic we may regard
to be deterministic, while the numerical solutions we might call quasi-
deterministic.) However, as in the parallel Newtonian theory of gravity, these
special cases tend to be ones in which a single large body (usually spherical)
dominates the system gravitationally, so that in these “simple” cases gravity
can be regarded to be just a property of the large, dominant body, rather than
as a true constitutive characteristic of the gravitational system as a holistic
unity of significantly and mutually interacting parts. While a few two-body
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solutions to the Finstein Field Equations have been found, General Relativity
cannot deterministically solve the gravitational three-body problem any more
than classical mechanics can: Three-body gravitational systems (and,
presumably, n-body gravitational systems) therefore remain chaotic systems,
even from a General Relativistic viewpoint.

All of the above-described nonlinear aspects of General Relativistic Systems
distinguish them sharply from both Classical Mechanical Systems and
Special Relativistic Systems. Of potential teleological interest are the many
points of constrained chance implicit in many (if not most) General
Relativistic Systems. As you will recall, moments of constrained chance in
physical systems are possible decision-points of conscious beings in
analogous teleological systems.

Unfortunately, though, the moments of constrained chance in General
Relativistic Systems are not very promising in this regard, for the following
reasons:

1. They exist only implicitly within those General Relativistic Systems for
which no deterministic solution to the Einstein Field Equations can be
found. In other words, General Relativity can tell us nothing specific
about these moments of constrained chance.

2. They exist only in gravitational systems that are chaotic. As we shall see
later in our later chapter Nonlinear Complex Physical Systems, other
types of nonlinear systems, such as dissipative structures, are far more
likely candidates for teleological analogs than are chaotic structures.

3. The large-scale objects-of-study to which General Relativity is usually
applied (planets, stars, black holes, galaxies, etc.) are not generally of
much teleological interest. (It is true that there are theories, such as the
Gaia hypothesis, that treat planet earth as a living, conscious being,” and
it is also true that Eric Jantsch has suggested that the stars may have
certain quasi-living characteristics.®® But such ideas, though
teleologically suggestive, are not exclusively, or even principally, based
on General Relativity.)

Nevertheless, it should be noted that there is one major exception to our
statement that the objects-of-study of General Relativity are not of much
teleological interest, and that is the physical universe taken as a whole (which
we’ll call, for short, the cosmos). The cosmos is of interest teleologically, in
the first place, because it is the physical analog of the pantheistic God, who
is conceived to be exclusively immanent within (i.e., not transcendent with
respect to) the cosmos. In other words, the pantheistic God is a God who is
simply the World-Soul of the cosmos, and nothing more. In the second place,
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the cosmos is teleologically interesting because of our natural hope that
understanding “the nature and destiny of the universe” will tell us something
about our own human destiny and purpose. (This hope, as we shall see, will
tend to be disappointed, but it is a natural hope nonetheless.) And yet a third
reason to consider the cosmos from a teleological point-of-view is that such a
discussion will enable us to deal in a relatively “simple” context with certain
basic “science versus religion” issues that tend to get engulfed in the
complexity and controversy surrounding the neo-Darwinian theory of
biological evolution. (The entire second part of this book will be devoted to
biological evolution.)

When Einstein’s first cosmological paper was published in 1917, the steady-
state theory of the cosmos was supremely dominant. According to this theory,
the cosmos had no beginning point in time and will have no end, but rather
has existed and always will continue to exist pretty much as we can observe it
today. Given this scientific consensus, it is no wonder that Einstein felt that he
had to add the cosmological constant to his Field Equations in order to keep
the galaxies at approximately a constant distance from one another through
time.

But why was this erroneous steady-state theory so dominant in astronomy, in
the absence of actual evidence one way or the other? For the same two
reasons that uniformitarianism (as opposed to catastrophism) was dominant
in geology and Darwinism was dominant (and continues to be dominant) in
biology.

The first of these two reasons was that steady-state theory, uniformitarian-
ism, and neo-Darwinism all presupposed a worldview in which changes in the
physical world were thought to always be minute, gradual, and essentially
random. Such a worldview was intuitively most consistent with the dominant
idea during the 19" and early-20™ centuries that each and every physical
system would soon be shown to be “nothing but” a classical mechanical
system: In a classical mechanical system, you will recall, nothing big,
surprising, or catastrophic ever really “happens” (except, perhaps, for the
possibly-sudden establishment of the “initial conditions” of the system), and
everything proceeds with a steady, fixed determinism. The only exceptions to
this, from the classical mechanical viewpoint, are small, minor, random
“errors in measurement”’, together with the very few moments in which the
trajectory of a classical-mechanical body may be uncertain (e.g., a ball
balanced precariously at the top of a hill).

The second of the two reasons for the general philosophical appeal of the
steady-state, uniformitarian, and Darwinist theories, for scientists, was that
many scientists felt that giving any importance to large, sudden, catastrophic
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events (such as asteroid impacts, sudden floods, or the “big bang”’) would
only give aid and comfort to their theological enemies, who tended to see the
actions of God in such dramatic, large-scale events. By limiting, and if
possible eliminating, all such dramatic moments of macroscopic constrained
chance from their physical theories, many scientists hoped to leave God with
no major analogical decision-points at which to act within the physical
universe.

The prevalence of this kind of thinking in the scientific community is why,
even after Edwin Hubble discovered strong evidence of an expanding universe
(and therefore of a “big bang”) in the late 1920s, the majority of scientists
simply refused to believe it, on the grounds that a universe which had a
beginning would have to have a Creator, a proposition which they regarded to
be self-evidently unscientific.®! The fact that one of the major “big bang”
theorists was a Catholic priest (Father George Lemaitre) further encouraged
their suspicions. In fact, the steady-state theory of the universe (advocated
especially by the prominent astronomer Fred Hoyle, who actually coined the
phrase “big bang” as a term of scorn and derision®) continued to be accepted
by the majority of astronomers right up until the discovery of the three-degree
cosmic microwave background radiation (CMBR) in 1965. It was that
discovery which, more than anything else, resulted in a (very reluctant)
scientific consensus in favor of the “big bang” cosmological model, rather
than the steady-state model.

Parallel to these astronomical and cosmological developments, later twentieth
century geologists (including Walter Alverez, in the 1960s) discovered major
geological features and major geological facts that could only be plausibly
explained by such geological catastrophes as asteroid hits or sudden floods:
This finally resulted in geologists’ (very reluctant) abandonment of Charles
Lyell’s original formulation of the principle of geological uniformitarianism.

Nevertheless, it is a significant fact in the history of science that dogmatic
adherence to the belief that all of science can be reduced to linear,
deterministic classical mechanics (or, at least, to a quantum mechanics that is
similarly linear and deterministic at the macroscopic scale), coupled with an
equally dogmatic adherence to atheism, managed to significantly retard the
progress of the sciences of astronomy, cosmology, and geology for over thirty
years. (In fact, as we shall see in the second part of this book, the completely
untenable, yet comfortably linear and gradualistic, neo-Darwinian theory of
biological evolution continues to be held by virtually all scientists to this day,
largely because of the classical-mechanical and atheistic biases we have just
mentioned.)
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In spite of the current scientific consensus in favor of the “big bang” model of
the universe, many scientists remain uneasy at the opportunity it would seem
to provide for a divine Creator to dramatically create the cosmos virtually ex
nihilo (i.e., out of nothing). Typical is the immensely popular book A Brief
History of Time, written by the great English physicist Stephen Hawking. In
the tradition of Laplace, he goes to great lengths to make clear that he has no
need of the hypothesis of God in order to scientifically explain the creation of
the cosmos, nor does he even need God to endow the cosmos with purpose or
meaning: Rather, he says (or, at least, implies) that a grand, unified theory of
relativity and quantum mechanics would provide us with all the sense of
meaning and purpose in life that anyone would ever need.

Hawking’s preferred version of the “big-bang” theory is an “inflationary, no-
boundary” cosmology in which time did not begin at a specific point, but
rather gradually emerged from something more complex, and in which space
and time ultimately form a kind of closed surface without boundary.®
Hawking writes:

The idea that space and time may form a closed surface without boundary
also has profound implications for the role of God in the affairs of the
universe. With the success of scientific theories in describing events, most
people have come to believe that God allows the universe to evolve
according to a set of laws and does not intervene in the universe to break
these laws. However, the laws do not tell us what the universe should
have looked like when it started — it would still be up to God to wind up
the clockwork and choose how to start it off. So long as the universe had
a beginning, we could suppose it had a Creator. But if the universe is
really completely self-contained, having no boundaries or edge, it would
have neither beginning nor end: it would simply be. What place, then, for
a Creator?

[I]f we do discover a complete theory [uniting relativity and quantum
mechanics], it should in time be understandable in broad principle by
everyone, not just a few scientists. Then we shall all, philosophers,
scientists, and just ordinary people, be able to take part in the discussion
of the question of why it is that we and the universe exist. If we find the
answer to that, it would be the ultimate triumph of human reason — for
then we would know the mind of God.**

How should we respond to this kind of teleological thinking in the popular
writings of contemporary scientists?

First, we must admit that these scientists are correct in saying that they have
no need for the “hypothesis” of God in order to do science. As we have
frequently noted earlier, the essential method of modern science is to “bracket
out the subject” in favor of studying the object. Consequently, for science, the
only subject who ultimately exists is a single universal generic subject,
featureless in his characteristics. The particularities of all particular subjects
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(including God) are “bracketed out” and are not permitted to have any part in
scientific explanations. (Some teleological interpretations of quantum
mechanics would at least indirectly challenge this viewpoint, but we will be
deal with that problem in the following chapter on Quantum Mechanical
Systems.) And so, the reason why science does not need a divine Creator to
explain the origin of the cosmos is not because of some complex and
controversial mathematical theory of “no-boundary” cosmology, but rather
simply because of those scientific methodological considerations that exclude
teleological explanations from modern science a priori.

To further clarify this point, the following teleological statements are not
considered to be acceptable modern scientific explanations:

1. Inthe beginning, God created the heavens and the earth.
2. The universe is the way it is because it was intelligently designed.

3. The lightening bolt struck the tree because the thunder god Thor decided
to throw it.

4. The water in the glass is gone because Fred Smith decided to drink it.

Yes, I know that explanations similar to number 4 above do appear in
psychological, sociological, and anthropological scientific literature, but
that’s why those sciences are called “soft” sciences, isn’t it? Instead, a proper
modern scientific description of the situation in explanation 4 would say
something like:

The physical system which is the analog of the teleological being called
Fred Smith arrived at a moment of immanently objective, macroscopic
constrained chance at which that physical system could have either
proceeded to pick up the glass of water and consume its contents, or could
have proceeded along certain other paths. The physical system proceeded
along the first-mentioned path.

But from these considerations it is also clear that the fact that God is neither
needed nor welcomed as a scientific explanation does not prove the
nonexistence of God, any more than the scientific inadmissibility of statement
4 above proves the nonexistence of Fred Smith. Rather, God, Thor, and Fred
Smith are feleological beings who may or may not have physical analogs
within physical reality. Consequently the question of the existence of God,
Thor, or Fred Smith is a question that must be answered within the context of
an overarching teleological (e.g., religious) understanding that is based on a
“bracket out the object” methodology rather than on the “bracket out the
subject” methodology of modern science. (See our Book I, WORLDVIEWS,
for a full discussion of the difference between these two general
methodologies.)
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Of course, it is possible to construct an overarching teleological
understanding that is founded, in part, on this axiom: “No teleological being
can exist unless it has a direct and complete analog within the physical
universe.” Such an axiom would disallow the existence of a transcendent
God, angels, or Laplace’s demon, while it would allow for the possible
existence of an immanent pantheistic God, Thor, or Fred Smith.

However, such a teleological axiom is really no more “scientific” than any
other axiom concerning the teleological world. (After all, there exist physical
systems, such as classical mechanical systems, which are not analogous to
any teleological being, so why can’t there also exist teleological beings who
aren’t completely analogous to any physical system?)

Furthermore, we have already seen a number of reasons why virtually all
developed religious traditions affirm that God is, in fact, transcendent as well
as immanent with respect to the physical universe. These include: the intuition
that the visible created universe is “fallen” and imperfect, the fact that an all-
knowing, all good, and all-powerful God has no conceivable analog within
the physical universe, and finally (apropos our current context) the
observation that, in order for God to create the physical universe, He must in
some sense transcend it.

The foregoing quotation from Stephen Hawking is also typical of much
contemporary popular scientific writing in several other ways. Notice, for
example, the quaint 19" century tone of its teleological speculations: It is
assumed that most of the few remaining theists must be deists, since the fixed
and determined laws of nature supposedly prevent God from acting on the
linear, mechanistic, “clockwork” universe at any moment other than the
moment of its creation. Notice too Hawking’s dream that the discovery of a
theory unifying relativity and quantum mechanics will lead to “the ultimate
triumph of human reason”, such that humanity will have the complete “mind
of God”: We will then be able to know everything that God (if He exists,
which Hawking finds doubtful) knows!

Now, as perhaps one of the ten most brilliant physicists on planet earth,
Stephen Hawking certainly is aware that the project to explain all physical
systems (including the physical universe as-a-whole) as clock-like classical-
mechanical systems is as dead as the proverbial dodo: He is certainly aware
of Poincare’s proof that all three-body gravitational systems are chaotic, is
aware of the insolvability of the nonlinear Einstein Field Equations in the
general case, and, furthermore, is undoubtedly aware of the Heisenberg
Uncertainty Principle in quantum mechanics (to be discussed in the following
chapter). Yet, although classical-mechanical determinism as an overarching
scientific project is clearly dead, as an ideology it continues to march on in
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the popular writings of Stephen Hawking and other contemporary scientists,
just as if all of twentieth-century science simply did not happen!

Particularly poignant is Hawking’s hope that a complete theory unifying
relativity and quantum mechanics, if discovered, will be understood “in broad
principle by everyone, not just a few scientists”, ultimately leading to an
agreement among everyone as to “why it is that we and the universe exist”.

But when “ordinary people” wonder “why it is that we and the universe
exist”, the “why” they are particularly concerned with is the teleological
“why”’: They want to know, above all, what the ultimate purpose of life and
the universe is. The answer to the physical “why” question (whether, for
example, the “hot” big bang or the “inflationary” big bang more accurately
describes the earliest moments of the physical universe) are of much less
importance to them. Yet, because the scientific method rigorously excludes
teleological considerations, science is simply not capable of answering this
all-important teleological “why” question. Rather, the teleological “why”
question can only be answered via teleological (especially religious) “bracket
out the object” methods.

It is a tragic sign of the extreme skewing of contemporary Western culture in
favor of scientific methods, as opposed to religious/teleological methods, that
we look to prominent scientists (whose job it is to rigorously exclude
teleology from their work) to tell us the answer to the ultimately teleological
question of “why it is that we and the universe exist”. It is not surprising,
then, that the answers we receive are “slim pickin’s” indeed.

Now, while it is perfectly appropriate for contemporary cosmologists to
exclude God and “intelligent design” from scientific explanations of the origin
of the cosmos, nothing prevents us in principle from regarding the “big bang”
theory to be the physical analog of the feleological idea that “In the
beginning, God created the heavens and the earth”, particularly if this latter
statement is interpreted as referring to the sudden divine creation of the
physical universe ex nihilo (out of nothing) “at the beginning of time”. In
other words, we could regard the “big bang” event to be the physical analog
of the divine creation of the cosmos. But is it wise to do so?

In my opinion, it is not wise to do so, except possibly very tentatively and
speculatively. There are several reasons for this. The first is that the divine
creation of the physical universe is one of the surest spiritual facts (or
spiritual conclusions) in developed religious traditions: It follows almost
immediately from the teleologically foundational concept of a transcendent
God. By contrast, the “big bang” theory (even though it is currently dominant
in physical science) remains highly speculative in its details: There are “hot”
big bang theories, “inflationary” big bang theories, “multiverse” big bang
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theories in which “black holes” are constantly spawning new “big bang”
universes in other dimensions, “self-reproducing” big bang theories in which
the cosmos copies itself constantly (perhaps even more than once a second),
and so on.% It therefore doesn’t make much sense to try and prove something
as teleologically certain as God’s creation of the cosmos by identifying it
with something as physically speculative as the “big bang”.

The second reason for us to be wary of identifying the “big bang” with divine
creation is that we are then obligated, it seems to me, to give similar
teleological importance to events at the temporal “end” of the physical
universe (if, indeed, the physical universe has any temporal “end”). Concern-
ing this question of the possible ultimate fate of the cosmos there is far less
agreement among cosmologists than there is concerning the cosmos’ origin in
some kind of “big bang”.

Recall that we mentioned earlier two possible fates for the cosmos:

1) The expanding universe will continue to expand forever,
with the galaxies continuing to recede away from each other
into nothingness.

2) The expansion will stop, so that all of the galaxies will
eventually be gravitationally attracted back together into a
“big crunch”. The resulting tiny singularity would then be the
unconditional equifinal state of the cosmos.

We may also consider a third possibility:

3) The cosmos is characterized by cyclicality rather than
equifinality, and will therefore expand and contract in an
eternal cycle of “big bang” followed by “big crunch”
followed by “big bang” etc.

A fourth possibility suggests itself:

4) The cosmos as a whole physical system is not
characterized by expansion into nothingness, big-crunch
equifinality, or never-ending cyclicality, but rather is simply
an eternal chaotic system (similar to a three-body
gravitational system).

And, finally a fifth possibility:

5) The cosmos, in accordance with the second law of
thermodynamics, will ultimately, equifinally die a “heat
death” that is characterized by pure randomness and
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“maximum entropy”’. (We will discuss these latter concepts in
our later chapter on Linear Thermodynamic Systems.)

All five of these possible fates of the cosmos pose significant problems if we
are going to interpret them teleologically: The first and fifth possibilities (that
the universe will expand eternally into nothingness, or will ultimately die a
thermodynamic “heat death™) suggest teleological analogs of the utmost
bleakness. The second possibility (the “big crunch”) does give the physical
universe a dramatic ending to match its dramatic beginning, but it is much
harder to relate this "big crunch" to (for example) specific events predicted in
the Biblical book of Revelation than it is to relate the “big bang” to chapter 1
of the Biblical book of Genesis. The third possibility (an eternal cycle of “big
bangs” and “big crunches”’) conforms fairly well to Hindu cosmology, but
even Hindus regard transcendent escape from these meaningless cycles to be
their ultimate goal. Lastly, the fourth possibility (an eternal, chaotic cosmos)
analogically would suggest a teleology that regards the cosmos to be
ultimately teleologically meaningless from a human point-of-view (though
possibly not meaningless from a transcendent divine point-of-view).

The above considerations provide us with yet another reason for regarding
God to be transcendent (as well as immanent). For the ultimate purpose and
goal of a purely immanent pantheistic God would have to be teleologically
analogical to one of the five possible fates for the physical universe listed
above: And we have seen that it is not at all certain that the cosmos even has
a physically equifinal state. (Instead, the physical universe might ultimately
be cyclical, chaotic, or might just continue forever expanding into
nothingness.) Furthermore, the remaining two possible equifinal states for the
cosmos (a single, final “big crunch” or an ultimate thermodynamic “heat
death”) are both speculative and (analogically) teleologically unsatisfactory
with respect to suggesting any deep or meaningful ultimate purpose and goal
on the part of the pantheistic World-Soul. That is the reason why developed
religious traditions have nearly always looked to a transcendent God to
reveal the ultimate purpose and goal of both humanity and the cosmos.

And so, while there is no conflict between faith and reason, there is a conflict
between the affirmation of the transcendence of God (on the one hand) and
(on the other hand) some arbitrary requirement that every existing teleological
being must have a direct and complete physical analog within the physical
universe. One important (and nearly universal) meaning of faith is therefore
the affirmation of God’s transcendence.
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e beginning of the twentieth century not only saw the birth of Einstein’s

Special Theory of Relativity (which revolutionized the scientific view of
the macroscopic world), but also the birth of Quantum Theory (which
revolutionized the scientific view of the sub-microscopic world). Relativity
Theory and Quantum Theory have never been successfully combined (except
in a limited way by QED, Quantum Electrodynamics). The eventual
unification of these two theories into a grand “Theory of Everything” is the
great dream of contemporary physicists such as Stephen Hawking.

Quantum Theory began when the great German physicist Max Planck studied
the problem of calculating the total energy inside a heated “black box” (i.e.,
the energy distribution of “black body radiation”). The basic problem was
that classical means of approaching this problem (such as Wien’s formula and
the Rayleigh-Jeans formula) led to wrong and absurd conclusions, including
infinite energies.

To solve this problem, Planck proposed in 1900 that energy changes take
place discontinuously and discretely as integral multiples of a small unit of
energy he called a quantum (plural quanta), in accordance with the formula
E = hv, where E is the energy of the quantum, v is the frequency of radiation,
and 4 is a universal constant of proportionality now known as Planck’s
constant. Planck regarded the quantum to be only a useful statistical fiction,
since the idea that light (and other forms of electromagnetic radiation) had a
particle-like structure contradicted the prevailing classical view that light is
comprised of continuous waves.

It remained for the young physicist Albert Einstein to boldly put forth the idea
in 1905 that light is, in fact, actually composed of particle-like units of
energy (later called photons, which are the quanta of light). He did so in the
context of explaining the photoelectric effect, whereby electrons can be
emitted from a thin metal sheet when light strikes its opposite surface. (The
light meters in cameras work using this principle.) It turns out that, if the
incident light is below a certain frequency (called the threshold frequency),
no electrons are emitted from the metal. However, as soon as the frequency of
the light is high enough so that each photon’s energy /v exceeds a certain
minimum value called the work function of the surface (¢), which varies with
the type of metal, electrons begin to be emitted from the opposite surface of
the metal with a maximum kinetic energy equal to v — ¢. Another way of
putting this is that, if & is Planck’s constant, v, is the threshold frequency, and
v is some frequency of light greater than the threshold frequency, then the
electron will be ejected with a maximum kinetic energy of h(v—v,) . (This
formula was verified by Millikan for ordinary light and by Maurice de
Broglie for X-rays.*) Einstein also proposed that the momentum p of each
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photon is p = h/A, where A is the wavelength of the light and 4 is Planck’s
constant. (In 1921 Einstein won the Nobel Prize in Physics principally for his
photoelectric theory, rather than for his relativity theories.)

Einstein concluded a subsequent 1917 paper on the Quantum Theory of

radiative equilibrium by writing:
These features of the elementary processes would seem to make the
development of a proper quantum treatment of radiation almost
unavoidable. The weakness of the theory lies in the fact that, on the one
hand, no closer connection with the wave concepts is obtainable and that,
on the other hand, it leaves to chance the time and direction of the
elementary processes; nevertheless, I have full confidence in the reliability
of the way entered upon.®’

Meanwhile, in 1913, Niels Bohr was able to use the new Quantum Theory to
explain both atomic structure and atomic spectra, by showing the connection
between the discrete energy levels of an atom’s electrons in their various
“orbits” or “shells” (which surround an atomic nucleus that consists of
protons and neutrons) and the frequencies of light given off and absorbed by
the atom. Bohr showed that each electron’s associated energy could change
only in discontinuous “jumps” as the atom either absorbed or emitted a
photon. Concerning this accomplishment, Albert Einstein wrote:

That this insecure and contradictory foundation [of Quantum Theory in
1913] was sufficient to enable a man of Bohr’s unique instinct and tact to
discover the major laws of the spectral lines and of the electron-shells of
the atoms, together with their significance for chemistry, appeared to me
like a miracle — and appears to me as a miracle even today. This is the
highest form of musicality in the sphere of thought.®

In 1924 Louis de Broglie proposed that, not only does light sometimes behave
as if it were composed of waves and sometimes behave as if it were
composed of particles, but the same is true of subatomic particles like the
electron! This hypothesis was confirmed in 1927 by Clinton J. Davisson and
Lester H. Germer, who observed the wave phenomenon of the diffraction of a
beam of electrons.®

During the 1920s Quantum Theory became mathematically formalized as
quantum mechanics (often abbreviated as QM). In 1925 Werner Heisenberg
developed the matrix algebra formulation of quantum mechanics, while in
1926 Erwin Schrodinger developed the wavefunction formulation of QM.

Schrodinger was able to show that if the single electron in a hydrogen
atom was really a “standing wave”, it would assume frequencies which
were exactly equivalent to what Bohr described as discrete orbits [and
would also have] energies the same as those calculated by Heisenberg. By
showing that the electron’s energy levels could be wave patterns,
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Schrodinger solved the same problem . . . that Heisenberg had solved
with his collection of observables [i.e., his matrix algebra].”

Both the Heisenberg and the Schrodinger formulations of QM were soon
proved to give identical results, but Schrodinger’s formulation has prevailed,
largely because physicists are more comfortable and familiar with
wavefunction mathematics.

In 1928 P.A.M. Dirac succeeded (in a limited way) in combining the new
quantum ideas with Special Relativity. The resulting theory is called quantum
electrodynamics (abbreviated QED), and it succeeded in predicting the
existence of anti-particles, including the positron (the positively charged anti-
particle of the electron).

Other developments in quantum mechanics included quantum statistics,
presented in one form by Einstein and the Indian physicist S.N. Bose (Bose-
Einstein statistics, which apply to particles of the type known as bosons) and
in another form by Dirac and Enrico Fermi (Fermi-Dirac statistics, which
apply to particles of the type known as fermions).

Also of great importance in contemporary quantum mechanics is quantum
field theory. In quantum field theory, interactions between particles result
from the exchange of a type of particle called a gauge boson. For example,
the electromagnetic force arises from the exchange of photons, the weak
nuclear force results from the exchange of W and Z particles, the strong
nuclear force derives from the exchange of gluons, and (more speculatively)
gravitational force arises from the exchange of gravitons.”

As aresult of extensive experimental evidence gathered through the use of
giant particle accelerators (some many miles in diameter), over 150
subatomic particles have been studied and cataloged. In addition to the gauge
bosons mentioned in the preceding paragraph, there are material particles
divided into three categories: leptons, mesons, and baryons. The article called
“The Particle Zoo” in the Physics FAQ gives a “crash course” in these
particles:

Leptons are particles that are like the electron: they have spin 1/2, and
they do not undergo the strong interaction. There are three charged leptons,
the electron, muon, and tau [plus their antiparticles, such as the positron],
and three corresponding neutral leptons, or neutrinos. (The muon and the
tau are both short-lived.)

Mesons and baryons both undergo strong interactions. The difference is
that mesons have integral spin (0,1,...), while baryons have half-integral
spin (1/2, 3/2,...). The most-familiar baryons are the proton and the
neutron; all others are short-lived. The most-familiar meson is the pion;
its lifetime is 26 nanoseconds, and all other mesons decay even faster.
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Most of those 150+ particles are mesons and baryons, or, collectively,
hadrons. The situation was enormously simplified in the 1960s by the
“quark model”, which says that hadrons are made out of spin-1/2 particles
called quarks. A meson, in this model, is made out of a quark and an anti-
quark, and a baryon is made out of three quarks. We don’t see free quarks
(they are bond together too tightly), but only hadrons; nevertheless, the
evidence for quarks is compelling.”

Quantum mechanics has proved to be an extremely accurate explainer and
predictor of the results of all of these scientific observations and experiments
concerning phenomena at the sub-microscopic level.

The above discussion of quantum mechanics has, of course, been merely a
superficial overview of an extremely complex subject. However, our main
interest here, as you will recall, is not to discuss the specific content of
scientific theories, but rather to view those scientific theories from a general
systems perspective, and to deal with epistemological and analogical
teleological issues which may be raised in connection with them. Towards
that end, let’s now turn our attention to the general structure of Schrodinger’s
wavefunction formulation of quantum mechanics, which is by far the most
influential and “standard” formulation of QM.

The Schrodinger Wavefunction Formulation of QM

The first thing we need to note concerning the Schrodinger wavefunction
(which is usually symbolized by the Greek letter psi y) is that it is a linear
function. We know from our discussion of Classical Mechanical Systems
and Special Relativistic Systems that /inear functions generally model
physical systems that are deterministic, time-reversible, obey the
superposition principle, have dominantly (or exclusively) summative
characteristics rather than constitutive characteristics, and have weak and/or
transient interactions (or no interactions at all) between their parts. All of
this is true of the Schrodinger wavefunction as well, so that the y function is
in this respect more similar to Maxwell’s linear electromagnetic equations
than to the nonlinear Einstein Field Equations of General Relativity.

However, the y function also differs from both the Maxwell equations and
the Einstein equations in some very important respects. In the first place,
although Schrodinger initially thought of his wavefunction as referring to
physically real waves, Max Born soon re-interpreted the y waves to be
waves of probability. For example, for a given experimental setup the wave-
pattern of the y function would indicate the probability of detecting an
electron at a particular point in space. In spite of some subsequent attempts to
once again interpret ¥ waves to be physically real waves (such as the pilot
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wave interpretation of Louis de Broglie and David Bohm,” the transactional
interpretation of J.G. Cramer,”, and perhaps the relativistic quantum
mechanics interpretation of E. Marx™), for the most part physicists have
accepted Max Born’s waves-of-probability interpretation of the y function.
One major reason for this is that, while (for example) a simple quantum
system such as a hydrogen atom could be easily visualized as being
surrounded by a single standing-wave electron field using the y function,
more complex atoms surrounded by multiple electrons could not be so easily
visualized because their y function requires three additional dimensions for
every electron added to the system (three dimensions for one electron, six
dimensions for two electrons, nine dimensions for three electrons, and so
on).”®

Now, because the y function is generally regarded to represent waves of
probability, probability itself has a significance in quantum mechanics that is
very different from its significance in classical mechanics. In classical
mechanics, scientists use probability to either deal with cases where
calculating all of the forces is too complex (for example, the flipping of a
coin), or to deal with cases where so many particles are involved that it
makes no sense to try and keep track of each particle (for example, the
millions of molecules that comprise a gas bouncing off of each other
randomly within a sealed glass container). Nevertheless, within classical
mechanics it is always assumed that the complex forces affecting the toss of
the coin could in theory be specified precisely and that the trajectories of all
of the particles in the gas could in theory be tracked precisely. However, with
respect to probability in quantum mechanics it is not at all clear that we could
ever (even in theory) “get behind” the probabilistic description of QM’s w
function to arrive at a more-precisely defined description of sub-microscopic
reality. In fact, most physicists believe this to be impossible and therefore
regard quantum mechanics to be “complete” (in this rather technical and
special sense of the word “complete”).

The most-prominent among the few physicists who did not accept the
“completeness” of quantum mechanics was Albert Einstein. Although (as we
have seen) he made absolutely vital contributions to quantum theory prior to
the 1920s, during the 1920s he became increasingly uncomfortable with the
“final” formulations of QM by Heisenberg and Schrodinger. Instead, he
attempted for the rest of his life to formulate a nonlinear Unified Field
Theory that would be similar to General Relativity, but would include the
other forces of nature (the electromagnetic force, the strong nuclear force,
and the weak nuclear force) in addition to the gravitational force of General
Relativity. Ideally, he hoped to entirely replace the concept of a material
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particle and its trajectory with this Unified Field Theory. In this effort he was
unsuccessful.

The extreme difficulty of what Einstein was attempting to do is evident from
our prior discussions: Both the electromagnetic force and the strong nuclear
force represent far more intense strong and persistent interactions between
physical particles than is the case with the relatively weak gravitational force.
Furthermore, even the nonlinear Einstein Field Equations of General
Relativity are solvable only where one (or two) massive bodies gravitationally
dominate the system (for example, the earth with respect to the objects on its
surface, the sun with respect to the planets, a black hole with respect to
lighter objects in its vicinity, or the physical universe taken as a whole). By
contrast both the electromagnetic force and the strong nuclear force involve
many sub-microscopic particles (sometimes millions of those particles) in
intermediate or strong persistent interaction, with no one of these particles
being dominant over the others. No wonder most physicists regarded
Einstein’s approach to be hopeless and a waste of time! By contrast, the
“messy details” of all of these individual intermediate/strong sub-microscopic
particle interactions can be ignored if we regard Schrodinger’s linear,
probabilistic ¥ function (or some similar statistical function) to be the
ultimate “best we can do” in describing sub-microscopic reality.

In addition to Einstein, a few other physicists (notably Louis de Broglie and
David Bohm) have attempted to “get behind” the probabilistic y function of
QM by suggesting that hidden variables might exist in the sub-microscopic
world that could allow for a non-statistical explanation of sub-microscopic
phenomena. But their efforts have ultimately not been any more successful
than Einstein’s.”

If, then, we accept the standard Max Born interpretation that the Schrodinger
v function describes probability waves, we have the following remarkable
situation: With respect to the y function faken as a whole, quantum
mechanics is completely deterministic — as deterministic, in fact, as classical
mechanics. (Time is reversible, the superposition principle holds, all of the
important characteristics of the y waves are summative, there is weak,
transient, or nonexistent interaction between the y waves, etc.) However,
encapsulated within these y waves at the sub-microscopic level is an
irreducible element of chance and probability which masks (one may
speculate) strong, persistent, nonlinear interactions between the individual
sub-microscopic particles themselves.

In other words, the y function, when applied to a particular experimental
situation, will tell you (for example) the exact probability that your
experimental setup will detect an electron at a particular point in space at a
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particular point in time. Furthermore, from a given set of “initial conditions”
known at some point in time, the y function will enable you to
deterministically calculate forwards and backwards in time exactly what the
probability of finding an electron at that point in space would have been at
any other time in the past or future. However, the ¥ function cannot tell you
whether or not you will in fact actually detect an electron at that point in
space for a given run of the experiment. It is evident, then, that quantum
mechanics cannot predict the results of an individual experimental run, but
can very accurately predict the statistical results of a sef of such experimental
runs. This is but one of the fascinating epistemological features of quantum
mechanics.

Other unique aspects of the y wavefunction arise because it must take into
account the discontinuous and particle-like nature of sub-microscopic reality,
as well as the continuous and wave-like nature of that reality. For one thing,
this necessitates a revision of the Hamiltonian function that we discussed
earlier in the context of Classical Mechanical Systems. Ilya Prigogine and
Isabelle Stengers explain:

First and foremost, a new formulation, unknown in classical physics, had
to be introduced to allow “quantitization” to be incorporated into the
theoretical language. The essential fact is that an atom can be found only
in discrete energy levels corresponding to the various electron orbits. In
particular, this means that energy (or the Hamiltonian) can no longer be
merely a function of the position and the momentum, as it is in classical
mechanics. Otherwise, by giving the positions and momenta slightly
different values, energy could be made to vary continuously. But as
observation reveals, only discrete levels exist.

We therefore have to replace the conventional idea that the Hamiltonian
is a function of position and momenta with something new. The basic
idea of quantum mechanics is that the Hamiltonian as well as the other
quantities of classical mechanics, such as the coordinates g or momenta
p, now become [Hermitian] operators. This is one of the boldest ideas
ever introduced in science . . .

It is a simple idea, even if at first it seems somewhat abstract. We have to
distinguish the operator — a mathematical operation — and the object on
which it operates — a function. As an example, take as the mathematical
“operator” the derivative represented by d/dx and suppose it acts on a
function — say x? . The result of this operation is a new function, this time
2x. However, certain functions behave in a peculiar way with respect to
derivation. For example, the derivative of e is 3e*. Here we return to
the original function simply multiplied by some number — here, 3.
Functions that are merely recovered by a given operator to them are known
as eigenfunctions of this operator, and the numbers by which the
eigenfunction is multiplied after the application of the operator are the
eigenvalues of the operator.
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To each operator there thus corresponds an ensemble, a “reservoir” of
numerical values. This ensemble forms its “spectrum”. This spectrum is
“discrete” when the eigenvalues form a discrete series. There exists, for
instance, an operator with all the integers O, 1, 2, . . .as eigenvalues. A
spectrum may also be continuous — for example, when it consists of all
the numbers between 0 and 1.

The basic concept of quantum mechanics may thus be expressed as follows:
To all physical quantities in classical mechanics there corresponds in
quantum mechanics an operator, and the numerical values that may be
taken by this physical quantity are the eigenvalues of this operator. The
essential point is that the concept of physical quantity (represented by the
operator) is now distinct from that of its numerical values (represented by
the eigenvalues of the operator). In particular, energy will now be
represented by the Hamiltonian operator, and the energy levels — the
observed values of the energy — will be identified with the [discrete]
eigenvalues corresponding to this operator.”®

In other words, it turns out that for each possible quantity we might want to
measure (an observable) there is a Hermitian operator that is associated with
a certain set of special wavefunctions (eigenfunctions), each of which, in
turn, corresponds to its own unique value (eigenvalue) of the quantity we
want to measure.

Summary of the Essential Principles of QM

Based on our understanding of these ideas, we are ready to consider David
Bohm’s summary of the essential principles of quantum mechanics:

Although there are several alternative formulations of [quantum
mechanics] (due to Heisenberg, Schrodinger, Dirac, von Neumann, and
Bohr), which differ somewhat in interpretation, they all have the following
basic assumptions in common:

1.  The fundamental laws of the quantum theory are to be expressed
with the aid of a wavefunction (in general, many dimensional), which
satisfies a linear equation (so that solutions can be superposed
linearly).

2. All physical results are to be calculated with the aid of certain
“observables”, represented by Hermitian operators, which operate
linearly on the wavefunction.

3. Any particular observable is definite (sharply defined) only when
the wavefunction is an eigenfunction of the corresponding operator.

4. When the wavefunction is not an eigenfunction of this operator,
then the result of a measurement of the corresponding observable
cannot be determined beforehand. The results of a series of
measurements on an ensemble of systems represented by the same
wavefunction will fluctuate at random . . . from one case to the next,
over the various possibilities.
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5. [If the wavefunction is given by y = X C v, where [X represents
superposition, i.e. the summing of the following wave expression
for eigenvalues 1 through n,] y is the eigenfunction of the operator
in question corresponding to the nth eigenvalue, [and C is a
coefficient which defines the composition of the state, then] the
probability of obtaining the nth eigenvalue in a large ensemble of
measurements will be given by P, = [C |*, [normalized so that the
sum of the squares of all the coefficients is equal to 1].

6. Because of the non-commutation of many operators [such as
momentum and position] which correspond to variables that must
be defined together in classical mechanics, it follows that no
wavefunctions can exist which are simultaneous eigenfunctions of
all the operators that are significant for a given physical problem.
This means that not all physically significant observables can be
determined together, and even more important, that those which
are not determined will fluctuate . . . at random . . . in a series of
measurements on an ensemble represented by the same
wavefunction.™

Bohm’s sixth point above, concerning the non-commutation of many of the
Hermitian operators in quantum mechanics, is of special importance and
requires further explanation. (For example, Heisenberg’s famous uncertainty
principle follows directly from the fact of the existence of non-commuting
operators in QM.) Two of the most important of these non-commuting
operators in quantum mechanics are the operators for position (i.e.,
coordinate) and momentum, q, and P, respectively. Again, we turn to
Prigogine and Stengers for our further explanation:

One fundamental property results from the relation between operators in
quantum mechanics: the two operators 4, and p, do not commute — that
is, the results of g, o and of P4, applied to the same function are
different. This has profound implications, since only commuting operators
admit common eigenfunctions. Thus we cannot identify a function that
would be an eigenfunction of both coordinate and momentum. As a
consequence of the definition of the coordinate and momentum operators
in quantum mechanics, there can be no state in which the physical
quantities, coordinate ¢ and momentum p, both have a well-defined value.
This situation, unknown in classical mechanics, is expressed by
Heisenberg’s famous uncertainty relations. We can measure a coordinate
and a momentum, but the dispersions of the respective possible predictions
as expressed by Ag, Ap are related by Heisenberg’s inequality AgAp = h
[where & is Planck’s constant]. We can make Ag as small as we want, but
then Ap goes to infinity, and vice versa.®

This non-commutation between the two operators q, and P, is not unrelated
to the fact that, within quantum mechanics, position and momentum are no
longer independent variables, but are instead connected via Planck’s constant

87



ON SYSTEMS

h. Recall Einstein’s famous formula (which he discovered in connection with
his study of the photoelectric effect) p = h/A, where p is the momentum, £ is
Planck’s constant, and A is the wavelength. This formula, of course, enables
us to convert a measure of length (which is related to position) into a
measure of momentum by using Planck’s constant.?!

It is also important to note that position and momentum are not the only non-
commuting operators in quantum mechanics. For example, the spin property
of a sub-atomic particle is specified integrally or half-integrally (depending
on the type of particle) with respect to each of the three dimensions of space.
However, measurements of this spin along each of the three space dimensions
do not commute with one another. In other words, to the extent that we
accurately measure the spin of the particle along one dimension of space, its
spin along the other two dimensions of space appears to be uncertain and
indeterminate.

Epistemological Issues in QM

In spite of the fact that quantum mechanics (QM) has been tremendously
successful in predicting statistical experimental results related to the sub-
microscopic realm, it is evident from the foregoing discussion that significant
epistemological problems arise when we try to describe the relationship
between our macroscopic experimental observations and the sub-microscopic
quantum realities (what John Bell has picturesquely called the quantum
"beables" [pronounced BE-uh-bulls]*?) which are supposed to be the
objective referents of quantum mechanics. For example, it is often said that
when a measurement is made (and the eigenvalue 7 is thereby determined),
then the y function “collapses” into that one of its previously-superimposed
eigenfunctions y which corresponds to the measured eigenvalue n.
Unfortunately, no epistemological consensus exists as to what the “collapse”
of the y function might mean! That is why some wags have described the
dominant epistemological philosophy of most working scientists in the area of
quantum mechanics to be “shut up and calculate™!

In a current physics FAQ on the Internet, we find the following listed among
the unanswered questions of quantum physics:

What is meant by a “measurement” in quantum mechanics? Does
“wavefunction collapse” actually happen as a physical process? If so, how,
and under what conditions? If not, what happens instead?%*

Note that we cannot solve these serious epistemological problems by simply
declaring that only the individual eigenfunctions are real, while the y
wavefunction that results from their superposition is not real: Phenomena
such as the wave-like diffraction and interference of electron beams require
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that we accord the complete superposed y wavefunction some kind of “real”
status as well.

One particularly dramatic experiment demonstrating the reality of the
superposed ¥ wavefunction was done in 1996 by Christopher Monroe and his
colleagues at the National Institute of Standards and Technology in Boulder,
Colorado. In this experiment a single beryllium atom was supercooled with a
laser, then prodded with a fast sequence of laser pulses. As a result, the
beryllium atom harmonically oscillated in such a way that a superposition of
two “coherent-state wave packets” was produced: The atom briefly existed
“in the bizarre state of being in two well-separated positions at once” (if you
call 80 nanometers “well-separated”!).3

These serious epistemological problems of quantum mechanics are often
dramatized through the aid of “thought experiments” (in German, gedanken
experiments) that reveal QM’s paradoxes. Perhaps the most famous of these
“thought experiments” is Schrodinger’s Cat. Here is the original description
of this “thought experiment” in Schodinger’s own words (translated from the
German):

One can even set up quite ridiculous cases. A cat is penned up in a steel
chamber, along with the following diabolical device (which must be secured
against direct interference by the cat): In a Geiger counter there is a tiny
bit of radioactive substance, so small that perhaps in the course of one
hour one of the atoms decays, but also, with equal probability, perhaps
none. If it happens, the counter tube discharges and through a relay releases
a hammer which shatters a small flask of hydrocyanic acid. If one has left
this entire system to itself for an hour, one would say that the cat still lives
if meanwhile no atom has decayed. The first atomic decay would have
poisoned it. The y function for the entire system would express this by
having in it the living and the dead cat (pardon the expression) mixed or
smeared out in equal parts.®

Only when, at the end of the hour, the box is opened and the cat is “observed”
does the y function then “collapse” to a single eigenfunction with a single
eigenvalue, corresponding to either a live cat or a dead cat. Presumably, prior
to the opening of the box, the cat was neither alive nor dead! This type of
paradoxical quantum mechanics “thought experiment” is associated with the
presumed existence of macroscopic quantum superposition states, in defiance
of our everyday experience. This, in turn, is closely associated with another
measurement problem, as described by Richard B. Griffiths and Roland
Omnes in their article “Consistent Histories and Quantum Measurements” in
the August 1999 issue of Physics Today:

There are actually two measurement problems that conventional textbook
quantum theory cannot deal with. The first is the appearance, as the result
of the measurement process, of macroscopic quantum superposition states
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such as Erwin Schrodinger’s hapless cat. The second problem is to show
that the results of a measurement are suitably correlated with the properties
the measured system had before the measurement took place — in other
words, that the measurement actually measured something.?

This second measurement problem is described in more detail later in the
Griffiths and Omnes article:

Particle physicists are always designing and building their experiments
under the assumption that a measurement carried out in the real world
can accurately reflect the state of affairs that existed just before the
measurement. From a string of sparks or bubbles, for example, they infer
the prior passage of an ionizing particle through the chamber.
Extrapolating the tracks of several ionizing particles backward, they locate
the point where the collision that produced the particles took place. But
according to many textbook accounts of the quantum measuring process,
retrodictions that use experimental results to infer what the particle was
doing before this kind of measurement was made are not possible. [For
example, the QM textbooks will say: “The particle had no definite position
before the measurement was made,” “The act of measurement caused the
y wavefunction to collapse to one of its eigenfunctions,” and so on.] Should
we conclude, then, that experimenters don’t take enough courses in
quantum theory? %’

Shortly we will be discussing both of these measurement problems in detail,
following closely the presentation of Griffiths and Omnes in the above-
mentioned article. Before doing this, however, we need to present both the
most commonly accepted solution to the problems of QM epistemology,
which is Niels Bohr’s “complementarity principle” (a.k.a. the “Copenhagen
interpretation”, after the Danish city where Bohr lived and worked), and also
present what our own approach (based on an idea of Ilya Prigogine) will be.

Niels Bohr explained his “complementarity principle” as follows:

The new progress in atomic physics was commented upon from various
sides at the International Physical Congress held in September 1927 at
Como in commemoration of Volta. In a lecture on that occasion, I advocated
a point-of-view conveniently termed “complementarity”, suited to embrace
the characteristic features of individuality of quantum phenomena, and at
the same time to clarify the peculiar aspects of the observational problem
in this field of experience. For this purpose, it is decisive to recognize
that, however far the phenomena transcend the scope of classical physical
explanation, the account of all evidence must be expressed in classical
terms [i.e., via a classical description of macroscopic measurement events].

This crucial point . . . implies the impossibility of any sharp separation
between the behavior of atomic objects and the interaction with the
measuring instruments which serve to define the conditions under which
the phenomena appear. . . Consequently, evidence obtained under different
experimental conditions cannot be comprehended within a single picture,
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but must be regarded as complementary in the sense that only the totality
of the phenomena exhausts the possible information about the objects. . .

The main point here is the distinction between the objects under
investigation and the measuring instruments which serve to define, in
classical terms, the conditions under which the phenomena appear. . .

In particular, it must be realized that . . . all unambiguous use of space-
time concepts in the description of atomic phenomena is confined to the
recording of observations which refer to marks on a photographic plate or
to similar practically irreversible [italics mine] amplification effects like
the building of a water drop around an ion in a cloud-chamber. Although,
of course, the existence of the quantum of action is ultimately responsible
for the properties of the materials of which the measuring instruments are
built and on which the functioning of the recording devices depends, this
circumstance is not relevant for the problems of the adequacy and
completeness of the quantum-mechanical description in its aspects here
discussed.®

Now, it is vital that several important points be noted in connection with
Bohr’s presentation of his “complementarity principle”: The first is that what
is “complementary” is not primarily the wave aspect of QM versus the
particle aspect of QM (though this is implied in what Bohr is saying). Rather,
what are “complementary” are primarily the various macroscopic
experiments (and multiple runs of those experiments) which fogether are
required to give a complete (though apparently paradoxical) picture of a
particular sub-microscopic quantum reality. As we have seen, not only are
multiple experimental runs required in order to confirm the statistical
predictions of QM, but the eigenvalues for non-commuting quantum
operators (such as position and momentum) must be measured using entirely
different experimental setups in order to give accurate results.

A second vital point is that Bohr’s presentation of the complementarity
principle involves no teleological assertions whatsoever: Bohr is not
interested in subject versus object, or in how the subject (i.e., the scientific
experimenter) may or may not affect the object (i.e., the electrons, photons, or
whatever the scientific experimenter is studying). Unlike Werner Heisenberg,
David Bohm, John Wheeler, and numerous “mystical” popularizers of
quantum mechanics, Bohr is not claiming that science can no longer “bracket
out the subject” and that subjectivity must therefore now be introduced into
the heart of science. Bohr makes this clear in the following paragraph:

On [the occasion of the Fifth Physical Conference of the Solvay Institute
held in Brussels in October 1927] an interesting discussion arose also
about how to speak of the appearance of phenomena of which only
predictions of a statistical character can be made. The question was
whether, as to the occurrence of individual effects, we should adopt a
terminology proposed by Dirac, that we were concerned with a choice on
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the part of “nature” or, as suggested by Heisenberg, we should say that

we have to do with a choice on the part of the “observer” constructing the

measuring instruments and reading their recording. Any such terminology

would, however, appear dubious since, on the one hand, it is hardly

reasonable to endow nature with volition in the ordinary sense, while, on

the other hand, it is certainly not possible for the observer to influence

the events which may appear under the conditions he has arranged [italics

mine].%
In a later section we will separately consider various possible teleological
analogs to quantum mechanical systems (just as we did earlier for classical
mechanical systems, Special Relativistic systems, and General Relativistic
systems). But for now it is very important to note that quantum mechanics is
not a violation of the “bracket out the subject” rule that we have contended is
of the very essence of the scientific method.

Instead, what is of importance for Bohr is that the measuring instruments are
macroscopic and therefore obey laws of physics which “must be expressed in
classical terms”, while by contrast the sub-microscopic objects being studied
obey the very different laws of quantum mechanics. It is also clear that by
“classical” physics Bohr intends to include not only classical mechanics, but
also classical thermodynamics. This is evident because of his stress on the
“practically irreversible” nature of the macroscopic measurement event. As
we shall see in a subsequent chapter on Linear Thermodynamic Systems,
time in classical, linear thermodynamics (as well as in far-from-equilibrium
thermodynamics and even in nonlinear dynamics) is irreversible. By contrast,
time in both classical mechanics and quantum mechanics is reversible (as we
have already pointed out).

Briggs and Peat explain Ilya Prigogine’s important insights on this point:

In his thermodynamic equations, Prigogine introduces what he calls a
“time operator”, T. This operator corresponds to “historical time”, that is,
an internal time or age of a system, expressing time’s one-way flow. . .

Prigogine goes on to treat reversible time, #, used by physicists in the
equations of classical physics and quantum mechanics, as only a parameter
which has to do with the motion of particles [or with changes in the
probabilistic y wavefunction taken as a whole]. By making a distinction
between T and 7, Prigogine is able to point out that the Schrodinger cat
problem which has so vexed physicists actually results from a confusion
between historical time, our time (7), and the abstract motion of
possibilities (¢).”

As Ilya Prigogine himself has written:

The apparatus that performs the measurements, whether a physical
construct or our own sensory perception, must follow the extended laws
of dynamics, including time-symmetry breaking [i.e., irreversible time
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T]. There do exist integrable time-reversible systems, but we cannot observe
them in isolation. As emphasized by Bohr, we need an apparatus that
breaks time-symmetry.’!

We may summarize (and extend) these important insights of Bohr and
Prigogine via the following proposition:

Irreversible time T is a constitutive characteristic (i.e., an “emergent
property”) both of nonlinear dynamic systems and thermodynamic systems
(e.g., macroscopic observational systems) which cannot in_any way be
additively (or summatively) derived from that reversible time t which is an
inherent feature of both classical mechanics and quantum mechanics.

We will defend this proposition in detail in our later chapters on Nonlinear
Dynamic Systems, Linear Thermodynamic Systems, and Nonlinear
Complex Physical Systems. But for now it is important to recall that there is
nothing “mystical”, “vitalistic”, or “teleological” about the idea of the real
existence of constitutive characteristics (“‘emergent properties”) of the whole
which cannot be summatively derived by “adding up” the properties of the
parts. Rather, the constitutive characteristics of whole systems are quite
prosaic and physically empirical, arising whenever the parts of the system
interact strongly and persistently. Emergent properties only seem to be
“mystical” because of the linear nature of our usual scientific thought —
thought which has been conditioned mainly by classical mechanics, special
relativity, and quantum mechanics. (See Figure 1 in our earlier chapter on
Classical Mechanical Systems, together with the accompanying discussion.)

Many of the greatest minds in physics over the past centuries have tried to
derive the irreversible time T which is associated with macroscopic
observational systems from the reversible time ¢ which is postulated by both
classical mechanics and quantum mechanics, and in the judgment of most
physicists they have all failed to do so. As Griffiths and Omnes wrote in their
August 1999 article in Physics Today:

[TThe problem of showing that a system of classical particles will exhibit
thermodynamic irreversibility, a typical macroscopic phenomenon, has
not yet been settled to everyone’s satisfaction, despite a continuing effort
that goes back to Ludwig Boltzmann’s work a century ago.”

This same failure has also characterized all attempts to derive macroscopic
temporal irreversibility directly from quantum mechanics, which (like
classical mechanics) is a linear theory that presumes weak or transient
interactions between parts (“parts” in QM being regarded in this context to
be the v eigenfunctions or wavefunctions), and moreover presumes
summative system characteristics (since the y wavefunctions obey the
principle of superposition).
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Our conclusion (which is not the conclusion of Griffiths and Omnes) is that
the irreversibility of macroscopic observational time 7 has not so far been
demonstrated to arise from reversible time ¢ because it is impossible to do so,
due to T’s status as a constitutive characteristic (‘“emergent property”) of
nonlinear dynamic systems and thermodynamic systems regarded as wholes.

An Epistemological QM “Thought Experiment”

Starting from this perspective, let’s examine in detail the discussion by
Griffiths and Omnes of the two fundamental epistemological measurement
problems of quantum mechanics: 1) the problem of macroscopic quantum
superpositions (e.g., Schrodinger’s cat), and 2) the problem of correlating a
macroscopic measurement with the immediately-prior sub-microscopic state
of the system.

Figure 2, below, which follows Griffiths and Omnes®}, shows an experimental
situation that in essence parallels the Schrodinger’s cat “thought experiment”
(though without harming any animals, even in thought!). In the formulas
which follow Figure 2, an expression of the form |a) refers to a conceived of
as a quantum Y wavefunction. Such wwavefunctions, being linear, obey the
superposition principle, so that they can be simply added together, for
example |a) + |b) . The arrow — in these formulas represents the forward
progress in time of the reversible time ¢ of Quantum Mechanics.

Oy
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B

Figure 2 (after Griffths and Omnes, p. 27)
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Here, then, is how Griffiths and Omnes describe the experimental situation
represented by our Figure 2:

The two measurement problems . . . can be understood by referring to the
simple gedanken experiment shown in figure [2]. A photon (or neutron,
or some other particle; it makes no difference) enters a beam splitter in
the a channel and emerges in the ¢ and d channels in the coherent
superposition:

la) = |s) = (|e) + |d) ) /172 (Formula 1)

Here |a), |c), and |d) are wavepackets in the input and output channels,
and |s) is what results from |a) by unitary time evolution (that is, by
solving the appropriate Schrodinger equation) as the photon passes
through the beam splitter.

The photon will later be detected by one of two detectors, C and D. To
describe this process in quantum terms, we assume that |C) is the initial
quantum state of C, and that the process of detecting a photon in a
wavepacket |c) is described by

ey |C) — |C*) (Formula 2)

where |C*) is the triggered state of the detector after it has detected the
photon. Once again, the arrow indicates the unitary time evolution
produced by solving Schrodinger’s equation. It is helpful to think of
|C) and |C*) as physically quite distinct: Imagine that a macroscopically
large pointer, initially horizontal in |C), is moved to a vertical position
in the state |C*) when the photon has been detected.

By putting together the processes (1), (2), and the counterpart of (2)
that describes the detection of a photon in the d channel by detector D,
one finds that the unitary time development of the entire system shown
in figure [2] is of the form:

la) |C) DY — |S) = (|C*) |D) + |C) |D*) ) /N2 (Formula 3)

Ascribing some physical significance to the peculiar macroscopic-
quantum-superposition state |S) in (3) poses the first measurement
problem in our gedanken experiment. The difficulty is that |S) consists
of a linear superposition of two wavefunctions representing situations
that are visibly, macroscopically quite distinct: The pointer on C is
vertical and that on D is horizontal for |C*) |D), whereas for |C) |D*)
the D pointer is vertical and the C pointer is horizontal. In
Schrodinger’s famously paradoxical example, the two distinct situations
were a live and a dead cat. A great deal of effort has gone into trying to
interpret |S) as meaning that either one detector or the other has been
triggered, but the results have not been very satisfactory.*

At this point we will briefly depart from the presentation of Griffiths and
Omnes to indicate what happens when the photon is in fact actually measured
by either detector C or detector D (based on our emergent-property theory of
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macroscopic irreversible time). This actual macroscopic measurement can be
represented by the following formula:

C+D=C*+D or C+D=C+D* (Formula 4)

where = represents irreversible time T (as opposed to — , which is
reversible time f) and C, D, C*, and D* represent the actually (“classically”)
measured macroscopic states of the detectors. (The * of course means that the
detector’s macroscopic pointer has rotated to point upward.)

Now, because of the nature and structure of our macroscopic experimental
setup, we have good reason to believe that this upward rotation of one of the
two macroscopic pointers was caused (in part) by the detection of a photon
by the corresponding detector, C or D. (Analogous to this upward-rotating
pointer is the string of bubbles in a bubble chamber, the string of droplets in a
cloud chamber, the click of a Geiger counter, or an image on a photographic
plate.) We also know (because time 7'is irreversible) that this photon will not
subsequently “change its mind” and trigger the other detector instead. Thus
our experiment has given us a new piece of particular information
concerning a situation in the sub-microscopic world. We can, then, use this
new piece of particular information to revise quantum formula 3 above to
read as follows (returning once more to the presentation of Griffiths and
Omnes):

|a) |C) D) — |e) |C) |D) — |C*) |D)
xor [= exclusive or]
la) |C) D) — |d) |C) D) — |C) |D*)
(Formula 5)

depending on which detector, C or D, detected the photon. Notice that there
are no macroscopic superposition states in formula 5, and moreover formula
5 clearly expresses the fact that the photon was in channel ¢ immediately
before being measured by detector C (or in channel d immediately before
being measured by detector D). This way of looking at things therefore solves
both of the major quantum measurement problems simultaneously.

By contrast, the typical textbook interpretation of QM replaces both |c) and
|d) in formula 5 with their coherent superposition |s). As Griffiths and Omnes
put it, a physicist trained in this textbook interpretation

will wait until the measurement takes place and then “collapse” the
[superposed |s)] wavefunction [to either |c) or |d)] for reasons he may not
understand very well. But at least they make more sense to him than does
the macroscopic superposition of state |S) of [formula 3].%
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Griffiths and Omnes regard the two “exclusive or” formulations in formula 5
to be “consistent histories” within quantum mechanics. In other words, they
can never be true at the same time, and (in this particular case) they can each
be assigned a probability of 1/2. By contrast, it is meaningless to compare
either version of formula 5 to formula 3 and ask “Which is true, formula 5 or
formula 3 ?7” That is because, according to Griffiths and Omnes, formulas 5
and 3 are incompatible “inconsistent histories”, just as non-commuting
operators are incompatible in QM. (For example, it is meaningless to ask
whether the spin of a certain particle is simultaneously //2 along the x axis
and -1/2 along the z axis, since QM theory cannot represent this situation, nor
can actual spin measurements along the x and z axes be done in the same
experimental run.?®) This “consistent histories” approach is sometimes called
the “decoherent histories” approach to QM epistemology, and it has also been
developed by Murray Gell-Mann and James Hartle.”’

While in general agreeing with the consistent-histories / decoherent-histories
approach, it seems to me important to point out that, once the measurement
has actually been made and the pointer of either detector C or detector D has
turned upward, we do then have more particular information at our disposal
concerning the sub-microscopic situation. (That is, we do have good reason
to be believe the photon was in channel c if detector C’s pointer rotated
upwards, or in channel d if detector D’s pointer rotated upwards.) After
taking the measurement, we therefore do in fact have solid experimental
grounds for preferring one of the formulations of (5) to the description in (3),
even though (5) and (3) may be logically incomparable (i.e., incompatible)
from the point-of-view of QM theory. In other words, we know more after
taking the measurement than we did before taking the measurement.

Furthermore, we can confidently make the above epistemological assertion
without committing ourselves to any teleological assumptions whatsoever
(such as, for example, the teleological assumption that “my act of observation
caused the photon to appear in channel c instead of channel d ”, or the
teleological assumption that “God knew whether the photon was in channel ¢
or channel d even before my experiment revealed it to me”.) Not only that,
but the above epistemological approach does not even force us to decide
whether or not quantum mechanics is “complete” (i.e., whether or not
probability will ever be eliminated from QM, whether or not any “hidden
variables” will ever be discovered behind the y wavefunction, etc.)

As a final epistemological comment on the experimental situation of Figure 2,
it is important to note that, while it is valid and useful from the point-of-view
of quantum mechanics to represent macroscopic quantum ¥ wavefunctions
using expressions such as |C), |C*), |D), and |D*), these macroscopic
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quantum descriptions will never replace the macroscopic classical
descriptions C, C*, D, and D*. For one thing, irreversible time T
(represented by the special arrow = in formula 4 ) makes sense in the context
of macroscopic classical thermodynamic & nonlinear-dynamic descriptions,
but does not make sense in the context of linear time-reversible quantum y-
wavefunction descriptions. And without irreversible time T there’s no way to
make sure that a measurement has really measured anything. Furthermore,
irreversible time 7' is only one out of the many other constitutive
characteristics (‘“emergent properties”) of thermodynamic & nonlinear-
dynamic systems that cannot be derived additively from linear, superposed y
eigenfunctions.

The points made in the foregoing paragraph are very close to the heart of
Niels Bohr’s complementarity principle. (See our earlier quotations from
Bohr.) Nevertheless, the dream of “reducing” the scientific description of all
macroscopic phenomena to linear guantum mechanics (just as earlier
generations of physicists had dreamed of “reducing” all of science to linear
classical mechanics) is a dream that lives on in the hearts of many
contemporary physicists. For example, Griffiths and Omnes end their article
with the following statements:

Demonstrating that quantum systems actually exhibit irreversible behavior
in the thermodynamic sense . . . is not trivial. There are conceptual and
computational difficulties similar to those that arise when one considers a
classical system of many particles. Nonetheless, there seems at present to
be no difficulty, in principle, that prevents us from understanding
macroscopic phenomena in quantum terms, including what happens in a
real measurement apparatus. Thus, by interpreting quantum mechanics
in a manner in which measurement plays no fundamental role, we can
use quantum theory to understand how an actual measuring apparatus
functions.”®

By contrast, it seems to me that, while you may apparently almost derive the
irreversible time T of a macroscopic “measuring apparatus” system from the
linear, summative characteristics of its parts (whether those “parts” be sub-
microscopic particles or ¥ wavefunctions), in the end the prize always
vanishes, like the proverbial “pot 0’ gold” at the end of the rainbow.

The Double-Slit “Thought Experiment”

Another paradoxical quantum “thought experiment” that is often discussed
(the results of which have actually been experimentally confirmed using
neutron beams) is the famous double-slit experiment, which is here described
very briefly: Fire a parallel beam of particles (e.g., electrons or neutrons) at a
thin, flat screen that has been pierced by two narrow slits. Then place a
photographic plate (or other suitable detector) at some distance behind this
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screen, in order to detect the pattern made by the particles that have passed
through these two slits. What you will find is that the particles strike the
photographic plate in a pattern of intensity that suggests the interference
pattern of waves. (Of course, this illustrates the wave/particle duality of
quantum mechanics.) But, even more interesting, repeat the experiment, this
time firing the particles one particle at a time. What you will find this time is
that the accumulated photographic image of the particles still has a wave-like
interference pattern! Perhaps no experiment better illustrates the eerie
“timeless” reality of the superposed y wavefunction than does this double-slit
experiment. As Briggs and Peat put it:

There are two logical interpretations of this finding, and neither one makes
any classical sense. In the first interpretation we say that each indivisible
particle somehow manages to go through both slits at the same time and
interfere with itself, contributing to the wave pattern on the [photographic
plate], yet somehow registering [as a single point on the photographic
plate]. The second interpretation is even worse. We say that somehow
each particle “knows” where the particles preceding it have gone and
where the ones following will go so that at the end of the experiment they
will all together have piled up in a nice [interference] wave pattern for the
experimenter to puzzle over. . . [From a classical point-of-view, it seems
as though the particle] is either very smart or it is indivisible and divisible
at the same time.”

In the “Consistent Histories™ article from which we quoted earlier, Griffiths
and Omnes are able to successfully deal with this double-slit experiment (and
with the simpler, but formally similar, Mach-Zehnder interferometer
experiment) using the consistent-histories / decoherent-histories approach:

It turns out that [those mutually exclusive] histories in which the particle
passes through a particular slit and then arrives at a particular point in
the interference zone do not satisfy the consistency conditions, and thus
do not constitute acceptable quantum beables. This will come as no surprise
to generations of students who have been taught that asking which slit the
particle passes through is not a sensible question. . .

On the other hand, if there are detectors just behind [each of the] two
slits, one’s physical intuition says that it should be sensible to say which
slit the particle passes through. . . In that case, the relevant histories,
which are analogs of [formula 5, above], turn out to be consistent.
Furthermore, even if there are no detectors behind [each of] the slits,
there are consistent histories in which the particle passes through a
particular slit and then arrives in a spread-out wavepacket in the
interference zone, rather than at a particular point.!®
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The Einstein-Podolsky-Rosen “Thought Experiment”

The last of the paradoxical quantum “thought experiments” we will discuss is
the famous Einstein-Podolsky-Rosen experiment (usually named by the
initials EPR). In 1935 Albert Einstein, Boris Podolsky, and Nathan Rosen
published a paper entitled “Can quantum-mechanical description of physical
reality be considered complete?”!! in which they proposed what has become
known as the EPR paradox. The EPR has had a number of slightly variant
formulations over the years. Here is a fairly clear formulation by Briggs and
Peat:

In the EPR, an atomic particle P disintegrates in two, and the two halves,
A and B, fly off in opposite directions at high speed. According to the
laws of both classical and quantum physics, there is a correlation between
the momentum of A and B and also a correlation between the position of
A and B. This means that whatever we find out about A gives us
corresponding information about B. Now Heisenberg’s uncertainty
principle stipulates that as we measure the position of particle A, its
momentum becomes uncertain [because position and momentum are non-
commuting operators in QM]. But, Einstein and his colleagues asked,
how could a measurement of A possibly affect particle B, which is flying
towards the other side of the laboratory? Since the momentum and positions
of A and B are correlated, then by [measuring A] it should be possible to
deduce something about B without actually measuring it. Suppose then
that we measure the momentum of A. This also gives us the momentum
of B. Without violating the uncertainty principle, we can then measure
the position of B. But now we have a paradox. We haven’t violated the
uncertainty principle, yet we have managed to obtain both the momentum
and position of B, a feat which the uncertainty principle says is
impossible!'”

Not only that, but after measuring the position of particle B, we can also
deduce both the position and momentum of particle A as well !

Other formulations of the EPR have the measurements of particles A and B
taken when they are so far apart that any “signal” between A and B would
have to occur at a speed faster than the speed of light, contrary to Einstein’s
Theory of Relativity. Still other formulations of the EPR use different non-
commuting QM operators, such as particle spin with respect to the three axes
of three-dimensional space, rather than position and momentum. Finally, yet
other formulations stress the EPR paradox by saying that the measurement of
the position of B cannot actually occur, because the measurement of the
momentum of A has determined also the momentum of B, thus rendering B’s
position indeterminate and “poisoning” any attempt to measure it directly.

What interpretation should be given to this EPR paradox?
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First, we should note that the EPR is not a significant problem from the point-
of-view of Niels Bohr’s “complementarity” interpretation of QM: Bohr is
able to treat the EPR as just another example of how we have to use different
experimental setups to “complement” one another in order to get a complete
picture of quantum reality. Bohr also regards the EPR to be just another
example showing “the necessity of a final renunciation of the classical ideal
of causality and a radical revision of our attitude towards the problem of
physical reality”.!” The fact that, under the unusual circumstances of the
EPR, both the position and momentum of a particle seem to be determined,
contrary to the Heisenberg Uncertainty Principle, does not seem to him to be
stranger than any of the other paradoxes of QM that defy our intuitions
concerning causality and physical reality. Einstein summarized his own view
of Bohr’s position as follows:

Of the “orthodox” quantum theoreticians whose positions I know, Niels
Bohr’s seems to me to come nearest to doing justice to the [EPR] problem.
Translated into my own way of putting it, he argues as follows:

If the partial systems A and B form a total system which is described by its
y-function W/(AB), there is no reason why any mutually independent
existence (state of reality) should be ascribed to the partial systems A and
B viewed separately, not even if the partial systems are spatially separated
from each other at the particular time under consideration. The assertion
that, in this latter case, the real situation of B could not be (directly)
influenced by any measurement taken on A is, therefore, within the
framework of quantum theory, unfounded and (as the [EPR] paradox
shows) unacceptable.'™

(In fact, Bohr does not even like to speak of a measurement “influencing” the
system measured. Rather, for him, each measurement is a measurement of the
entire experimental setup as a whole, including the measuring apparatus
itself. Various experimental setups taken together then “complement” one
another to give us a complete picture of quantum reality.!%%)

Einstein then goes on to immediately describe his own position concerning the
EPR paradox:

By this way of looking at the matter it becomes evident that the [EPR]
paradox forces us to relinquish one of the following two assertions:

1. The description by means of the y-function is complete.

2. The real states of spatially separated objects are independent of each
other.

On the other hand, it is possible to adhere to (2), if one regards the y-
function as the description of a (statistical) ensemble of systems (and
therefore relinquishes (1)). However, this view blasts the framework of
the “orthodox quantum theory”.!%
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As might be gathered from this quotation, Einstein was strongly of the
opinion that (2) should continue to be affirmed, while (1) should be rejected.
The affirmation of assertion (2) is often called the Principle of Locality. By
contrast, most “orthodox” quantum theorists reject assertion (2) and believe
that reality (or, at least, quantum reality) is nonlocal. In a paper published in
1948 in the journal Dialectica, Einstein concisely summarizes why he
believes in the Principle of Locality:

The following idea characterizes the relative independence of objects far
apart in space (A and B): External influence on A has no direct influence
on B. This is known as the Principle of Contiguity [a.k.a.., the Principle
of Locality], which is used consistently only in field theory. If this axiom
were to be completely abolished, the idea of the existence of quasi-enclosed
systems, and thereby the postulation of laws which can be checked in the
empirically accepted sense, would become impossible.'"’

Unfortunately Einstein’s “Principle of Locality” is not as obvious or basic as
he makes it sound. Not only does it contradict QM (as the EPR paradox
shows) but, as we shall see in our later chapter on Nonlinear Complex
Physical Systems, a macroscopic far-from-equilibrium thermodynamic
system that has been modeled using nonlinear differential equations (which
are the same kind of equations Einstein himself used in his General Theory of
Relativity) can also show surprising nonlocal correlations between parts that
are widely separated in space and/or time. (One example that is popular with
scientists who study chaos theory is the fact that the flutter of a butterfly’s
wings in China can be a “cause” of a hurricane in Florida months later).

Because Einstein’s “Principle of Locality” remains, at the very least,
controversial, I don’t believe that the EPR paradox proves that QM is
“incomplete”. Indeed, it is difficult to think of any sufficient proof of the
“incompleteness” of QM other than actually discovering and proving a new
scientific paradigm for modeling the sub-microscopic world that does not
include the irreducible statistical features of QM. (Einstein’s own tries at
creating a Unified Field Theory were unsuccessful attempts to do just that.)

On the other hand, I also believe it to be fruitless to try and prove that the
discovery of a successful non-statistical “hidden variables” theory of the sub-
microscopic world is impossible. For example, a famous mathematical proof
by John von Neumann (which showed that “hidden variables” analogous to
those used to describe the underlying mechanism of air molecules bombarding
a dust particle in Brownian motion would be fundamentally inconsistent with
the experimental results of QM) has since been shown to be inconclusive by
David Bohm, because “hidden variables” would not need to follow the
Brownian-motion model.'®
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In 1964 John S. Bell used an EPR-type “thought experiment” to derive an
inequality that (purportedly) could be experimentally tested to decide whether
or not non-statistical “hidden variables” could ever conceivably be found to
underlie QM.!® In Bell’s version of the EPR, particle spin with respect to the
three axes of three-dimensional space are the non-commuting QM variables.

Imagine a neutral pion at rest. Suddenly it decays into a pair of photons
traveling in opposite directions to one another. Since the neutral pion has zero
angular momentum, the two photons must have an opposite spin along any of
the three axes of space we choose to measure. Call these opposite spins up
and down, respectively. To continue our discussion, we will now quote from
the Physics FAQ article on Bell’s inequality by John Blanton (except that, to
avoid confusion with our prior discussions, we will call the axes of space X,
Y, and Z rather than Blanton’s A, B, and C):

Call the axes X, Y, and Z and call the spin in the X axis X+ if it is up in
that axis, otherwise call it X- [if it is down in that axis]. Use similar
definitions for the other two axes.

Now perform the experiment. Measure the spin in one axis of one photon
and the spin in another axis of the other photon. If EPR is correct [that
is, if “hidden variables” actually exist], each photon will simultaneously
have properties for spin in each of axes X, Y, and Z.

Look at the statistics. Perform the measurements with a number of sets of
photons. Use the symbol N(X+, Y-) to designate the words “the number of
photons with X+ and Y-". Similarly for N(X+, Y+), N(Y-, Z+) , etc. Also
use the designation N(X+, Y-, Z+) to mean "the number of photons with
X+, Y-, and Z+", and so on. It is easy to demonstrate that for a set of
photons

(1) N(X+, Y-) = N(X+, Y-, Z+) + N(X+, Y-, Z-)

because all of the (X+, Y-, Z+) and all of the (X+, Y-, Z-) photons are
included in the designation (X+, Y-), and nothing else is included in
(X+, Y-). You can make this claim if [all of] these measurements are
connected to some real properties of the photons [because of the
assumed existence of ‘“hidden variables™].

Let n(X+, Y+) be the designation for “the number of measurements of
pairs of photons in which the first photon measured X+, and the second
photon measured Y+”. Use a similar designation for the other possible
results. . . You can’t measure both X and Y of the same photon. Bell
demonstrated that, in an actual experiment, if (1) is true (indicating
real properties), then the following must be true:

2) n(X+, Y+) <= n(X+, Z+) + n(Y+, Z-)

Additional inequality relations can be written by just making the
appropriate permutations of the letters X, Y, and Z and the two signs.
This is Bell’s inequality, and it is proved to be true if there are real
(perhaps hidden) variables to account for the measurements.'!°
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In 1982 Alain Aspect and his co-workers published the results of experiments
purporting to show that Bell’s inequality is false and that, therefore, “hidden
variables” behind QM are impossible.!!! In the last one of these, polarizer
angles were changed while the photons were actually “in flight”.

At the time, Aspect’s final experiment in this series was widely regarded as
conclusively proving the impossibility of “hidden variables” behind the
statistical y wavefunction, and this is the view that appears to this day in
popular expositions of quantum mechanics. However, in 1985, Franson
showed that Aspect’s final experiment was defective because the timing
constraints were not adequately controlled and accounted for."'? Also, other
physicists have argued on theoretical grounds that there are assumptions
behind Bell’s view of “hidden variables” (just as there were assumptions
behind von Neumann’s view of “hidden variables™) such that a “hidden
variable” theory not based on those assumptions might still be possible.!!* So
the “hidden variables” question is still very much open and, in my view, will
not be solved until a successful “hidden variables” theory of the sub-
microscopic world is actually created and proven experimentally (or,
ultimately, fails to be actually created and proven experimentally).

Turning briefly from science to teleology, the EPR paradox also appears to
raise a serious problem for the popular Heisenberg QM teleology, according
to which the experimenter actually subjectively causes the value of a QM
variable (such as position or momentum) to become definite for a given sub-
microscopic particle merely by doing the measurement, which measurement is
said to “collapse the superposed y wavefunction to a single eigenfunction
having a single eigenvalue”. Obviously, if particle A did not even have a
definite momentum before the experimenter actually measured it, how could
the experimenter (or particle A) instantly communicate information
concerning particle A’s momentum to particle B, so that B would “know”
what definite complementary momentum value to assume? (Remember that B
might be light-years away by the time A’s momentum is actually measured
and that, according to Einstein’s Theory of Relativity, no communication
signal can travel faster than the speed of light.)

Actually this EPR problem for the Heisenberg QM teleology is more apparent
than real. As we shall argue in our later section on teleological analogs to
quantum mechanics, the Heisenberg QM teleology amounts to the assertion
that the experimenter is “empowered” to do “real magic” upon sub-
microscopic particles that he doesn’t even understand all that well. And if you
believe yourself to be empowered to actually do real magic, then instantly
deciding the momentum of a particle that is light-years away is just as easy as
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instantly deciding the momentum of a particle that has directly interacted with
your experimental apparatus!

The foregoing discussion of the epistemology of quantum mechanics has, for
the most part, relied upon mainstream, conservative interpretations of QM,
such as Niels Bohr’s version of the “Copenhagen interpretation” (a.k.a. the
“complementarity principle”) and the consistent-histories / decoherent
histories approach of Griffiths, Omnes, Gell-Mann & Hartle. We have also
mentioned a few of the “non-standard” QM interpretations that treat the
wavefunction as a “real” wave (or, at least, based on “real” waves), including
the views of Louis deBroglie, David Bohm, J.G. Cramer, and E. Marx. For
the sake of completeness, we need to also mention a few other QM
interpretations, but unfortunately our discussion of these must necessarily be
very brief and therefore superficial.

The “Many-Worlds” Interpretation of QM

In 1957 Hugh Everett III first proposed the many-worlds interpretation of
quantum mechanics (often abbreviated MWI). According to this
interpretation, every time a y wavefunction manifests multiple statistical
possibilities, the world (i.e., universe) splits into many worlds, with one world
for each different possibility. Each of the resulting worlds is identical to the
others, except for the different particular realization of the possibilities
inherent in the original y wavefunction. These many worlds, in turn, split into
still more worlds as new y wavefunctions manifest themselves within the
original set of worlds. Furthermore, no communication is possible between
any of these many worlds, and consequently nobody in one world knows
anything about the other worlds. Nevertheless, the people living in each world
continue to endlessly split, along with the world(s) in which they live.''*

The problems with the many-worlds interpretation of QM seem to me to be as
follows:

1. Although some physicists have suggested that quantum interference
between the hypothesized adjacent worlds might be detectable, most
physicists agree that the MWI cannot be experimentally tested.

2. The MWI violates (big time!) the scientific principle known as Occam’s
Razor, which states that entities should not be multiplied unnecessarily.
This principle has been restated in many ways, one of which is that when
you have two competing theories which make exactly the same
predictions (e.g., the Copenhagen interpretation and the many-worlds
interpretation), then the one that is simpler is the better.""> As Alistaire
Rae has written:
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The idea of a near-infinite number of universes which can
never interact with each other and whose existence can
therefore never be verified seems to most scientists to be an
extreme breach of this principle [of economy] and certainly
greater than that implied by the de Broglie - Bohm hidden-
variable theory.!

3. MWI also has serious problems giving a reasonable account of the notion
of probability. Albro writes:

[In MWI] there is a serious problem concerning the lack of a
valid probability measure for the outcomes of events. Those
who subscribe to the MWI typically imagine that the probability
distribution for the various possible outcomes of a sequence of
quantum events can be associated with the relative number of
future “worlds” that contain one set of outcomes versus another,
somewhat along the lines of statistical thermodynamics.
Unfortunately it’s not that simple, because there is no suitable
principle of individuation to distinguish “worlds” in such a
way that their relative numbers can be “counted” in any
statistically meaningful sense.'"’

4. Furthermore, because the innumerable worlds generated by the MWI
cannot communicate with one another, the observer is (from his point-of-
view) basically left with the same epistemological problems concerning
quantum measurement that he started with.

5. Lastly, the teleological analog suggested by the MWI is demonstrably
false, because it makes a mockery of the idea that that there is any point
at all in attempting to make ethical choices. As Douglas Jones, a
supporter of the MWI, has written:

[If MWTI ideas are correct], they have profound implications
for our understanding of the nature of the Soul, because the
Soul (if there is such a thing) must branch along with the
worlds that contain it. It would appear that the writings on
which many . . . religions are based make no mention of this
idea.'®

Although you may think that there are certain alternatives you
would never choose, can you really be sure of that? There are
a practically infinite number of versions of you, who have all
split off at some time in the past from the path you are now
following. There may be versions of you that split off five or
ten years ago, or perhaps five minutes after you were born, to
whom those choices may not seem unthinkable. But in a very

real sense, those people are still “you”.'"®

So, why not go ahead and commit a murder? After all, there will be versions
of you who did not commit the murder. How could God possibly know which
one is “the real you”? Indeed, even the question “Who is the real you?”
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becomes meaningless within the teleological framework suggested by the
MWI. From the MWI perspective, we are like the characters at the end of
Orson Welles’ film The Lady from Shanghai: We find ourselves endlessly
duplicated within a meaningless carnival “funhouse” of mirrors, where all of
our moral choices simply don t matter, because what we think we didn’t
choose is just as real as what we did choose.

While the cynicism and nihilism of MWTI’s analogical teleology certainly fits
in with our Nietzschean, postmodern vision of the “radically autonomous”
human individual (the “superman’) for whom “everything is permitted”, we
have strongly argued in our Book I, WORLDVIEWS, that such teleological
views are false.

Perversely, some scientists regard the implicitly anti-religious nature of
MWT’s analogical teleology to be a strong point in MWTI’s favor, on the
theory that anything that is anti-religious must be pro-science. But, as we
have noted earlier, tenaciously holding onto a scientific viewpoint merely to
minimize the possibility of any religious teleological analogy has not proved
to be a scientific winning strategy of late. (For example, most astronomers
tenaciously held on to the steady state cosmology for decades after there was
overwhelming scientific evidence against it, and the same can be said of
geologists with respect to absolute uniformitarianism, and of biologists with
respect to the antiquated theory of minutely gradual, step-by-step, Darwinian
evolution.)

It might be objected that my putting forward a teleological argument against
MWI violates my oft-stated purpose of keeping teleological arguments clearly
separated from physical arguments. And it is obviously true that not all
physical entities have evident teleological analogs (e.g., the hydrogen atom or
a gravitational system), nor do all zeleological entities have evident physical
analogs (e.g., angels or a transcendent God). Nevertheless, where evident
analogs between a given physical system and a given teleological system do
obviously exist, it seems to me that evidence against (or for) views with
respect to one system may be taken as evidence against (or for) corresponding
views with respect to the other system. And so, in the present case, MWI can
be indirectly (but forcefully) argued against by arguing against its
teleological analog. (In the APPENDIX to this book, I will go the other way
and argue against a feleological position, ethical proportionalism &
consequentialism, by showing the impossibility of its corresponding physical
presuppositions.)
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The “Implicate Order” Interpretation of QM

Turning now to a completely different interpretation of QM, we have already
mentioned David Bohm’s role in developing the “non-standard” pilot-wave
interpretation of QM, as well as his refutation of von Neumann’s proof of the
supposed impossibility of discovering hidden variables behind the y
wavefunction. But, additionally, David Bohm has also created an expansive
interpretation of quantum mechanics that is much more of a comprehensive
philosophy than a limited scientific QM interpretation.

One of the most important ideas in Bohm’s comprehensive philosophy is that
the implicate order of the cosmos is both higher-dimensional and
holographic in nature. (In a holographic plate, an imperfect three-
dimensional image of the whole exists within each part of the plate, as well as
each part of the plate existing within the whole.) Briggs and Peat summarize
this aspect of Bohm’s philosophy as follows:

What emerges is a picture of an encoding pattern of matter and energy
spreading ceaselessly throughout the universe — each region of space, no
matter how small (all the way down to the single photon, which is also a
wave or “wave packet”), containing — as does each region of the
holographic plate — the pattern of the whole, including all the past and
with implications for all the future. Each region will carry this encoding
of the whole somewhat differently, as in fact different “parts” of a
holographic plate will each give the whole picture but with slightly different
limitations on the number of perspectives from which it can be seen.

It is a breathtaking view, an infinite holographic universe where each
region is a distinct perspective, yet each contains all.!*

For Bohm, this implicate “enfolded” holographic order becomes the explicate
“unfolded” order of particular objects and events through the flowing of what
he calls the holomovement. Bohm writes:

To generalize so as to emphasize undivided wholeness, we shall say that
what “carries” an implicate order is the holomovement, which is an
unbroken and undivided totality. In certain cases, we can abstract particular
aspects of the holomovement (e.g., light, electrons, sounds, etc.), but more
generally, all forms of the holomovement merge and are inseparable. Thus,
in its totality, the holomovement is not limited in any specifiable way at
all. It is not required to conform to any particular measure. Thus, the
holomovement is undefinable and immeasurable.'”!

In my Book I, WORLDVIEWS, 1 presented the idea that the basic structure of
religious teleological systems is holographic — that the whole is within the
part, as well as the part within the whole, in such a way that group
subjectivity is a basic ordering principle of the universe, as viewed teleo-
logically. Naturally, therefore, I am extremely sympathetic to Bohm’s view
that, analogically, the physical universe is implicately structured in a
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similarly holographic fashion. It seems likely, for example, that the human
brain in some way physically contains some kind of imperfect structural
correspondence with the larger physical universe which it both tries to
represent and which, in turn, encompasses it as a physical part. Furthermore,
it is commonly noted in biology that the development of a living embryo into
an individual of a species does, in some loose analogical sense, image in
miniature the entire history of the evolution of the species of which that
individual is a part.

Nevertheless it seems to me that Bohm’s speculations are insufficiently
grounded in actual science, and arise more from his immersion in Eastern
religion and philosophy than from scientific theory or experiment. Bohm
himself stresses that his central concept, the holomovement, is “undefinable
and immeasurable”. But it is hard to see how an idea that is both undefinable
and immeasurable can be of much scientific value, unless an experimentally
testable scientific theory can somehow be wrung from it.

In fairness to Bohm, both he and his co-workers at the University of London’s
Birkbeck College did work for many years towards such a scientific theory,
using ideas such as co-homology (a form of topology that does away with the
idea of an underlying space-time structure), Clifford/Grassmann algebras,
and (of course) the pilot-wave concept.'?? But, unfortunately, none of these
scientific reformulations of quantum mechanics has achieved general
acceptance among physicists.

The “Liouville Space Extension” Of QM

Another extremely interesting “non-standard” version of QM is Ilya
Prigogine’s “Liouville Space Extension” of quantum mechanics. We have
already made significant use of Prigogine’s clear distinction between
irreversible time T and reversible time t in our above discussion of QM
epistemology. However, Prigogine has since gone much farther than this: His
“Liouville Space Extension” of QM actually incorporates irreversible time T
into the fabric QM itself !

Prigogine has demonstrated that irreversible time T arises at the sub-
microscopic level (as well as at the macroscopic level) because of the
existence of Poincare resonances, which we mentioned earlier in our chapter
on Classical Mechanical Systems. (It turns out that these Poincare
resonances arise in the context of quantum mechanics, as well as in the
context of classical mechanics.) Of course, the fact that, for Prigogine,
irreversible time T operates at both the macroscopic and the sub-microscopic
levels of reality makes the solution to QM epistemological problems far
easier. Prigogine writes:
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[O]ur approach eliminates the dualistic structure of quantum mechanics,
and thus eliminates the quantum paradox. We arrive at a realistic
interpretation of quantum theory because the transition from wave
functions to ensembles can now be understood as the result of Poincare
resonances without the mysterious intervention of an “observer” or the
introduction of other uncontrollable assumptions. In contrast to other
attempts to extend quantum theory . . . our own approach makes well-
defined predictions that are testable. Thus far, they have been confirmed
by every numerical simulation performed.'*

In fact, I would have preferred to completely follow Ilya Prigogine’s version
of quantum mechanics in the QM epistemological discussions above. I did not
do so for the following two reasons:

1. Prigogine’s version of QM is not just an epistemological interpretation of
QM, but is instead a truly non-standard version (or extension) of QM
that is not yet accepted by the majority of physicists. Therefore, for
purposes of my epistemological discussion of QM, I wanted to stick to
both the standard version of QM and (insofar as possible) to
“conservative” epistemological interpretations of QM (such as Bohr’s
Copenhagen interpretation, and the consistent histories / decoherent
histories interpretations of Griffiths, Omnes, Gell-Mann, and Hartle).

2. Prigogine’s extension of QM depends strongly on thermodynamic ideas
that we will not be presenting until our later chapters on Linear
Thermodynamic Systems and Nonlinear Complex Physical Systems.

Another “Far-From-Equilibrium” Version of QM

Finally, Paul Budnik has an interesting non-standard version of QM in which
the sub-microscopic discontinuous “jumps” of QM are regarded to be similar
to the sudden, discontinuous (sometimes chaotic) changes that occur in many
nonlinear, macroscopic, far-from-equilibrium thermodynamic systems.
Budnik even manages to work in the “hologramic structure” idea that so-
interested David Bohm. So, without further comment, we will end our
discussion of the science of quantum mechanics with this quotation from Paul
Budnik:

One alternative to classical particles [and “hidden variables”] is to think
of observations as focal points in state space of nonlinear transformations
of the wave function. Attractors in chaos theory provide one model of
processes like this. Perhaps there is an objective physical wave function
and QM only models the average or statistical behavior of this wave
function. Perhaps the structure of this physical wave function determines
the probability that the wave function will transform nonlinearly at a
particular location. If this is so, then probability in QM combines two
very different kinds of probabilities: The first is the probability associated
with our state of ignorance about the detailed behavior of the physical
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wave function. The second is the probability that the physical wave function
will transform with a particular focal point.

... I have advocated a class of models of this type based on using a
discretized finite difference equation rather than a continuous differential
equation to model the wave function. The nonlinearity that must be
introduced to discretize the difference equation is a source of chaotic-like
behavior. In this model, the enforcement of the conservation of conservation
laws comes about through a process of converging to a stable state.
Information that enforces these laws is stored holographic-like over a

wide region.!?*

Teleological Implications of QM Systems

Because quantum mechanics basically deals with the physical realm of the
sub-microscopic, it might be expected that there are no interesting
teleological systems which are analogous to quantum mechanical systems.
While this is essentially true, quantum mechanics is instead associated with a
number of important teleological issues, due ironically to the fact that
scientists themselves frequently (and inappropriately) introduce teleological
considerations into their discussions of QM epistemology. That is why, in our
previous sections on the science and epistemology of quantum mechanics, we
several times had to “jump the gun” and briefly discuss the teleology of QM:

¢  We quoted from Niels Bohr concerning his refusal to embroil his
version of the Copenhagen interpretation of QM with any teleology.
You will recall that Bohr stated that “as to the occurrence of
individual [quantum] effects” he rejected both Dirac’s view that a
choice on the part of “nature” was involved and Heisenberg’s
contrary view that a choice on the part of the “observer” determined
the outcome of a given quantum experimental measurement, “since,
on the one hand, it is hardly reasonable to endow nature with volition
in the ordinary sense, while, on the other hand, it is certainly not
possible for the observer to influence events which may appear under
the conditions he has arranged.”'* We strongly endorsed Bohr’s
opinion on this matter and correspondingly gave an account of QM
epistemology which we believe to be free of teleological assumptions
and which, moreover, continues to affirm the foundational “bracket
out the subject” methodology of science.

e In connection with our discussion of the Einstein-Podolsky-Rosen
paradox (EPR) we gave our opinion that the EPR presents only an
apparent problem for the Heisenberg QM teleology because that
teleology amounts to the belief that the human experimenter is
empowered to do “real magic”, including the ability to (for example)
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instantaneously decide the momentum of a sub-atomic particle that is
light-years away merely by measuring its nearby correlative particle.

e One of our five arguments against the many-worlds interpretation of
quantum mechanics (MWI) was directed against MWTI’s teleological
analog, which was shown to be teleologically false.

In this section the focus explicitly shifts from the science and epistemology of
QM to the releological issues that are associated with QM. Let’s begin our
teleological discussion by referring once again to the “thought experiment”
depicted in Figure 2, which can be found earlier in this chapter. The
teleological question which this “thought experiment” raises concerns the
teleological status of the photon after it has encountered the beam splitter but
before it has been detected by either detector C or detector D. (Let’s say, for
purposes of this example, that the photon is subsequently detected by detector
C.) We’ve already established that it is scientifically and epistemologically
meaningless to ask which channel (¢ or d) the photon is in until the photon is
actually detected by detector C, at which point we know that the photon was
in channel c rather than d. In the present context, however, our question is
how to interpret this situation teleologically. While many teleological
interpretations are possible, the following three interpretations seem to me to
be the most important and interesting:

1. The transcendent all-knowing God exists. During the period of time
between the photon’s encounter with the beam splitter and the
experimenter’s detection of it at detector C, God knew exactly which
channel the photon was in (channel c¢) and, moreover, knew exactly
where the photon was at all times. The human experimenter’s
detection of the photon at detector C revealed to him but a small part
of the knowledge that was previously known only to God.

2. The transcendent all-knowing God does not exist (or for some other
reason is excluded from this teleological discussion). However, a
purely immanent pantheistic god who shares some of our limitations
does exist. This immanent god may be identified with what Dirac
called “nature”. Nature, so defined, did not know which channel the
photon was in prior to its detection by detector C (or, perhaps, she
was simply content to leave the photon temporarily “spread out”
indeterminately within the y-wavefunction). And (of course) nature
also did not know (or care to determine) the position of the photon
prior to its detection. However, during the moment when detector C is
triggered, nature somehow ““decides” which detector the photon is to
appear at, and (therefore) which channel the photon was in
immediately prior to its detection. (The exact positions of the photon

112



Quantum Mechanical Systems

as it traveled through channel ¢ are never determined or known,
either by nature or by the human experimenter.) In this teleological
view, nature may be said to have “caused the y -wavefunction to
collapse” in such a way as to trigger detector C .

3. Neither the transcendent God nor the immanent god (nature) exists.
(Or, for some other reason, both are excluded from this teleological
discussion.) As in teleological interpretation #2, after the photon’s
encounter with the beam splitter but before its detection by detector
C, the channel in which the photon was traveling was completely
unknown to anyone. However, the triggering of detector C means that
the human experimenter by his act of measurement has caused the
photon to appear at detector C rather than detector D, and has also
thereby caused the photon to appear earlier in channel c¢ (rather than
in channel d) just before it was detected. (As in teleological
interpretation #2, the exact positions of the photon as it traveled
through channel c are never determined or known.) Under this
teleological interpretation (#3), the human experimenter, by his act
of measurement, is said to have “caused the y -wavefunction to
collapse”. This is essentially Werner Heisenberg’s teleological
interpretation of QM, and it is by far the most popular with quantum
physicists.

What are we to make of these three teleological interpretations of QM?

The first point we need to make is that teleological interpretations of QM
must be evaluated primarily within the framework of teleological (a.k.a.,
religious) truth, rather than within the framework of physical (a.k.a.,
scientific) truth. The reason for this is that teleological claims require a
teleological methodology (“bracket out the object”) rather than a scientific
methodology (“bracket out the subject”) in order to evaluate them properly.
(On this important point, see Book I of this trilogy, WORLDVIEWS.)

Viewed from this perspective, it is clear that teleological interpretation #1
above is to be strongly preferred: Throughout Book I and Book II , but
especially in Book I, WORLDVIEWS, we have given numerous reasons for
affirming the existence of the transcendent all-knowing God. The world’s
major religious traditions, almost without exception, concur with this
affirmation. In fact, the transcendent, all-knowing God of teleological
interpretation #1 is the ultimate foundation of universal teleological truth.

By contrast, the actions of the immanent god of interpretation #2 (“nature”)
do not seem plausible. Why would nature suddenly muster up the will (or,
perhaps, the ability) to “decide” that the photon would appear at detector C,
thereby “collapsing the y-wavefunction” just so the human experimenter
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would have something definite to measure? By this account, nature seems to
be either inept, lazy, or a trickster. Of course, she might be all three, but the
resulting overall teleological picture is far less satisfactory than interpretation
#1.

Teleological interpretation #3, the Heisenberg interpretation, is evidently the
least satisfactory interpretation of the three, in spite of its extreme popularity
among quantum physicists. When I contemplate the Heisenberg interpretation
of QM, I can’t help but think of a small boy who, upon approaching for the
first time one of those automatic doors at the supermarket, is amazed at his
ability to open the door just by waving his hand or saying “Open Sesame!” as
he approaches.

Within the framework of teleological truth there is a name for the belief that
one can open doors just by saying “Open Sesame!” or can force the past
trajectory of a particle to appear in a particular channel merely by measuring
that particle in the present: That name is magic. The practice of real magic
(as opposed to the performance of pretend magic for entertainment purposes)
is condemned by virtually all developed religious traditions. (See, for
example, The Catechism of the Catholic Church, #2117.)

Moreover, contemplating the physical analog to the Heisenberg teleological
interpretation results in manifest absurdities, since (as Niels Bohr succinctly
points out) “it is certainly not possible for the observer to influence events
which may appear under the conditions he has arranged”,'?® especially in this
case, where such influence would have to travel backwards in time, contrary
to the immanent-objective physical fact of forward-irreversible time.

Yet in spite of its manifest religious deficiencies and analogical physical
absurdities, the Heisenberg teleological interpretation of QM reigns supreme
among quantum physicists even to this day. In fact, it is often lumped together
with Bohr’s “complementarity principle”, and the two ideas as one unit are
presented as “the standard Copenhagen interpretation” of QM, a fact which
most certainly would not have pleased Niels Bohr!

Some scientists have gone much further and have extended the Heisenberg
teleological interpretation of QM into a cosmological Anthropic Principle.
According to this Anthropic Principle, man, merely by means of his
observations of the physical world, is the creator of the entire universe,
including himself, back to the very first moment of the “big bang”! This idea
was first popularized by the prominent American physicist John Wheeler.
Wheeler expresses the essence of his version of the Anthropic Principle this
way:
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The Universe starts small at the big bang, grows in size, [and] gives rise
to life and observers and observing equipment. The observing equipment,
in turn, through the elementary quantum processes that terminate on it,
takes part in giving tangible “reality” to events that occurred long before
there was any life anywhere.'?’

In other words, the Anthropic Principle takes the spurious backwards-in-time
causality of the Heisenberg teleological interpretation of QM (with is
ordinarily regarded to be of the order of magnitude of a few seconds or
microseconds) and extends it billions of years backwards-in-time to the “big
bang” itself, thus making man his own creator!

Believers in the Anthropic Principle (who include Stephen Hawking, whom
we discussed in our chapter on General Relativity) take all of the evidence of
the extraordinary “coincidences” in the physical universe (which show that if
either the laws of nature or the universal constants of nature were even very
slightly different, life as we know it could not have arisen) and stand this
evidence on its head: Ordinarily this evidence would be used to prove the
design of the cosmos by a benevolent transcendent God. Not so, say the
believers in the Anthropic Principle. Rather, for them this evidence instead
proves that man himself has designed the cosmos by merely observing it!
(Though, admittedly, they don’t usually express this idea quite so baldly.)

British astronomer John Barrow and American mathematical physicist Frank
Tipler have their own version of the Anthropic Principle. Calling Wheeler’s
version “PAP” (which stands for “Participatory Anthropic Principle”), they
call their own version “FAP” (which stands for “Final Anthropic Principle”).
Borrowing a page from the ideas of paleontologist Teilhard de Chardin, they
regard the entire universe to be moving inevitably towards a final, perfect
Omega Point. Barrow and Tipler write:

Life will have gained control of all matter and forces, not only in a single
universe, but in all universes whose existence is logically possible; life
will have spread into all spatial regions in all universes which could
logically exist, and will have stored an infinite amount of information,
including all bits of knowledge which it is logically possible to know.'?

In a footnote they declare that “the totality of life at the Omega Point is
omnipotent, omnipresent, and omniscient.”'? Hugh Ross critically
summarizes their position as follows: “Let me translate: the universe created
man, man created the universe, and together the universe and man in the end
will become the Almighty transcendent Creator.”!*

Although the vast majority of physicists subscribe to the Heisenberg teleo-
logical interpretation of quantum mechanics, only an influential few have
gone on to wholeheartedly embrace the Anthropic Principle. In fact, noted and
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respected recreational mathematician, science writer, and magician Martin
Gardner has sardonically renamed “FAP” to “CRAP”, which stands for the
“Completely Ridiculous Anthropic Principle”!!3!

Furthermore, as we demonstrated in our prior discussion of teleological
systems that are analogs to General Relativistic Systems, there is no evidence
whatsoever of any unconditional equifinality for the whole physical universe
that would have a teleological analog capable of giving significant
teleological meaning and purpose to the cosmos. (In other words, there’s no
credible evidence for the Omega Point.) For this reason, traditional religions
(in different ways) have always depended on a transcendent God to give
meaning and purpose to the universe. (In this context of the Anthropic
Principle, it is hard to avoid mentioning G.K. Chesterton’s oft-cited
observation that, when people stop believing in God, they don’t believe in
nothing: they’ll believe in anything.)

But why have the vast majority of physicists “fallen” (pun intended) for the
Heisenberg teleological interpretation of QM (which we have numbered as
possibility #3)? To some extent they have done so because it fits in so well
with our dominant Enlightenment and post-Enlightenment teleologies: Only
possibility #3 allows for that complete atheism (or agnosticism) which
prominent physicists such as Steven Weinberg have declared to be a basic
requirement to even be considered to be a serious physicist. Also, possibility
#3 is the only one of the three teleological possibilities that is fully compatible
with the modern and post-modern stress on the ultimacy of the radical
autonomy of the human individual, who ideally is supposed to be self-
created, self-empowered, self-actualized, and brimming with self-esteem. (We
refuted the various versions of this modern / post-modern teleology in Book I,
WORLDVIEWS, following the outline and insights of Alasdair Maclntyre’s
great book After Virtue.)

But there is a much more interesting reason why most physicists have
embraced the Heisenberg teleology. And that is because they have incorrectly
linked the question of QM teleology to the entirely orthogonal question of
whether or not quantum mechanics is complete. Recall from our previous
discussion that the question of the completeness of QM is the question: “Are
the random statistical factors existing within QM ultimate and irreducible, or
do hidden variables exist whose discovery would eliminate probability and
statistics from quantum theory?”

As we argued previously, there is no way to know the answer to this question
until someone actually comes up with a provable, superior “hidden variables”
theory. We also showed that all attempts to prove the impossibility of a
successful “hidden variables” theory (such as the attempts of John von
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Neumann, John S. Bell, and Alain Aspect) are defective. But, in addition, we
noted that all actual attempts to create a proven “hidden variables” theory,
including Einstein’s monumental efforts on his Unified Field Theory, have so
far been failures. We were able to make all of these observations without any
reference to teleological issues whatsoever because, at bottom, the question of
the completeness of QM is an epistemological question, not a teleological
question.

But most physicists instead reason as follows:

If T were to accept teleological interpretation #1 (that a transcendent God
exists who knows which channel the photon is in before I measure it),
then I would have to admit that a transcendent God exists who knows
more about the photon than I do and who, furthermore, knows more about
the photon than QM says it is even possible to know. I would therefore
also have to admit that quantum mechanics is an incomplete theory. But I
know in my bones that only a statistical description of sub-microscopic
phenomena is scientifically possible and that QM is, therefore, in this sense
complete. Hence I must reject teleological interpretation #1 in favor of
teleological interpretation #3 (that the photon was not definitely in chan-
nel ¢ until the experimenter actually later measured it at detector C).

[For purposes of simplicity here, we’ll ignore teleological interpretation #2.]

Now, there is a very interesting hidden assumption in the otherwise-plausible
foregoing argument. It is the assumption that objective truth from the point-
of-view of a transcendent God is of precisely the same nature as objective
truth from the point-of-view of man (or other intelligent being within the
cosmos). But is this assumption really true? Surprisingly, the answer is no.
But in order to see why we must digress to briefly discuss the epistemology of
probability.

The fundamental epistemological issue associated with the scientific concept
of probability is the question: “Does a kind of randomness exist within nature
that is an objective fact of nature, or is all apparent randomness in nature
merely subjective and due to our subjective ignorance of the details of the
processes involved?”

Up until the twentieth century, physicists were of the near-unanimous opinion
that all probability is “merely subjective”. And because nineteenth-century
thermodynamics could be explicated in terms of probability, an important
corollary of this was the physicists’ belief that macroscopic irreversible time
is also a “merely subjective” illusion: Only the reversible time of Newtonian
mechanics was regarded to be truly objective.

But as quantum theory developed throughout the first third of the twentieth
century, it became increasingly clear that probability as it appeared within
quantum theory could not be dismissed as being “merely subjective”, but
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rather had to be incorporated into QM in such a manner that the random
quantum “jumps” of the sub-atomic world were regarded as fundamental,
objective, and not-further-analyzable in a deterministic way. Nevertheless,
physicists continued to regard thermodynamic probability and macroscopic
irreversible time to be “merely subjective”. This inconsistency in the way
physicists came to treat quantum probability as opposed to thermodynamic
probability is not unrelated to the epistemological problems of quantum
measurement that we discussed previously, since experimental measurement
is a macroscopically irreversible (and therefore “merely subjective” 777?)
process.

Einstein, de Broglie, Bohm, and a few other physicists sought to resolve this
dichotomy between objective quantum probability and subjective
thermodynamic probability by regarding quantum probability to also be
subjective, just like thermodynamic probability. That is why they sought so
earnestly to find “hidden variables” which would eliminate probability as a
fundamental, objective feature of quantum mechanics. As we have seen, their
search was unsuccessful.

By contrast, the approach of Ilya Prigogine and his colleagues towards
resolving this inconsistency is the approach which I support: Their approach
is to regard thermodynamic probability to be fundamentally an immanently
objective fact of nature, just like quantum probability is. This means, among
other things, that macroscopic irreversible time is also an immanently
objective fact of nature.

Arguments for this approach will be presented in detail in our later chapters
on Nonlinear Dynamic Systems, Linear Thermodynamic Systems, and
Nonlinear Complex Physical Systems. But, for now, I will just summarize
the epistemological (and teleological) conclusion we will come to:

e From the point-of-view of human beings (or any other finite conscious
beings within the cosmos), fundamental physical descriptions of nature
contain an irreducible element of immanently objective chance (both
microscopic and macroscopic). By contrast, from the transcendently
objective point-of-view of the transcendent God, objective physical
reality is fully and deterministically known by His omniscient mind and
fully determined by His omnipotent will.

Since science is a human enterprise (and since, quite evidently, the
transcendent God has no need to “do science”), it is the first (i.e., human)
point-of-view in the above formulation that defines the nature of scientific
objective truth. And that is why immanent, scientific, objective truth from the
point-of-view of man is not precisely of the same nature as transcendent,
physical, objective truth from the point-of-view of the transcendent God.
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An important corollary of the above basic principle is that, for man, time is
objectively irreversible, while, for God, time is objectively reversible and
eternal (paradoxically, a sort of “timeless time”). Still another important
corollary (which we discussed in the teleological section at the end of our
chapter on Classical Mechanical Systems) is that human free-will is
completely real from a human point-of-view, but not from the transcendent
divine point-of-view.

Now that we’ve briefly discussed the epistemology (and teleology) of
probability and time, we can go back and see where the argument linking QM
teleology to the question of QM’s “completeness” goes wrong: In teleological
interpretation #1, the fact that the transcendent God knows which channel (c
or d) the photon is in prior to the moment when the experimenter measures it
is irrelevant to the question of whether or not QM is “complete”: If, in fact, it
turns out to be the case that the laws of quantum mechanics are among those
scientific descriptions of nature which are scientifically fundamental (so that
no deterministic or quasi-deterministic “hidden variables” are ever found to
underlie them), then QM is “complete”. Otherwise, QM is not “complete”:
The fact of God’s omniscience and omnipotence is fotally irrelevant to this
QM “completeness” question, since we can never approach God’s
transcendently objective viewpoint by successively refining our own
immanently objective viewpoint. For this reason, His view of the physical
universe will always be significantly different from our own.

Although scientists have had to give up the idea that scientific knowledge can
ever approach the deterministic knowledge of a transcendent God (or of
Laplace’s fictional demon) through successive, increasingly-accurate
incremental steps, it nevertheless remains difficult for them to also give up the
ideology of classical Newtonian determinism (as we saw in our earlier
discussion of the popular scientific writings of Stephen Hawking). That is
perhaps the primary underlying reason why most physicists reject QM
teleological interpretation #1: They simply cannot accept the fact that a
transcendent God exists who knows things about the physical universe that
they don’t know and will never even come close to knowing. But teleological
assertions must ultimately be justified on teleological and religious grounds,
not on ideological or even scientific grounds. And on teleological and
religious grounds we have seen that QM teleological interpretation #1 is
clearly the superior choice.

The last QM-related teleological idea we wish to discuss is an idea that is
often put forth by both scientists and popular science writers: This is the idea
that there would be no human free-will were it not for the Heisenberg
Uncertainty Principle. (Sometimes the related idea is put forth that God

119



ON SYSTEMS

would not be able to act within the physical universe were it not for the
Heisenberg Uncertainty Principle.)

Evidently this idea is suggested to these scientists and science writers because
of the widespread and erroneous belief that only sub-microscopic quantum
probability is an objective fact, while macroscopic thermodynamic
probability is supposed to be merely a subjective illusion. As we have noted
in earlier discussions, decisions within teleological systems are analogous to
moments of constrained chance within physical systems. But the only truly
objective moments of constrained chance that appear within the framework
of QM are random quantum “jumps” at the sub-atomic level: That is
probably why scientists and science writers often believe that objective
physical analogs to human (or divine) decisions can therefore only be found
at the sub-atomic level.

However, it is evident that this attempt to find physical analogs for human
decisions at the sub-microscopic level is both bizarre and desperate, because
of the complete mismatch both in scale and nature between sub-microscopic
quantum jumps on the one hand and macroscopically evident human
decisions on the other. Instead, as we shall see in our later chapter on
Nonlinear Complex Physical Systems, the physical human body is an
extremely complex far-from-equilibrium dissipative structure that is
characterized by macroscopic moments of constrained chance which can
easily be seen to be physically analogous to macroscopic human decisions.
These macroscopic moments of constrained chance arise ultimately from
nonlinear thermodynamics rather than quantum probability. And since it will
be our contention, following Ilya Prigogine, that macroscopic thermodynamic
chance is just as immanently objective as quantum chance, it follows that
these macroscopic moments of constrained chance are just as immanently
objective as the sub-microscopic quantum jumps of quantum mechanics. It
therefore makes no sense to try and form a conceptual parallel between sub-
microscopic quantum jumps and macroscopic human decisions when a much
more natural macroscopic physical parallel exists in the thermodynamic
theory of dissipative structures.
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’I‘he most famous example of a nonlinear dynamic system is the chaotic
three-body gravitational system. However, as we noted in our earlier
chapter on Classical Mechanical Systems, the vast majority of dynamic
systems are nonlinear rather than classical-mechanical (linear), a fact which
was proved by Henri Poincare at the end of the 19th century. For this reason,
it is important that we consider such systems in more detail.

In our section on Classical Mechanical Systems we stated Newton’s three
laws of motion and his law of gravitation. In this section we will further
discuss the actual subject-matter of dynamics, while exploring the
implications of the nonlinearity of most dynamic systems. In addition, this
chapter is preparatory for our subsequent discussions of Linear
Thermodynamic Systems and Nonlinear Complex Physical Systems. (For
example, it turns out that we can initially establish the irreversibility of time
at the level of nonlinear dynamic systems, rather than at the far-more-
complex level of thermodynamic systems!)

Let’s begin by summarizing Newton’s three laws of motion in condensed
form:

Newton’s first law of motion states that, if the vector sum of the forces
acting on an object is zero, then the object will remain at rest or remain
moving at constant velocity. Newton’s second law of motion states that a
net force on an object will accelerate the object at a rate proportional to
the strength of the force and in the same direction as the force [i.e., F =
ma, where F is force, m is mass, and a is acceleration]. Newton’s third
law of motion states that an object experiences a force because it is
interacting with some other object, and that the force exerted by object 1
on object 2 must be equal to the force exerted by object 2 on object 1 but in
the opposite direction.'*

An algebraically equivalent way of expressing Newton’s second law of
motion isa@ = F /m . This way of expressing the formula makes it clear that
the acceleration of a body under the influence of a force is directly
proportional to the force and inversely proportional to the body’s inertial
mass. Notice also that in this formula @ and F are in bold type, while m is
not. This is because both acceleration and force are vector quantities — that
is, they have both a magnitude and a direction — while inertial mass is a
scalar quantity, since it has only a magnitude.

Now, as Resnick and Halliday point out in their popular standard textbook
Physics, Newton’s second “law” of motion, F' = ma, is not really a law at all,
but is rather a definition of the concept of force. From this definition of force,
“Iw]e see . . . clearly that force is a concept that connects the acceleration of
the particle on the one hand with the properties of the particle and its
environment on the other.”!*?
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But what are “the properties of the particle and its environment”? These vary
for various types of forces, but for a very important class of forces which are
both universal and conservative, the distance between two bodies attracted or
repelled by the force, plus certain characteristics of the bodies themselves
(such as mass or charge), plus an empirically determined universal constant,
all play vital roles. Here are two important force laws expressing the particle/
environment relationships for each of two different universal conservative
forces:

1. Newton’s law of universal gravitation, F = G (m, m,/ r*), where m_
and m, are the inertial masses of two bodies, r is the distance between
them, G is a universal constant, and F is the magnitude of the force
of attraction between them. (Per Newton’s third law of motion, the
direction of this attractive gravitational force is opposite for each of
the two bodies, but has the same magnitude.)

2. Coulomb’s law of electrostatics, F' = (1/47g,) (e Q / r?) , where e is
the negative charge of an electron, Q is the charge on a nearby
positively charged sphere, r is the distance from the electron to the
center of the sphere, € is a universal constant, 7 is the ratio of the
circumference of a circle to its diameter, and F is the magnitude of
the electrostatic force between the electron and the charged sphere.
(Again, per Newton’s third law of motion, the direction of this force
is opposite for the electron and the sphere.)'*

Notice that both of these laws are inverse square laws: In each case the
magnitude of the force is inversely proportional to the square of the distance
between the two bodies and is directly proportional to a property of the
bodies themselves (mass and charge, respectively).

At first the significance of distance (r) as a central variable in the force laws
for gravitation, electrostatics, and electromagnetism was not appreciated:
Rather, these forces were regarded to be properties of essentially independent
material bodies. As we noted in our chapter on Classical Mechanical
Systems, this point-of-view in the case of gravitation was aided by the fact
that, in the systems successfully modeled (e.g., the sun/planets system and the
system of the earth with respect to the objects on its surface), the
gravitational effects of a single body (the sun and earth respectively)
dominate the system, so that gravitation in those systems can be usefully
approximated as a property of the dominant body only.

However, as a result principally of the work of Faraday, Maxwell, Hertz, and
Lorentz on electromagnetism, distance as a property of space in relation to
force eventually came to be regarded as vitally important in itself, so that
electromagnetic force eventually was seen to be intimately connected with the
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concept of an electromagnetic field. Correspondingly, via Einstein’s General
Theory of Relativity, gravitational force also came to be seen to be intimately
connected with the concepts of space-time and the gravitational field. The
acceptance of the fact that these electromagnetic and gravitational fields must
be properties of space (or space-time) did not come easily, however. As
Einstein wrote in his “Autobiographical Notes”, prior to the work of H.A.
Lorentz:

Matter appeared as the bearer of the field, not space. By this was implied
that the carrier of the field could have velocity, and this was naturally to
apply to the “vacuum” (ether) also. Hertz’s electrodynamics of moving
bodies rests entirely upon this fundamental attitude.

It was the great merit of H.A. Lorentz that he brought about a change
here in a convincing fashion. In principle a field exists, according to him,
only in empty space. Matter — considered as atoms — is only the seat of
electric charges; between the material particles there is empty space, the
seat of the magnetic field, which is created by the position and velocity of
the point charges which are located on the material particles. . . The
particle-charges create the field, which, on the other hand, exerts forces
upon the charges of the particles, thus determining the motion of the
latter according to Newton’s law of motion. If one compares this with
Newton’s system, the change consists in this: action at a distance is replaced
by the field, which thus also describes the radiation. . . The physicist of
the present generation regards the point-of-view achieved by Lorentz as
the only possible one; at the time, however, it was a surprising and
audacious step, without which the later development would not have been
possible. '

As aresult of these developments in field theory, physicists were eventually
“forced” (pun intended) to acknowledge that physical systems involving parts
that have sustained, strong electromagnetic or gravitational interactions are
holistic systems with constitutive characteristics (‘“emergent properties”) that
cannot be derived summatively from their parts: The masses (or charges) of
the parts affect the structure of the nearby space-time field, which in turn
exerts forces on those same parts. Two of the most important constitutive
characteristics arising from these intimate interconnections between matter
and space-time are the overall spatial arrangement of a gravitational or
electromagnetic system at a given point in time and the potential energy
associated with that spatial arrangement.

Note that throughout this chapter on nonlinear dynamic systems we will
continue to point out where important constitutive characteristics (a.k.a.
“emergent properties”) arise at the level of dynamics, since it is even today
often erroneously asserted that constitutive characteristics arise only at the
“higher” levels of thermodynamics, biology, psychology, and sociology. (In
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fact, it is sometimes even still asserted that such “emergent properties” are
merely the product of unscientific vitalism and mysticism.)

In showing that extremely important constitutive characteristics arise even at
the level of basic dynamics I am not, of course, claiming that thermo-
dynamics, biology, psychology, and sociology can therefore all be “reduced”
to physics: On the contrary, the point is that “emergent properties” are as
important in elementary physics as they are in the other subject areas of
science.

Among the constitutive characteristics of gravitational and electromagnetic
systems, potential energy holds special importance. We therefore need to
consider the dynamic concepts of work and energy in some detail.

Work and Kinetic Energy

In dynamics, the work done on a body by a force is the product of the
distance the body moves times the magnitude of the force along the body’s
direction of motion. (For simplicity, we will assume that the whole force is
acting entirely in the direction the body is moving. That way we will only
have to consider the magnitude of the force, not its direction.) In other words,
W = Fd, where W is the work done (a scalar quantity), F'is the magnitude of
the acting force, and d is the distance the body moves. Note that this
definition of work in dynamics is not the same as our ordinary-language
definition of work: In ordinary language we would say that a person holding a
heavy weight out at arm’s length is doing a lot of work. However, because the
heavy weight in this case is not moving, no work is being done from the
point-of-view of dynamics.

We can also determine the work done on a body even if the force is not
constant, but rather varies in its intensity as the body moves. Let’s say that a
body moves from position ¢, to position g, under the influence of a force that
varies in magnitude (but not direction) as the body moves. First we divide up
the line extending between g, and g, into tiny segments of length Ag. Now, as
the force moves the body through any given distance Aq we may regard that
force F(q) [read as “F as a function of ¢’] to be of approximately constant
magnitude. Therefore, to approximately find the total amount of work done,
all we have to do is add up all of the little F(g)-times-Aq results. We may
express this in summation notation as follows: W = 3} F(q) Aq as the value of
g incrementally moves from g, towards g, . Then, to find the total amount of
work exactly, we just calculate W as the limit when we let Aq become smaller
and smaller, so that Aq approaches zero. The final resulting formula for work
is then the following definite integral:
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W= [Fg)dg (1)
where dg represents Aqg as an infinitesimal quantity.'

Suppose a body of mass m is moving with a constant velocity v, . A force
(constant or variable, it doesn’t matter) now acts on that body and accelerates
it to velocity v. How much work did that force do on that body? From the
brief discussion of differential calculus in our chapter on Classical
Mechanical Systems, together with some elementary algebra, we know that
the following relation holds:

a = dv/dt = dv/dq dg/dt = dv/dg v = v dv/dq 2)

where a represents acceleration, dv/dt is the first derivative of velocity (which
also represents acceleration), dg/dt is the first derivative of the position g
(i.e., the velocity), and v also represents velocity. Substituting the final
expression for acceleration a in (2) above into Newton’s second law of
motion (F = ma), we obtain:

F =mv dv/dg 3)

Substituting the expression for force in (3) into our formula for work (1), we
get:

W= [mvadvidgdg= [mvdv="mv - Yamy * (4a)

(The last expression in formula 4a is derived via elementary integral calculus
by choosing — %zmv* to be our “arbitrary constant”.)

We now define the expression /2mv? to be the kinetic energy of the body.
Formula 4a above then becomes the mathematical expression of the Work-
Energy Theorem, which states that:

e The work done by the resultant force acting on a body is equal to
the change in the kinetic energy of that body.

W:K—KD:AK (4b)

where W is the work done by the resultant (constant or variable) force on the
body, K is the kinetic energy of the body after that resultant force has been
applied, K is the initial kinetic energy of the body before the resultant force
was applied, and AK is the change in the kinetic energy caused by the
resultant force (which is equal to the work done by that force).'*’

In their standard textbook Physics, Resnick and Halliday tell us other
important things about kinetic energy:

If the kinetic energy of a particle decreases, the work done on it by the
resultant force is negative. [In that case] the displacement and the
component of the resultant force along the line of motion are oppositely
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directed. The work done on the particle by the force is the negative of the
work done by the particle on whatever produced the force. This is a
consequence of Newton’s third law of motion. Hence [Formula 4b] can be
interpreted to say that the kinetic energy of a particle decreases by an
amount just equal to the amount of work which the particle does. A body
is said to have energy stored in it because of its motion; as it does work it
slows down and loses some of this energy. Therefore, the kinetic energy
of a body in motion is equal to the work it can do in being brought to rest.
This result holds whether the applied forces are constant or variable.

The units of kinetic energy and of work are the same. Kinetic energy, like
work, is a scalar quantity. The kinetic energy of a group of particles is
simply the sum of the kinetic energies of the individual particles in the
group.'®

It is particularly important to note in this connection that the fotal kinetic
energy of a dynamic system is a summative characteristic of that system that
can be derived by simply adding up the kinetic energies of the system’s
individual parts.

Conservative Forces and Potential Energy

Recall that we said earlier that gravitational force and electrostatic force are
universal and conservative forces. We are now in a position to define
conservative in the context of work and energy:

e A force is conservative if the work done by it on a body that moves
between two points depends only on the position of those two points
and not on the path followed. Equivalently, we may say that a force
is conservative if the work done by the force on a body that moves
through any round trip is zero. Or, again equivalently, a force is
conservative if the body upon which the force acts has the same
amount of kinetic energy at the end of the round trip as it had at the
start (assuming that no other non-conservative forces act upon the
body during the round trip).'*®

For example, if you lift a heavy weight up to a height & above the earth, it
does not matter what path the weight takes to get to height /: You can lift it
with constant or variable force, you can lift it straight up, or you can move it
in a zigzag or curve while lifting it up to 4. No matter which path the weight
takes, you still must do the same amount of work in the vertical direction to
get it to h. (For simplicity we ignore the horizontal component of your work
as you, perhaps, zigzag the weight.) Now, because of Newton’s third law of
motion, the positive vertical work you do in lifting the weight is exactly equal
and opposite to the negative work that gravity does in resisting your efforts.
If you then release the weight, letting it fall back to earth, gravity does a
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positive amount of work that is exactly equal in magnitude to the negative
work it did in resisting your original lifting of the weight. When the weight
has arrived back at the surface of the earth (thus completing its round trip),
the net amount of work done by gravity after the round trip is zero. Gravity is
therefore a conservative force.

By contrast, suppose instead that you push this same heavy weight around on
a roughly finished table. If the weight starts, say, at point A, and you push it
around on the table, eventually returning it to point A, then the longer the
path taken by the weight, the more work you have done. This is because the
force of friction acting equally and oppositely between the weight and the
rough table is a nonconservative force that continually dissipates some of the
work you are doing on the weight into the kinetic energy of millions of
molecules at the surfaces of the table and the weight, respectively.
(Macroscopically we experience this dissipation as heat energy, a subject that
we will deal with in our chapter on Linear Thermodynamic Systems.)

Therefore the amount of work done by the nonconservative force of friction
does depend on the particular path taken by the weight. (More rarely, a
nonconservative force can result in more kinetic energy for particles
completing a round trip instead of /ess: This is the case, for example, with the
force of magnetic induction which is used to accelerate elementary particles
in a particle accelerator.'*’) For the remainder of this chapter, however, we
will mainly deal with conservative forces such as gravitation and the
electrostatic force, where the net round-trip work done by the force is zero
and particles completing a round trip therefore have the same kinetic energy
as before the round trip.

With respect to these conservative forces, it makes sense to define the concept
of potential energy, which is the energy of configuration of the entire
dynamic system. Pofential energy (usually represented by U) is defined to be
that mechanical stored energy which is associated with the spatial
configuration of the dynamic system taken as a whole and which can be fully
recovered and converted into kinetic energy.

To illustrate by example what is meant by potential energy, consider a simple
dynamic system consisting of an ideal massless mechanical spring and a
weighted block. If we give the block a push, so that it moves at constant
velocity along a frictionless (or nearly frictionless) surface until it strikes the
spring head on, the spring will continuously compress until the block is
decelerated to a velocity of zero. The spring will then push back on the block
as it stretches out again. When the spring is fully extended once more, the
block will have recovered all of its kinetic energy, but will be traveling in the
opposite direction.

131



ON SYSTEMS

Now, consider the position of the block just before it hits the spring. When the
block returns to this same position after having its motion reversed by the
spring, it has the same kinetic energy as it did before hitting the spring. From
this fact we know that the spring’s force is a conservative force. (It is not,
however, a universal conservative force, because it depends on the material
the spring is made of and how it is wound. Furthermore, the spring’s force is
conservative only if it is not stretched beyond a certain limit. Ultimately the
spring’s force can be traced back to universal electromagnetic forces.)

The force law for an ideal massless spring is known as Hooke’s law:
F=-kq ()

where F is the force exerted by the spring when its free end is moved through
a distance ¢ and k is a constant that depends on the configuration and
composition of the particular spring.

Before the block hits the spring, all of the mechanical energy of the block/
spring system resides in the kinetic energy of the block. By contrast, at the
point at which the spring has decelerated the block to zero velocity, all of the
mechanical energy of the block/spring system has become potential energy —
i.e., energy associated with the mechanical configuration of the block/spring
system as a whole. Finally, while the block is being decelerated or accelerated
by the spring, the total mechanical energy of the block/spring system is
composed of both kinetic and potential energy in varying proportions.

The Law of Conservation of Mechanical Energy

From these considerations we see that a change in the total kinetic energy of a
conservative dynamic system (i.e., a dynamic system involving conservative
forces only) is always accompanied by an equal and opposite change in the
total potential energy of that system, so that the total mechanical energy
(kinetic energy + potential energy) remains constant. This is called the law of
conservation of mechanical energy. (In our later chapter on Linear
Thermodynamic Systems we will extend this law to include heat and other
forms of energy. The general law of conservation of energy will then be seen
to apply to nonconservative systems as well as conservative systems.)

If K is total kinetic energy, U is total potential energy (i.e., the energy of
configuration), AK is the change in total kinetic energy, AU is the change in
total potential energy, and E is the total constant mechanical energy of the
conservative dynamic system, then we can express the above observations in
the following formulas:

AK = — AU (6a)
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AK + AU =0 (6b)
K+U=E (7

Now, it is important to emphasize again that the kinetic-energy component of
total mechanical energy is merely a summative characteristic of the dynamic
system: To get the total kinetic energy for the system you simply add up the
kinetic energy of its parts. By contrast the potential-energy component of
total mechanical energy is a constitutive characteristic (i.e., “emergent
property”) of the dynamic system taken as a whole: There is no way to
ultimately allocate potential energy to the various individual parts of the
system. Resnick and Halliday, in their popular textbook Physics, make this
clear in their chapter on gravitation. Speaking of a simple gravitational
system consisting of a larger body of mass M and smaller body of mass m,
they write:
The potential energy is a property of the system of bodies, rather than of
either body alone. The potential energy changes whether M or m is
displaced; each is in the gravitational field of the other. Nor does it make
any sense to assign part of the potential energy to M and part of it to m.
Often we do speak of the potential energy of a body m (planet or stone,
say) in the gravitational field of a much more massive body M (sun or
earth, respectively). The justification for speaking as though the potential
energy belongs to the planet or to the stone alone is this: When the potential
energy of a system of two bodies changes into kinetic energy, the lighter
body gets most of the kinetic energy. The sun is so much more massive

than a planet that the sun receives hardly any of the kinetic energy; and
the same is true for the earth in the earth-stone system.'!

In fact, within Einstein’s Theory of General Relativity, gravitational potential
energy may be viewed as localized within a particular gravitational system
only from the point-of-view of a particular reference frame of coordinates:
Ultimately gravitational potential energy is regarded by General Relativity to
be a property of space-time as-a-whole.

Since such “emergent properties” as potential energy arise even in the most-
basic dynamic systems described by physics, they clearly cannot be dismissed
as “merely subjective” or “mystical”. Notice also that, while we can fairly-
straightforwardly calculate changes in potential energy U (that is, AU), the
actual assignment of a base or reference value for U is arbitrary (and
therefore the base or reference value for E is also arbitrary). Often the
reference value for U is chosen to be zero for that spatial configuration of the
system in which the influence of the associated force is minimized. So, for
example, in the block/spring system we discussed, zero U is usually
associated with the configuration of the system just before the block strikes
the spring. For general gravitational systems, zero U is usually associated
with an infinite separation between the attracting bodies. (But for objects
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near the earth’s surface it is often more convenient to regard zero U to be at
the surface of the earth.)

Of course, the total value of the kinetic energy K of a body or system is also
arbitrary, in the sense that it depends on velocity v, which in turn depends on
the reference frame of the observer, who may be moving at a constant
velocity or accelerating or spinning relative to that body or system. Again,
Resnick and Halliday:

Hence the important thing about mechanical energy E, which is the sum
of the kinetic and the potential energies, is not its actual value during a
given motion (this depends on the observer) but the fact that this value
does not change during the motion for any particular observer when the
forces are conservative.'*?

It is particularly important to note that different non-inertial (i.e., accelerating
or spinning) frames of reference can result in different proportions between
the total kinetic energy K and the total potential energy U of the system. As
we mentioned in our chapter on Classical Mechanical Systems, throughout
the 19th century physicists strove to discover frames of reference for all
known physical systems such that kinetic energy was maximized, while
potential energy was minimized or eliminated. For eliminating potential
energy meant that both the strong, persistent interactions between the
system’s parts and the constitutive characteristics (“emergent properties”) of
the system as a whole could be ignored or regarded as being nonexistent, so
that the system could then be treated as analogous to a “free particle”
dynamic system following the deterministic laws of classical mechanics (the
whole is analyzable as merely the sum of its parts, the system is linear and
solvable by differential calculus, the principle of superposition holds, etc.).

But while it is always possible to find some frame of reference that eliminates
all (or virtually all) potential energy from a dynamic system if the number of
strongly, persistently interacting bodies that have significant mass or charge is
none, one, or two, by contrast this turns out to be impossible when three or
more bodies having significant mass or charge strongly and persistently
interact. In fact, this turns out to be impossible if only two bodies of
significant mass/charge and one body of insignificant mass/charge all
strongly and persistently interact. (The most famous example of this is the
gravitational three-body problem, which was proved to be deterministically
unsolvable by Henri Poincare at the end of the 19th century.) That is why all
dynamic systems composed of three or more strongly, persistently interacting
bodies having significant mass/charge (in other words most dynamic systems)
are holistic systems that have irreducible constitutive characteristics (such as
potential energy). Furthermore, these holistic systems are nonlinear, are
deterministically unsolvable by differential calculus, and generally violate
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the principle of superposition. Such nonlinear dynamic systems also have
moments of significant, irreducible, macroscopic constrained chance and, in
fact, the “simplest” nonlinear dynamic systems (such as the three-body
gravitational system) are chaotic. Most significantly, all of these holistic
phenomena occur at the level of basic dynamics (as well as at the “higher”
levels of thermodynamics, biology, sociology, and so on). Such holistic
phenomena therefore cannot simply be dismissed as “mystical”, “vitalistic”,
or “merely subjective”.

We might also note in passing that, although we have essentially defined the
concept of a conservative physical system in terms of moving-body dynamics,
other kinds of physical systems may also be conservative. As Gregoire
Nicolis and Ilya Prigogine remark:

We should not conclude from the above discussion that conservative
systems are confined to classical mechanics. The propagation of light in a
vacuum, described by Maxwell’s well-known equations, provides an
important example of conservative systems in electromagnetism.
Conservative systems also arise in quantum mechanics, in problems that
deal with the properties of simple atoms and molecules in the absence of
external fields.'*?

More on Potential Energy, Work, and Force

Next, let’s consider the relationships between potential energy, work, and
force in conservative dynamic systems in somewhat more detail. If we
combine formulas 1, 4b, and 6a above, it is easy to see that:

AU = - [F(q) dq (8a)

Implicit in formula 8a is the idea that the change in the potential energy of a
system depends only on position g (which is equivalent to saying that
potential energy has meaning only in relation to conservative forces and
conservative dynamic systems). Another way to write formula 8a is:

F(g) = —dU(q)/dq (8b)

To see that formulas 8a and 8b are equivalent, simply substitute the
expression for F(g) in 8b back into 8a. With this substitution, 8a reduces to
AU = [dU( q), thus proving the equivalence. Putting formulas 8a and 8b into
words, we may say that:

e Potential energy U is solely a function of position (or distance
between the parts) q.

o Force F is the negative of the rate of change in potential energy U
with respect to position q.'*
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Because of their intimate connection with potential energy, we may conclude
that both conservative force and the closely related force field are constitutive
characteristics (i.e., holistic “emergent properties”) of any conservative
dynamic system which contains a significant irreducible amount of potential
energy. (As we have seen, that means most conservative dynamic systems.)

Indeed, even position g (which reflects the distance between the bodies at a
given moment in time) is also a constitutive characteristic (“emergent
property”) of any such potential-energy-bearing conservative dynamic
system. For while the distances between the bodies which compose the
conservative dynamic system are accidental and insignificant with respect to
kinetic energy K, these same distances are significant constitutive
characteristics of the system with respect to potential energy U. We might
therefore speak of such potential-energy-related distances as fensive distances
because they are associated with the storage of potential energy by the system
as-a-whole. Such tensive distances are also intimately connected with the
existence of order within the system.

More on the Hamiltonian Function

Recall that in our chapter on Classical Mechanical Systems we made
prominent mention of the Hamiltonian function. The Hamiltonian function H
is simply the expression of the total mechanical energy E of a conservative
dynamic system in terms of momentum p and position ¢, rather than in terms
of kinetic energy K plus potential energy U. (In other words H = H(p,q) = E
= constant .) But before discussing this Hamiltonian function in more detail,
we need to briefly define and discuss the concept of momentum in more
detail:

o The momentum p of a single body is defined to be the product of its
mass m and its velocity v. We may write this definition as the
formula:

p=my €))

Notice that both p and v are in boldface type, meaning that they are here
regarded to be vector quantities rather than scalar quantities. (Vector
quantities, you will recall, have direction as well as magnitude, while scalar
quantities have only magnitude.) Notice also that although both kinetic energy
K and momentum p are computed using mass and velocity, kinetic energy is a
scalar quantity (i.e., 2mv? ), while momentum is a vector quantity (i.e., mv).
Now, using Newton’s second law of motion F' = ma together with formula 9
above, we can see that that the relationship between force F and momentum p
is as follows:
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F = ma = m dv/dt = d(mv)/dt = dp/dt (10)
In other words:

e Force is the rate of change in the momentum of a body with respect
to time.

It also turns out to be the case (though we will not take the time to prove it
here) that, where the sum of the external forces acting on a conservative
dynamic system of bodies is zero, the total momentum P of the system
(obtained by simply adding the momenta of the parts of the system in vector
fashion) remains constant. We can express this by means of the formula:

dP/dt = zero or P = constant (11D

This important principle in physics is known as the law of conservation of
linear momentum.'¥

We are now in a position to derive the Hamiltonian function. Let’s say we
have a conservative dynamic system consisting of n bodies. We will designate
i to represent any one of these bodies individually (where i has an integer
value ranging from 1 to n). First, we know from the definition of kinetic
energy as amv? , together with the fact that the total kinetic energy of a
conservative dynamic system is simply the sum of the kinetic energy of its
parts, that the following formula holds:

K =ZX/my? (12)

Using summation notation (X), formula 12 adds up the kinetic energy for all
of the values of i from 1 to n, so that K here represents the total kinetic
energy of the system.

Next, we designate j to represent any one of the bodies from 1 to n that is
different from i. It then turns out to be the case (though we will not prove this
in detail) that the total potential energy U of this conservative dynamic
system is equal to one-half of the sum of the interaction potentials V between
each of the bodies i and j (i #j). We express this by means of the following
formula:

U=%ZV, (13)

(The expression X Vi is multiplied by %2 because Vi is really the same as Vi in
every case, where i # j. Note also that the summation notation in formula 13
does not mean that total potential energy U is now really a summative
characteristic, because the interaction potentials Vij are both holistic in
themselves and influence one another holistically.)
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Combining formulas 7, 12, and 13, we get the following formula for the toral
mechanical energy E for a conservative dynamic system:

E=XYmy? + 12X VU. i #)) (14)

At this point, we will begin regarding velocity v, position g, and momentum p
to all be vector quantities (since we want our Hamiltonian function to be valid
in more than just one dimension). We can then make the following
substitutions:

Because momentum is defined as p = my, we can substitute:
Yomy?=(my, )*/2m = p*/2m. (15)

And because the interaction potential V between bodies i and j is solely a
function of their positions ¢, and q, (since we are assuming that all of the
forces involved in this system are conservative), we may also substitute:

V,=V,(q-q)  (16)

Now, if we actually use formulas 15 and 16 to substitute into formula 14 (and
remembering that H = H(p,q) = E = constant), we finally arrive at the
Hamiltonian function:

H=H(p.q)=Zp2m + 22XV, (q-q) i=#j) A7

As we noted in our earlier chapter on Classical Mechanical Systems, this
Hamiltonian function H(p,q) in a sense describes the behavior of any
conservative dynamic system completely (although in most cases, as we have
seen, it does not enable a deterministic calculation of the various positions g,
over time). We also mentioned in our earlier chapter on Classical Mechanical
Systems the importance of the so-called canonical equations, which are
derivable from the Hamiltonian function and which enable us to calculate the
time variation of ¢ and p by simply taking the partial derivatives of the
Hamiltonian with respect to p and g respectively. These canonical equations
(which we will not prove or derive here) are: 146

dq./dt=dH/dp, (18a)
dp./dt=0H/dq, (18b)

Note that  H/ dp, and d H/ d g, are both partial derivatives of H because
the rate of change for H depends on the rate of change of both q,and p,. We
therefore hold either q,or p, constant when we calculate the partial derivative
of H with respect to the other quantity.

Now, the significance of formulas 17, 18a, and 18b from the point-of-view of
our earlier discussion is simply this: If we can find a system of coordinates
(whether inertial or non-inertial) such that the potential energy term /2 X Vi in
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the Hamiltonian function of the given conservative dynamic system is always
equal to zero for all time (so that all of the energy in the Hamiltonian is
forever kinetic energy Xp?/2m,), then it becomes true that:

dp./dt=0dH/dgq, =zero foralli, for all time ¢ (19)

Under these conditions, all of the positions of the bodies g, vary linearly with
time, while the momenta of the all of the bodies in the system p. are constants
of motion and do not depend at all on the relative positions of those bodies: In
other words, the positions of the bodies depend entirely on their momenta,
while the momenta of the bodies depend not at all on their positions. That
means that no strong, persistent interactions exist between any of the parts of
the system. Therefore there are no bothersome holistic constitutive
characteristics of the system to worry about (such as potential energy, forces,
and force fields). Furthermore, the system can then be regarded to be
isomorphic with a “free particle” system, the whole can be seen as merely the
sum of its parts (summative characteristics only), and the positions g, of
every body in the system can be deterministically solved for all time via
Newton’s calculus of variations. In short, such a conservative dynamic
system is a Classical Mechanical System like we described in our earlier
chapter of that name.

Unfortunately for the classical deterministic, reductionistic hypothesis, such
systems are the exception rather than the rule: For mechanical systems in
which as few as three bodies interact persistently and strongly, deterministic
reductionism fails (as Poincare proved over a hundred years ago). Ilya
Prigogine explains further:

Poincare studied Hamiltonians in the form H = H (p) + AV(q) , which is
the sum of an integrable contribution (the “free Hamiltonian” H ) and a
potential energy due to interactions (A is a scaling factor that will be used
later on). He showed that this class of Hamiltonians is generally not
integrable, which is to say that we cannot eliminate interactions and go
back to independent units. . .[This nonintegrability] is due to diverging
denominators associated with Poincare resonances, as a result of which
we cannot solve the equations of motion (at least in powers of the coupling
constant A)."

Irreversible Time T (“Big T”)

So far we have seen that a number of important holistic constitutive system
characteristics arise in nonlinear dynamic systems containing as few as three
bodies. These constitutive characteristics include potential energy, forces, and
force fields. However, there is one vital constitutive characteristic of decisive
importance which we have not yet seen appear, and that is irreversible time
T. Instead, in all of the systems so far considered (be they classical
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mechanical, quantum mechanical, or relativistic), time is reversible

(“little 7). Because the concept of force in modern dynamics is most
intimately connected with acceleration, rather than velocity (as Aristotle
thought), reversing the direction of time in the dynamical equations by
making ¢ = — ¢ has the effect of reversing the direction of the velocities of all
of the bodies in the system, so that v, = — v, for all the bodies i. However, the
accelerations of these bodies remain the same. In other words, the bodies
follow exactly the same trajectories after time reversal as they did before,
only in the reverse direction. The dynamical equations themselves are
indifferent as to which direction time flows.'*8

Nevertheless, as we saw in our previous chapter on Quantum Mechanical
Systems, we need irreversible time 7 in order to be convinced that our
experimental observations actually measure something: It would not do if
something which we have just measured could go backwards in time and
change its behavior, thereby undoing the validity of our observations. That is
why our resolution of the quantum paradoxes of observation (such as
Schrodinger’s cat) in our chapter on Quantum Mechanical Systems
depended vitally on the idea that irreversible time 7'is a real, objective
constitutive characteristic (“emergent property”) of nonlinear dynamic and
thermodynamic systems. By contrast, even today most physicists regard
irreversible time to be “merely subjective”, arising only in connection with
“subjective probability” at the thermodynamic level. But, if true, this would
mean that all of the scientific observations of physicists are “merely
subjective” as well, a conclusion which (of course) physicists do not wish to
accept. For them the paradoxes of quantum measurement therefore remain
unresolved.

A strictly analogous problem exists in Einstein’s Theory of Relativity with
respect to the vital concept of a signal along a “time-like” spacetime world-
line between two points A and B. Although Einstein, like most physicists,
regarded irreversible time to be a mere illusion associated with “subjective
probability” in thermodynamics, the problem of the apparent irreversibility of
a signal within Relativity Theory continued to bother him greatly. As he
wrote in his “Reply to Criticisms”:

The problem here involved disturbed me already at the time of the building

up of the General Theory of Relativity, without my having succeeded in

clarifying it. . .

... If it is possible to send (to telegraph) a signal . . . from B to A, but not

from A to B, then the one-sided (asymmetrical) character of time is secured,

i.e., there exists no free choice for the direction of the arrow [of time].

What is essential in this is the fact that the sending of a signal is, in the
sense of thermodynamics, an irreversible process, a process which is
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connected with the growth of entropy (whereas, according to our present
knowledge, all elementary processes are reversible).'*

For all of the various reasons cited above, it is vital that we establish the
objective reality of irreversible time T as directly and simply as possible.

One way to do this would be to embrace a speculative, non-standard theory
such as Roger Penrose’s twistor theory, which attempts to unify quantum
mechanics with Relativity Theory and, in the process (I believe), actually
incorporates irreversible, asymmetrical time within the dynamical equations
themselves. We will not take this approach, however, because of its
speculative nature. (For similar reasons, we did not directly embrace Ilya
Prigogine’s “Liouville Space Extension” of QM in our chapter on Quantum
Mechanical Systems.)

We could also take the most-common approach and initially establish the
existence of irreversible time T at the level of thermodynamics (where many
millions of particles are involved, instead of just the few that are involved in
dynamics). However, this would inevitably leave the impression that
irreversible 7'is not a basic phenomenon of nature, but rather is a derivative
(and possibly even subjective) physical phenomenon. Furthermore, such an
approach would not explain the existence of “arrows of time” other than the
thermodynamic: These include the cosmological arrow of time (associated
with the fact of the Big Bang) and the arrow of time associated with the 7-
violation in elementary particle physics (where for certain restricted
processes the equations describing the evolution of the system for positive
time ¢ are significantly different from those describing the evolution for
negative time —r).'%°

Instead, we will try to demonstrate the objective existence of irreversible time
T at the level of basic nonlinear dynamic systems, in particular focusing on
the chaotic gravitational three-body system as our primary example. During
the course of doing this, we will have occasion to refine (and even re-define)
the concept of objective truth. In particular, we will consider the differences
between objective truth as viewed by the following four types of teleological
beings:

1. Human beings and other teleological beings who have an analogical
embodied existence within the physical universe. Such beings have an
imperfect knowledge of the momenta and positions of the bodies
within any given dynamical system (i.e., out to only a finite number
of decimal places). Furthermore (as might be expected), such beings
can only act with a finite, limited degree of precision. We’ll represent
human beings by the example of the scientist.
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2. Laplace’s demon, a fictional non-embodied creature who can know
perfectly for one moment in time only the exact momenta and
positions of every body within a given dynamical system out to an
infinite number of decimal places. (That dynamical system can be the
entire universe, if desired.) However, for all other moments in time,
Laplace’s demon has the same finite limitations as the human
scientist.

3. Maxwell’s demon, a fictional non-embodied creature who has all of
the capabilities of Laplace’s demon, plus the ability for one moment
in time only to instantly establish or alter the dynamics of the system
with infinitely perfect accuracy (for example, by instantaneously and
precisely reversing the direction of the velocities of every body in the
system, no matter how many of these bodies there are).

4. The omniscient and omnipotent God, who has the capabilities of
Maxwell’s demon (and, therefore also of Laplace’s demon) for not
just one moment in time, but rather for infinitely many moments in
time (and perhaps for a/l moments in time).

Note that, for purposes of this epistemological discussion, it does not matter
whether you regard the omniscient and omnipotent God to be real or
fictional: Rather, Laplace’s demon, Maxwell’s demon, and God are here just
“benchmarks” for comparison with human beings as part of the process of
arriving at a reasonable definition of what “scientific objectivity” means from
the point-of-view of conscious, rational, beings embodied within the physical
universe (such as the human scientist).

But before we directly consider the problem of irreversible time with respect
to nonlinear dynamics, we must first take an extended detour that ultimately
revolves around the question of the status of chance in objective physical
reality.

The Bowl Game

Let’s begin with a “thought experiment” (really a “thought game”) that we’ll
call the bow! game. Imagine a hollow, smooth half-sphere with its concave
side upwards, resting firmly on a table near the earth’s surface. (This is the
bowl.) Imagine that we also have available a small, heavy, smooth, spherical
ball bearing. (This is the ball.) The contestants in the bowl game are: a
scientist, Maxwell’s demon, and God. (Laplace’s demon can’t play, because
he can’t perform an action.) The object of the bowl game is to carefully place
the ball inside the bowl so that it rests at the very bottom of the bowl without
moving. (For simplicity, air resistance and air currents are ignored.)
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God goes first. (Who else?) Not surprisingly, He succeeds the first time in
placing the ball perfectly at the exact bottom of the bowl. He can do this both
because He is omniscient (i.e., He knows exactly where the ball must be
placed to an accuracy of an infinite number of decimal places within a 3-
dimensional coordinate system) and because He is omnipotent (i.e., He has
the power to arrange physical processes so that the placement of the ball is
done perfectly).

Our second contestant in the bowl game is Maxwell’s demon. He also
succeeds in perfectly placing the ball at the very bottom of the bowl the first
time he tries (providing only that we stipulate that he can do this in a single
instant of time).

Our third contestant is the human scientist. Because of limitations in both his
knowledge and his power, the scientist is only able to place the ball very near
to the exact bottom of the bowl, but he is never able to place it perfectly, no
matter how many times he tries. Through the use of sophisticated
observational instruments and robotic technology, the scientist is able (up to a
point) to come increasingly close to perfectly placing the ball at the exact
bottom of the bowl, but he can never place it with absolute precision because
his knowledge of the positions of the ball, the bowl, and the earth is always
limited to some finite number of decimal places.

The result of the scientist’s imperfect placement of the ball is that, on a very
small scale, it oscillates like a pendulum in an arc that passes through the
exact bottom-position of the bowl. The ends of the arc are two periodic
points, while the exact bottom of the bowl is the elliptic point around which
this oscillation occurs. If we assume that the bowl and ball are ideal and that
there is no friction as the ball rolls inside the bowl, then this oscillation (or
vibration) will continue forever if the system is left otherwise undisturbed.
Such a dynamic system is said to be an example of neutral stability, orbital
stability, or Lyapunov stability.

However, if we assume that there is friction between the ball and the bowl,
then the ball’s kinetic energy will be dissipated as heat because of that
friction, and the ball’s period of oscillation will become smaller and smaller
until it eventually comes to rest at the point that is at the exact bottom of the
bowl — a point which in this case is an attracting fixed point, also called an
attractor or sink. Such a system is said to be asymptotically stable. (A sink
can also be thought of as a periodic point of period one. In the no-friction
case the periodic points have a period of two.)

Now, before we analyze this friction case in more detail, it is worth noting
that it “makes sense” for the scientist to play the bowl game because, while he
can never attain the perfection of God or Maxwell’s demon, he can
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asymptotically approach this perfection by improving his technology (his
measuring apparatus, robotic apparatus, etc.). In fact, in the friction case, the
“imperfection” of friction eventually cancels out the scientist’s imperfection in
placing the ball bearing, so that the scientist’s ball bearing finally rests just as
perfectly at the bottom of the bowl as did the ball bearings belonging to God
and Maxwell’s demon. From this we may conclude that, when it comes to
dynamical systems which are either orbitally stable or asymptotically stable,
we are justified in regarding objectivity from the point-of-view of the scientist
to be approximately the same as objectivity from the point-of-view of God or
Maxwell’s demon.

Now, as we mathematically consider the friction case further, we need to
define some terms: A map is a function whose domain (possible input values)
and range (possible output values) are the same. An iteration of the map is
one application of the map function. If x is a point specified within a system
of coordinates, then we will denote the point generated by the first iteration of
the map as f{x), the point generated by the second iteration of the map as f
%(x), the point generated by the third iteration as f3(x), and so on. An orbit of
x under fis then the set of points {x, f(x), f*(x), f3(x), . . .}. The starting point
x of the orbit is the initial value of the orbit. A point p is a fixed point of the
map f if and only if f(p) = p. An n-dimensional manifold is a set of points
(like the 2-dimensional inside-surface of the bowl) which locally resembles an
n-dimensional Euclidean space in the immediate neighborhood around any
given point in the manifold. (This is a two-dimensional flat plane in the case
of the immediate neighborhood around each point on the bowl’s inner
surface). Furthermore, if p is a fixed point of the map f and p is also an
attractor (i.e., a sink), then the stable manifold of p is denoted by S(p) and
consists of all points s such that | f"(s) — p| = 0 as n — oo. (Note that the
vertical bars in this formula mean “take the absolute value of whatever is
between the vertical bars” and that e represents infinity. Note also that p has
no unstable manifold if it is an attractor in all relevant dimensions.)'!

In the friction version of the bowl game mentioned above, the point p is the
point at the very bottom of the bowl, and all other points on the inner surface
of the bowl are within the stable manifold of p with respect to the free rolling
of the ball. Moreover, all of the possible orbits of the free-rolling ball are
attracted to p and will eventually settle down to point p (the bottom of the
bowl) in a finite amount of time. However, our definition of “stable manifold”
does not require that an orbit within the stable manifold actually arrive at p
within a finite amount of time: Rather the orbit may continually approach p
without ever reaching it. (For example, see Figure 3, which follows.)
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Figure 3

Consider now a small neighborhood of points arbitrarily close (even
infinitesimally close) to the fixed-point p. This neighborhood is usually called
the epsilon neighborhood of p, symbolized as N, (p). The epsilon
neighborhood N, (p) is defined to be the set of points x in the manifold
immediately surrounding p such that |x — p| < &, where € (epsilon) is an
arbitrarily small positive distance from p. Within the context of this small
epsilon neighborhood of p we can determine whether or not the fixed point p
is an attractor (i.e., a sink) by calculating the first derivative of f{p) with
respect to a change away from or towards p (if such a first derivative actually
exists). (This first derivative is simply the instantaneous rate of change in
f(p) with respect to a change away from or towards p). We could write this
first derivative using the notation we have used previously: df(p)/dp . But
instead we will use the more compact notation f'(p) .

Let f be a map function which is continuous and smooth (i.e., derivatives of
all orders exist everywhere for the function). Let p be a fixed-point of f , so
that f(p) = p. Then, with respect to at least some sufficiently small epsilon
neighborhood of p :

If |f' ()| < 1 ,then pisan attractor (i.e., a sink) (20)

We will not prove this theorem rigorously, but it makes sense because it
means that, as an x point in the epsilon neighborhood of p approaches p, f(x)
approaches f(p) = p even faster. In other words:
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lim (x = p) of |fix)—f(p)| divided by | x —p| equals |f'(p)|, which by
hypothesis is a fraction between 0 and 1 . Therefore f(x) approaches f(p) =p
faster than x approaches p, and so it further follows that p is a sink (at least
with respect to its epsilon neighborhood).'>

This ends our discussion of the bowl game.

The Hill Game

Our next “thought experiment” (or “thought game”) we'll call the hill game.
Imagine a perfectly smooth half-sphere with its convex side upwards, resting
firmly on a table near the earth’s surface. (This is the Aill.) Imagine that we
again have available a small, heavy, smooth, spherical ball bearing. (This is
the ball.) The contestants in the hill game once again are: a human scientist,
Maxwell’s demon, and God. (Again, Laplace’s demon can’t play, because he
can’t perform an action.) The object of the hill game is to carefully place the
ball on the very fop of the smooth, convex hemisphere (the hill) so that it
precisely rests at the top of the hill and does nof roll off the hill. (Again, air
resistance and air currents are ignored.)

Just as was the case in the bowl game, God goes first. God is just as
successful in the hill game as He was in the bowl game: He succeeds the first
time in placing the ball perfectly at the exact top of the hill. The ball does not
roll off the hill! God can do this both because He is omniscient (i.e., He
knows exactly where the ball must be placed to an accuracy of an infinite
number of decimal places within a 3-dimensional coordinate system) and
because He is omnipotent (i.e., He has the power to arrange physical
processes so that the placement of the ball is done perfectly).

Our second contestant in the hill game (just as in the bowl game) is
Maxwell’s demon. Again, Maxwell’s demon succeeds the first time he tries, in
this case by perfectly placing the ball at the top of the hill (providing only
that we stipulate that he can do this in a single instant of time).

Finally, our third contestant in the 4ill game is the human scientist. Because
of limitations in both his knowledge and his power, the scientist is completely
unable to place the ball at the top of the hill so that it rests there, no matter
how many times he tries. Rather, the ball always rolls off the hill at an angle
(looking down at the top of the hill) that is, paradoxically, more
unpredictable the more accurately the scientist places the ball! Even though
the scientist makes use of increasingly sophisticated observational
instruments and robotic technology, he can come no closer to the
accomplishments of God and Maxwell’s demon in the hill game: In fact, with
respect to the hill game, the scientist is a complete loser because his
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knowledge of the positions of the ball, the hill, and the earth is always limited
to some finite number of decimal places, whereas the infinite number of
possible trajectories of the ball that start from infinitesimally close to the top
of the hill can shoot off at any angle between 0 degrees and 360 degrees
(looking downward at the hill). Furthermore, because we have assumed that
both the hemisphere and the ball are relatively smooth, friction is of no help
to the scientist in this case, since the force of friction is quickly overcome by
the force of gravity pulling the ball bearing off the hill. The point at the top of
the hill is said to be a repelling fixed point, also called a repeller or a source.
Such a dynamical system is said to be unstable.

Now, before we analyze the hill game in greater mathematical detail, it is
important to note that it does not make sense for the scientist to continue to
play the hill game, because no matter how hard he tries and what
sophisticated technology he uses, the scientist cannot asymptotically
approach the results achieved by God and Maxwell’s demon. (As the saying
goes, the human scientist is “not even in the same league”.) Therefore the
fact must be faced that, with respect to the hill game and the similar physical
systems which that game represents, objective physical truth for the human
scientist must be significantly different than it is for God or Maxwell’s
demon. In particular, for God, the deterministic description of dynamical
physics in terms of precise trajectories always makes sense. By contrast, for
the human scientist, the description of dynamical physics in terms of precise
trajectories often does not make sense, even as an ideal that might be striven
for. Instead, for the scientist, what does always make dynamical sense is a
physical description of a certain set of possible trajectories, with a probability
weight assigned to those various trajectories. As Ilya Prigogine has written:

We need a “divine” point-of-view to retain the idea of determinism. But
no human measurements, no theoretical predictions, can give us initial
conditions with infinite precision.'

A theologian might put it this way: While it is true that human beings are
made in the image of God, it is also true that an image is always less perfect
than the original. And any such imperfection in the divine image is enough to
result in a gualitative difference between human and divine objectivity.

More generally, we can rephrase this by saying that there is a qualitative
difference between immanent objectivity and transcendent objectivity. (But
note, again, that the present discussion does not require belief in the actual
existence of God or any other transcendent being: Instead all such
transcendent beings can, if you wish, be regarded as merely fictional
benchmarks whose objectivity can be compared with our own.)
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Later on in this chapter we will further develop our understanding of
immanent, human objectivity in the physical sciences by considering the
concept of an ensemble of possible physical systems in phase space (a
concept that derives from the work of Albert Einstein and the great American
scientist Josiah Willard Gibbs at the beginning of the twentieth century'*).
Meanwhile, perhaps the most important conclusion we can derive from our
consideration of the hill game is the fact that human objectivity with respect
to the physical sciences contains an irreducible, significant element of
absolute chance irrespective of the size or scale of the physical system
studied. This immanently objective element of absolute chance will never be
eliminated from human science. Moreover, immanently objective chance can
hardly ever be ignored as unimportant (except in the case of those few
physical systems which approach the deterministic ideal, such as systems
which are orbitally stable or asymptotically stable like the bowl game
system). Statements involving probability may therefore be (in varying
degrees) subjective or immanently objective, depending on the context or
circumstances.

Recall from our discussion in the chapter on Quantum Mechanical Systems
that before the advent of quantum mechanics (QM), most scientists from the
Enlightenment era onwards believed that all chance is “merely subjective”
and that physical reality is therefore objectively deterministic. By contrast,
after the advent of QM, most scientists believe that chance in the
submicroscopic world of “elementary particles” is objective, while chance in
the macroscopic (thermodynamic) world remains subjective. (QM essentially
encapsulates objective submicroscopic chance into a macroscopic deter-
ministic framework, the Schrodinger wave function.) Furthermore, as we also
mentioned earlier, some scientists (such as Einstein, de Broglie, and Bohm)
have sought to eliminate this tension between submicroscopic objective
probability and macroscopic subjective probability by arguing that
submicroscopic quantum probability is also subjective and that deterministic
(or quasi-deterministic) “hidden variables” will someday be discovered to
underlie the seemingly random submicroscopic quantum phenomena.

By contrast, in this book we are taking the approach of Nobel-prize-winning
scientist Ilya Prigogine and his colleagues by arguing that, from the human
point-of-view (which is, after all, the only point-of-view from which science
realistically can be done), an irreducible element of immanent objective
chance exists at both the macroscopic and submicroscopic levels of physical
reality. As Prigogine has written, to insist that infinitely precise trajectories
are the standard for human scientific objective truth is just as foolish as to
insist that travel at infinite velocities is an ideal that can be humanly striven
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for (in spite of Einstein’s proof that travel faster than the speed of light in a
vacuum is impossible):

It is true that there is still a trajectory description if initial conditions are
known with infinite precision. But this does not correspond to any realistic
situation. Whenever we perform an experiment, whether by computer or
some other means, we are dealing with situations in which the initial
conditions are given with a finite precision. . . Similarly, we could imagine
infinite velocities, and therefore we would no longer need relativity theory,
which is based on the existence of a maximum velocity — the velocity of
light ¢ in a vacuum — but the assumption of velocities greater than ¢
corresponds to no known observable reality.'*

This view that an irreducible objective element of chance exists in nature of
course has its precursors. For example, in the late nineteenth century the great
American philosopher, scientist, and logician Charles Sanders Peirce
proposed the existence of what he called tychism, which was his unique name
for “absolute chance”. He regarded tychism (as distinct from mere
probability) to be the true logical basis for novelty, spontaneity, growth, and
complexity in the universe.!*

A far earlier precursor to the concept of absolute chance is the pre-Socratic
philosopher Epicurus. A disciple of Democritus, Epicurus was nevertheless
bothered by Democritus’s fundamental view of reality, which seemed to
necessitate a universe consisting merely of atoms falling deterministically
through the void. Epicurus’s answer to the problem of accounting for novelty
and spontaneity in the universe was the clinamen, an aspect of physical
reality which he said caused the atoms to randomly, but slightly, deviate from
their determined course.'>’

It is now time to examine the hill game in greater mathematical detail by
simply extending our discussion of the mathematics of the bowl game. We’ll
begin by extending our map-function notation, so that f-!(x) means “the value
of x just prior to that iteration of the map function f which resulted in the
present value of x ”, f*(x) means “the value of x two iterations prior to the
present value of x ”, etc. The orbit {x, f'(x), f (x), f3(x), . . .} is therefore a
time-reversed orbit starting from the initial value of x. If p is a fixed point of
the map f such that f(p) = p and p is also a repeller (i.e., a source), then the
unstable manifold of p is denoted by U(p) and consists of all points u such
that | f-"(u) — p| > 0 as n — . (Note that p has no stable manifold if it is a
repeller in all relevant dimensions. Also note that the reversed-time orbit
starting from u need not actually arrive at p in a finite amount of reversed
time.)

Let f be a map function which is continuous and smooth (i.e., derivatives of
all orders exist everywhere for the function). Let p be a fixed-point of f, so
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that f(p) = p. Then, with respect to at least some sufficiently small epsilon
neighborhood N, (p) of p :

If |f' ()| >1 ,then pis a repeller (i.e., a source) (21)

Again, we will not prove this theorem rigorously. But Alligood, Sauer, and
Yorke, in their book CHAOS: An Introduction to Dynamical Systems, express
the basic reasoning behind this theorem as follows:

[I]f x, is a fixed pointof a ... map fand f'(x)=a > 1, then the orbit
of each point x near x, will separate from x, at a multiplicative rate of
approximately a per iteration, until the orbit of x moves significantly far
away from x, . That is, the distance between f"(x) and f"(x,) = x, will be
magnified by approximately a > 1 for each iteration of f.!%

This ends our discussion of the hill game.

The Saddle Game

Our next “thought experiment” (or “thought game”) we'll call the saddle
game. Imagine a very smooth, hard horse’s saddle, as depicted in Figure 4
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Figure 4 (after Figure 2.13 in Alligood, Sauer, and Yorke, p. 64)

(This is the saddle.) Imagine that we again have available a small, heavy,
smooth, spherical ball bearing. (This is the ball.) The contestants in the
saddle game are once again: a scientist, Maxwell’s demon, and God. (Again,
Laplace’s demon can’t play, because he can’t perform an action.) The object
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of the saddle game is to carefully place the ball on the very center of the
saddle so that it does not roll off the saddle to either side. . (As always, air
resistance and air currents are ignored.)

Just as was the case in the bowl game and the hill game, God goes first. God
is just as successful in the saddle game as He was in the bowl game and the
hill game: He succeeds the very first time in placing the ball perfectly on the
exact center of the saddle, such that the ball does not roll off the saddle to
either side! God can do this both because He is omniscient (i.e., He knows
exactly where the ball must be placed to an accuracy of an infinite number of
decimal places within a 3-dimensional coordinate system) and because He is
omnipotent (i.e., He has the power to arrange physical processes so that the
placement of the ball is done perfectly).

Our second contestant in the saddle game (just as in the bowl game and the
hill game) is Maxwell’s demon. Once again Maxwell’s demon succeeds the
very first time he tries, in this case by perfectly placing the ball on the exact
center of the saddle (providing only that we stipulate that he can do this in a
single instant of time).

Finally, our third contestant in the saddle game is the human scientist.
Because of limitations on both his knowledge and his power, the scientist is
completely unable to place the ball at the precise center of the saddle, so that
it rests there without rolling off to one side or the other, no matter how many
times he tries. Even though the scientist makes use of increasingly
sophisticated observational instruments and robotic technology, he can come
no closer to the accomplishments of God and Maxwell’s demon with respect
to the saddle game: That is because his knowledge of the positions of the ball,
the hill, and the earth is always limited to some finite number of decimal
places. Furthermore, because we have assumed that both the saddle and the
ball are relatively smooth, friction is of no help to the scientist in this case,
since the force of friction is quickly overcome by the force of gravity pulling
the ball bearing off the saddle to one side or the other.

Nevertheless, the scientist does do better than he did in the hill game, in this
sense: In the hill game the ball rolled off the hill with increasingly equal
probability at any angle between 0 and 360 degrees (looking downward) as
the scientist placed the ball with correspondingly increasing accuracy on the
top of the hill. By contrast, in the saddle game the randomness of the angle of
the ball’s subsequent trajectory is constrained, such that the probability that
the ball will roll off following the axis that runs along the length of the saddle
is zero, while the probability that the ball will roll off to one side or the other
of the saddle along the axis that runs across the width of the saddle is high.
Furthermore, the probability that the ball will roll off along a trajectory that
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is intermediate between these two axes is greater the more this intermediate
trajectory aligns with the width-of-the-saddle axis, and is less to the extent
that it aligns with the length-of-the-saddle axis.

Also, because the saddle game system is characterized by constrained
chance, the phenomenon of bifurcation can and does arise. That is, the more
precisely the scientist places the ball at the very center of the saddle, the
closer to exactly 50% is the probability that the ball will roll to one side of
the saddle as opposed to the other: In other words, from the point-of-view of
the human scientist, the saddle game system bifurcates with equal probability
into two very different states. This particular type of bifurcation is called
(not surprisingly) a saddle-node bifurcation. (As we shall see later when
dealing with far-more-complex biological systems, such bifurcation points
within the physical system may be analogous to decision points within the
parallel releological system.)

The fixed point at the very center of the saddle is said to be a saddle point.
This fixed point is also called a hyperbolic point because (as was mentioned
in our discussion of relativistic systems) the shape of the surface of a saddle
that is infinitely extended is a hyperbolic surface.

Before analyzing the saddle game in greater mathematical detail, it is
important to note that it makes no more sense for the scientist to continue to
play the saddle game than it would for him to continue to play the hill game,
because it is still the case that no matter how hard he tries and what
sophisticated technology he uses, the scientist cannot asymptotically
approach the results achieved by God and Maxwell’s demon. Therefore the
fact must be faced that, with respect to the saddle game (just as for the hill
game), objective physical truth for the human scientist must be significantly
different than it is for God or Maxwell’s demon.

Once again, for God the deterministic physical description of saddle-game-
like systems in terms of precise trajectories always makes sense. By contrast,
for the human scientist the deterministic physical description of saddle-game-
like systems in terms of precise trajectories (particularly trajectories that pass
through the hyperbolic point) often does not makes sense, even as an ideal
that might be striven for. Instead, for the scientist, what does always make
sense in the case of saddle-game-like systems is (once again) a physical
description of a certain set of possible trajectories, with a probability weight
assigned to these various trajectories.

An examination of the mathematics of the saddle game reveals that it
combines the attractor mathematics of the bowl game along the length of the
saddle with the repeller mathematics of the hill game along the width of the
saddle. If point p is a fixed point f(p) = p and, moreover, p is a saddle point
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(hyperbolic point) located at the center of the saddle, then p has both a stable
manifold S(p) consisting of the points on the saddle’s long axis and an
unstable manifold U(p) consisting of the points on the saddle’s width axis
plus all of the non-axis points on the hyperbolic surface of the saddle. (In
other words, the saddle’s width axis contagiously spreads its “repelling”
nature throughout the hyperbolic surface, except for the points directly on the
long axis.) This situation is depicted in the two-dimensional projection of the
saddle shown in Figure 5, below:

Figure 5 (after figure 2.14 in Alligood, Sauer, and Yorke, p. 65)

In Figure 5 the y axis (i.e., the vertical axis) represents the long axis of the
saddle. As you can see, any balls placed on this y axis are attracted towards
the saddle point that is at the center of the saddle. By contrast, the x axis in
Figure 5 (i.e., the horizontal axis) represents the width axis of the saddle. Any
balls placed on this x axis are repelled away from the central saddle point, as
are any balls placed elsewhere on the saddle’s surface (except on the y axis
itself). In other words, Figure 5 clearly shows that points on the y axis are
attracted towards the saddle point as map function f'iterates, while all other
points on the hyperbolic surface are repelled away from the saddle point as f
iterates.

As in the bowl game, the stable manifold S(p) of saddle point p consists of all
points s such that | f"(s) — p| = 0 as n — oo. (These points s are precisely
those points that lie on the y axis of the saddle.) As in the hill game, the
unstable manifold U(p) of saddle point p consists of all points u such that
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| f"(u) — p| > 0 as n — . (These points u are those that lie on the x axis
of the saddle, together with all non-axis points on the hyperbolic surface of
the saddle.) Note also that, in both the forward-time case S(p) and the
reverse-time case U(p), the iterations of f need not result in p being actually
reached in a finite amount of time.'%

Figure 6, below, shows the evolution of the epsilon disk (a two-dimensional
representation of the epsilon neighborhood) around a fixed point in the cases
of (a) a sink (as in the bowl game), (b) a source (as in the hill game), and (c)
a saddle point (as in the saddle game):
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Figure 6 (after figure 2.8 in Alligood, Sauer, and Yorke, p. 59)

Notice that iterations of f on the disk N result in a contraction of the disk f{V)
if the fixed point is a sink, an expansion of the disk f(V) if the fixed point is a
source, and a contraction along one direction, but an expansion along
another direction, if the fixed point is a saddle point.

As might be expected from what we said earlier concerning the bowl game
and the hill game, if p is a fixed saddle point, then |f'(p)| < 1 along the y
axis of Figure 5, while |f'(p)| > 1 with respect to all other directions on the
hyperbolic surface (being greatest along the x axis itself).

One of the remarkable facts discovered by Henri Poincare as he was working
on the three-body gravitational problem in the late 19th century is that, under
certain conditions, the stable and unstable manifolds of a fixed saddle point
can actually intersect. Such an intersection is called a homoclinic
intersection and the point of intersection is called a homoclinic point. If we
iterate the map function fon the homoclinic point forward in time, then we
approach the fixed saddle point without ever reaching it. The same is also
true if we iterate the map function fon the homoclinic point backward in
time. Even more remarkable, the existence of one homoclinic point forces the
existence of infinitely many such homoclinic points. The basic reason for this
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is that, because the homoclinic point lies on both the stable and unstable
manifolds of saddle point p, the entire orbit of that homoclinic point (called
the homoclinic orbit) must also lie on both manifolds of p by the very
definitions of stable and unstable manifolds. As Alligood, Sauer, and Yorke
put it:
The key fact about a homoclinic intersection point is that it essentially
spreads the sensitive dependence on initial conditions — ordinarily situated

at a single saddle fixed point — throughout a widespread portion of state
space.'®

Poincare also discovered that the resulting homoclinic tangle is one of the
primary reasons why the three-body gravitational system is chaotic.

Another interesting situation occurs when the sfable manifold of one saddle
point intersects the unstable manifold of a different saddle point. Such an
intersection is called a heteroclinic intersection, while the point of
heteroclinic intersection is called a heteroclinic point and the orbit of this
heteroclinic point is called (not surprisingly) a heteroclinic orbit. We will
encounter heteroclinic orbits later on in our discussion of the “forced” (i.e.,
rotating) pendulum.'®!

Finally, we should note that it is provable that a stable manifold cannot
intersect itself, nor can it cross the stable manifold of a different fixed
point.'s?

Four Types of Physical Systems

We are now in a position to define four basic types of physical systems, all of
which we will illustrate at the level of basic linear and nonlinear dynamics
(but which apply to more-complex physical systems as well):

1. Deterministic physical systems contain no significant immanently
objective elements of chance, except at the one single moment in time
for which the “initial conditions” of the system are specified. Nearly
exact trajectories of all bodies in the system can then be calculated
(going either forward or backward in time) from these “initial”
conditions. Deterministic systems are essentially those discussed in
our chapter on Classical Mechanical Systems. We will choose the
oscillating pendulum as our example of a deterministic system.

2. Tychistic physical systems are dominantly deterministic, but are
also punctuated with bifurcations or other moments of objective
constrained chance at various points in their history. (I have adapted
the term “tychistic” from Charles Sanders Peirce’s coinage of the
word “tychism” to refer to absolute objective chance.) As our simple
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dynamical example of a tychistic system we will choose the “forced”
rotating pendulum.

3. Chaotic physical systems are dominantly random. In dynamics such
chaotic physical systems usually contain many saddle points (i.e.,
hyperbolic points), each of which is often associated with an infinite
number of homoclinic points. These saddle points and homoclinic
points create a homoclinic tangle that makes the deterministic
prediction of the trajectories of some or all of the bodies in the system
impossible. Nevertheless, surprising elements of order may
unexpectedly arise during the history of a chaotic system.
(Alternatively, such touches of order may be discovered “hidden”
amongst the dominant randomness.) The famous three-body
gravitational system will be our example of a chaotic system.

4. Stochastic physical systems are completely random and contain no
(or negligible) elements of order at the level of detail being con-
sidered. Our example of a stochastic system will be an ideal gas at
equilibrium, considered at the molecular level.

Important notes and qualifications with respect to this classification scheme:

First, it is evident that the four types of physical systems grade continuously
into one another and form a continuous “physical spectrum”, which we may
imagine as stretching smoothly from left to right as we go from deterministic
to tychistic to chaotic to stochastic physical systems. Therefore, borderline
cases certainly exist which could just as well be put into one category as
another.

Second, this classification scheme is relevant to all types and complexities of
physical systems, including dynamic, thermodynamic, biological,
sociological, and so on. (For example, the biological tychistic system of most
interest to us personally is probably our own human body.) Nevertheless, in
this immediate discussion we will confine ourselves to “simple” dynamic
systems, so that no opportunity will exist to dismiss any of these four types of
systems as "merely subjective".

Third, any given particular classification of a physical system is relative to
the physical level considered. For example, an ideal gas is stochastic at the
microscopic level. However, at the macroscopic level a quantity of ideal gas
clearly has “orderly” properties, such as volume, pressure, and so on.
Moreover, at the sub-microscopic level each gas molecule is clearly a tightly-
bound, dominantly-ordered system (though encapsulating quantum
randomness).
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Fourth, it is common in the scientific literature for chaotic systems to be
called “deterministic”. For example, one often hears of “deterministic chaos”
and reads statements to the effect that chaotic systems are only apparently
random. Such statements may be based on the fact that the force laws
describing even chaotic dynamical systems are quite definite and contain no
elements of chance. Or such statements may be based on the fact that chaotic
dynamical systems are still deterministic from an infinitely-precise,
transcendent (e.g., divine) point-of-view. Lastly, such statements may simply
represent a scientific ideological commitment to determinism that is
essentially a holdover from 19" century thinking. Whatever the case, we will
not adopt such terminology in this book, but will instead restrict the term
“deterministic systems” to those physical systems where the trajectories of all
bodies in the system can be predicted (and retrodicted) with reasonable
precision by a human scientist using only the “laws of nature” and one
particular description of “initial conditions” at one moment in time. (This is
the “ordinary language” understanding of determinism and is the definition
which, in effect, underlies most philosophical discussions of determinism
versus indeterminism.)

Fifth, the scientific recognition of the importance of both deterministic and
stochastic physical systems goes back at least to the days of Sir Isaac
Newton himself. By contrast, while chaotic physical systems were first
studied by Henri Poincare and others in the latter part of the 19" century, they
were not fully acknowledged and recognized as important by scientists until
the 1950s and early 1960s (when mini-computers and personal computers
began to become generally available).

Furthermore, the importance (or, sometimes, even the existence) of tychistic
physical systems has yet to be acknowledged by most scientists, which is why
I have had to invent/adapt the term “tychistic" from the writings of Charles
Sanders Peirce. I speculate that one reason most scientists have virtually
ignored the vast realm of tychistic physical systems is the fact that highly
complex tychistic physical systems (i.e., those organized above the dynamic
level) often have clear teleological analogs that are, to some degree at least,
characterized by free will, purposes, and goals: Acknowledging the existence
or importance of such systems would therefore constitute a serious challenge
to the deterministic/stochastic worldview of most contemporary scientists,
who regard both the universe and all of its component systems to ultimately
be teleologically “meaningless and senseless” on a priori philosophical
grounds.

Before considering particular dynamical examples of the four types of
physical systems defined above we need to define the extremely useful
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mathematical concepts of phase space (sometimes called state space) and
Gibbs ensembles.

Phase Space and Gibbs Ensembles

Prigogine and Stengers define phase space (in the context of dynamical
systems) as follows:

The dynamic state of a point particle is specified by position (a vector
with three components) and by momentum (also a vector with three
components). We may represent this state by two points, each in a three-
dimensional space, or by a single point in the six-dimensional space formed
by the coordinates and the momenta. This is the phase space. This
geometric representation can be extended to an arbitrary system formed
by n particles. We then need n x 6 numbers to specify the state of the
system, or alternatively we may specify this system by a single point in
the 6n-dimensional phase space. The evolution in time of such a system
will then be described by a [single] trajectory in the phase space.'®®

The number of dimensions of the phase space is the number of degrees of
freedom. For conservative Hamiltonian dynamic systems the number of
degrees of freedom is always an even number because, as we have seen
earlier, the Hamiltonian energy function H(p,q) describes the state of the
dynamical system completely in terms of exactly two variables, the
momentum p and the position q of the system’s component particles.

Figure 7, below, is a simplified diagram showing the point p,q, in a two-
dimensional phase space. (One dimension is p and the other dimension is q):

P

(£,9)

q

Figure 7 (after Figure 1.3 in Prigogine, p. 32)
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Point (p,,q,) represents the state of a dynamical system at a particular initial
point in time. The squiggly line emanating from point (p,q,) represents the
trajectory of this dynamic system through phase space as the system
temporally evolves. (Although we have shown only two dimensions in
Figure 7, we may regard Figure 7 as archetypically representing any
dynamical system having an arbitrary, though even, number of degrees of
freedom.)

We will see later that for more-complex systems (such a thermodynamic,
chemical, and biological systems) we can use phase space to represent other
variables, such as pressure, temperature, volume, concentration, and so on.
But for now our focus is on dynamic systems, so the only variables we
require are momentum p and position q.

Now, because Figure 7 shows a precise trajectory of the dynamic system
through phase space, it is clear that, while it exactly depicts transcendent
objective reality, it only approximately depicts immanent objective reality. If
instead we wish to exactly represent immanent objective reality, we need to
depict an ensemble of possible system states around the initial point (p,q,).
Such an ensemble is called a Gibbs ensemble after the great American
scientist Josiah Willard Gibbs, who first introduced the concept in the late
1900s.

Figure 8, below, shows a Gibbs ensemble at an initial point in time (V) and
at a subsequent point in time (V,). Each of these Gibbs ensembles is
essentially a “cloud” of points surrounding point (p,q,), with a probability
assigned to each point. Of these points, point (p,q,) itself has the highest
probability assigned to it:

P

q

Figure 8 (after figure 35 on page 83 of Nicolis and Prigogine)
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The sum of all of the probabilities associated with the points within any given
Gibbs ensemble must equal 1 (i.e., 100%). Since there is in principle no limit
to the number of possible systems we may consider, we can let these points be
infinite in number within the boundary of V.. The probability “density” within
volume V, would then be highest at point (p,¢,) and would approach zero as
the boundary of V, is reached. However, the sum of the probabilities of all of
the infinite number of points within volume V, would still be 1 (that is,
100%). (And, of course, what we have just said about V/ is equally true of the
subsequent Gibbs ensemble V as well.) The Gibbs ensemble, in general, is
therefore intimately related to the probability density function p (p,q,t),
which returns the probability that at time ¢ the dynamic system is at point
(p,q) in the phase space.'**

Notice that in Figure 8 the Gibbs ensembles V, and V, are depicted as having
different shapes, yet also as having the same area. This illustrates a very
important theorem of the French mathematician Joseph Liouville: Liouville’s
theorem states that all conservative dynamic systems (whether they be linear
or nonlinear) conserve Gibbs-ensemble volume as they evolve through time
within the phase space.'® In other words, conservative dynamic systems
temporally evolve in such a way that the probability density function p in
phase space behaves like an incompressible fluid.'*®

Epistemologically the key point here is that the trajectory representation of
the dynamic physical system in Figure 7 is precisely true from a transcendent
objective point-of-view, but is only approximately true from an immanent
objective point-of-view. By contrast, the Gibbs ensemble representation of the
physical system in Figure 8 accurately represents an immanent objective
point-of-view, but only approximately represents the transcendent objective
point-of-view. These differences arise because of objective finite limits to the
accuracy of our human measurements and actions. (Note that our
epistemological interpretation of Gibbs ensembles essentially follows the
views of Ilya Prigogine. By contrast Josiah Gibbs himself was of the common
opinion among 19" and 20" century scientists that all macroscopic
probability is “merely subjective”.!¢7)

To further illustrate these twin concepts of phase space and Gibbs ensembles,
let’s take a look at “generic” phase-space diagrams for both deterministic and
chaotic systems.

Figure 9, on the opposite page, is a generic phase-space representation of a
conservative, integrable, deterministic Hamiltonian dynamic system of the
kind we discussed in our chapter on Classical Mechanical Systems:
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Figure 9 (after figure 32 on page 265 of Prigogine and Stengers)

You will recall that such a conservative /inear dynamic system is similar to a
free-particle system, in that a coordinate system can always be found such
that all of the system energy is kinetic, and the momenta of all of its
component bodies are constants of motion.

Notice that Figure 9 shows a small irregular figure (representing a Gibbs
ensemble) moving around in a circle in the phase space: Not only is the area
of this irregular figure constant, but the shape is constant as well. That’s
because integrable, deterministic conservative dynamic systems preserve the
shape of the Gibbs ensemble (as well as its volume) as the system temporally
evolves. And that’s why it makes sense to regard the trajectory representation
of such a deterministic system to be a meaningful goal that can be
asymptotically approached by improving our knowledge (thereby shrinking
the Gibbs ensemble to a more-pointlike state).

Another important thing to notice about Figure 9 is that the Gibbs ensemble
moves round-and-round in a somewhat-confined area of the diagram: In other
words, the ensemble does not move in such a way as to eventually “cover” all
of the phase space. That’s because energy, represented by the Hamiltonian
function H(p,q,), is not the only constant in an integrable, deterministic
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system: Rather, the momentum of every body in the system is also constant,
thus placing further constraints on the system.!®® These further constraints on
the system are also why the movement through the phase space of either a
point or an ensemble of points representing an integrable, deterministic
dynamic system is either periodic (circular/elliptical) or quasi-periodic
(processing circular/elliptical).

By contrast, a conservative dynamic system whose only constant is energy is
called an ergodic system. As an ergodic system evolves through time, its
Gibbs ensemble eventually passes through all of the points in the phase

space, assuming that this phase space consists of all points corresponding to a
certain constant energy (that is, a constant Hamiltonian).

As a subset of ergodic systems, we are particularly interested here in
conservative chaotic dynamic systems, such as the three-body gravitational
system. Figure 10, below, shows a generic phase-space representation of a
conservative chaotic system:

P

L=v

q
Figure 10 (after figure 34 on page 267 of Prigogine and Stengers)

Notice that, while the Gibbs ensemble for this chaotic system maintains a
constant volume as it temporally evolves (thus obeying Liouville's theorem
for conservative dynamic systems), its shape becomes wildly distorted into
ever-thinner, more-twisted filaments, until eventually the entire phase space is
visited. As Prigogine and Stengers put it:
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No sketch can do justice to the complexity of the actual situation. Indeed,
. . . two points as close together in phase space as we might wish may
head in different directions. Even if we possess a lot of information about
the system, so that the initial cell formed by its representative points is
very small, dynamic evolution turns this cell into a true geometric
“monster” stretching its network of filaments through phase space.'®

Epistemologically the key point here is that, from an immanent objective
point-of-view, the conservative chaotic dynamical system keeps presenting us
with new and novel information that is not contained either in a description of
the initial conditions of the system or in the specification of the force laws
(“laws of nature”) which the system is obeying. Faced with such a situation,
the only reasonable course of action is to keep taking measurements of the
system: Each such unique “snapshot” of the chaotic system enables us to
redefine the Gibbs ensemble to a more-pointlike shape, thus keeping our
understanding of the particular system “on track”™ as it evolves. In other
words, to more-fully understand any particular chaotic physical system (or,
indeed, even any particular tychistic physical system) from an immanent
objective point-of-view, we need the services of an historian as well as the
services of a classical physicist. (From a transcendent objective point-of-
view, of course, the chaotic system remains just as deterministic as the
classical mechanical system.)

It is now time to discuss in more detail particular dynamic examples of the
four types of physical systems.

The Oscillating Pendulum

We begin with the oscillating pendulum, which is our chosen example of a
deterministic dynamic system. On the following page, Figure 11 physically
depicts the oscillating pendulum, while Figure 12 shows its phase-space
representation. The oscillating pendulum consists of a round weight (called
the “bob”) affixed to the end of a thin, rigid rod of negligible mass. This thin
rod (plus its attached bob) swings freely from a swivel point, which is itself
securely attached via a suspending framework to the earth’s surface. (As an
approximate real-world example, you might think of the pendulum in a
grandfather’s clock.)

Two additional points are of importance: First, all four of our example
dynamical systems will be regarded as being conservative systems. Therefore,
we will assume that no friction or air resistance affects either the oscillating
pendulum or our other three example systems. Second, we stipulate that the
initial conditions for our oscillating pendulum are that the bob is lifted up
from the downward vertical angle of zero degrees to an angle that is smaller
than + 180 degrees (that is, smaller than * 1t radians) and is then released.
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Figure 12 (after figure 20 on page 49 of Nicolis and Prigogine)

(180° = & radians, 360° = 2x radians, 90° = /2 radians, and so on.) In other
words, it is not permissible to start the pendulum off by pushing it so hard
that it rotates in a vertical circle, nor is it permissible to drop the bob from its
maximum upwardly-vertical position: To do either of these things would (or,
at least, could) result in a rotating pendulum (also called a forced pendulum),
which we will discuss later as our representative example of a tychistic
dynamical system.
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Under the conditions described, it is clear that the pendulum will swing (i.e.,
oscillate) back-and-forth forever. It is also clear that the position where the
bob is hanging down vertically at a zero-degree angle is the fixed elliptical
point (or center point) in the phase space around which this oscillation
occurs. Furthermore, if we were to allow friction to affect the system, this
elliptical point would also be an attractor or sink at which the pendulum
would eventually come to rest. (In other words, the oscillating pendulum is a
two-dimensional version of the three-dimensional “bowl game” we played
earlier.)

Notice also that the oscillating pendulum is essentially a two-body system (the
weighted bob + thin rod on the one hand, and the swivel/frame/earth on the
other). This means that, even though both kinetic and potential energy are
evident in this system relative to surface-of-the-earth coordinates, we know
that some coordinate system can be found such that all of the system energy
is always kinetic. In this sense the oscillating pendulum can be regarded as
similar to a free-particle system (i.e., it may be regarded as a conservative,
deterministic classical mechanical system having only summative
characteristics).

Now, it is clear that the oscillating-pendulum system, relative to the earth’s
frame of reference, has maximum kinetic energy and minimum potential
energy as the bob passes through the elliptical point at the bottom of the
pendulum’s swing. By contrast, the oscillating-pendulum system has zero
kinetic energy and maximum potential energy when the bob stops at the top of
its swing to either side of the elliptical point. It therefore makes sense to
define the reference point of zero potential energy to be where the bob is at its
lowest point (i.e., where the pendulum is at an angle of zero radians = zero
degrees).

To determine the Hamiltonian function of the oscillating pendulum within this
reference frame, we begin by noting that the Hamiltonian must represent the
total energy of the system, so that H = K + U, where H is the Hamiltonian, K
is the total kinetic energy of the system at a particular point in time, and U is
the corresponding total potential energy of the system at that same point in
time. Since we are making the ideal assumption that all of the mass in the
system resides in the bob, the total kinetic energy of the system is always
omv?, where m is the mass of the bob and v is the velocity of the bob.
Furthermore, since mg is the magnitude of the force of gravity near the
earth’s surface on a body having mass m (where g is the gravitational
constant of acceleration near the earth’s surface), the gravitational potential
energy of the bob’s mass m at a height /4 above the zero reference point is
mgh (which is equal to the vertical work necessary to get mass m to a height
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h in the presence of the opposing force of gravity). From Figure 11 on page
164 it is clear that height 4 for the oscillating pendulum is given by the
formula L(1 — cos 0), where L is the length of the thin rod and 8 is the angle
the thin rod makes relative to downward-vertical. So, our “first cut” at
expressing the Hamiltonian for the oscillating pendulum system is therefore
given by:

H = Ymv* + mgL(1 — cos 0) (22a)

But because v is always tangent to the trajectory of the mass, it follows that v
= L(d6/dt). Substituting in formula 22a we get:'”°

H=mL [ %L(d6/dt)* + g(1 —cos 6) ] = constant (22b)

Within this Hamiltonian formula the position g is represented by 0, while the
momentum p = mv = mL(d0 /dt). Furthermore, since both m and L are
constants, we can also represent momentum p (for the purpose of tracing
changes in p) as d0 /dt by itself. Figure 12 on page 164 therefore shows the
phase-space representation of the oscillating pendulum embedded in a plane
for which the x-axis is 0 and the y-axis is d68/dt . Furthermore, because the
oscillating pendulum is a deterministic conservative dynamical system, we
have chosen a trajectory representation of its motion through the phase space.
(The ensemble representation of such a deterministic dynamic system would
just be a “fuzzier” version of the trajectory representation.)

Two phase-space trajectories for the oscillating pendulum are shown in
Figure 12. The outermost ellipse represents the trajectory starting from a
larger displacement of 8 from the vertical, while the innermost ellipse
represents the trajectory starting from a smaller displacement of 6 from the
vertical (0 £ 0 <+ w radians). Notice that both 6 and d0 /dt assume both
positive and negative values as the representative point of the oscillating-
pendulum system moves in an ellipse around the central elliptical point
through the phase space: This is because both ¢ and p (in this case 0 and d6/
dt respectively) are really vector quantities (i.e., they have a direction as well
as a magnitude). In the absence of friction, the representative point on each of
these phase-space ellipses will loop around forever.

Notice also that, unlike in the generic phase-space diagrams we discussed
earlier, different energy levels [that is, different values of the constant
Hamiltonian function H(p, q)] are here represented in the same phase-space
diagram: For example, all of the points on the outermost ellipse clearly
represent a constant value for the Hamiltonian function that is higher than the
corresponding constant energy-value of the Hamiltonian function on the
innermost ellipse. (Because the oscillating-pendulum system is linear,
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integrable, and deterministic, constraints in addition to the requirement of
constant energy apply to it.)

The Rotating Pendulum

We next extend our oscillating-pendulum example to include the rotating
pendulum (also known as the forced pendulum). This rotating pendulum will
serve as our dynamic example of the second type of physical system, the
tychistic system. Figure 13, below, physically depicts the rotating pendulum,
while Figure 14 shows its phase-space representation:

T
-

Figure 13

Hyperbolic points (saddle)
Rotate

Rotate

Elliptic point (center)

Figure 14 (after figure 40 on page 93 of Nicolis and Prigogine)
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Everything about the rotating pendulum is exactly the same as for the
oscillating pendulum (including the equation for the Hamiltonian function
shown in formulas 22a and 22b), except that additionally we are now
permitted to initiate the system by either pushing the bob so hard that the
pendulum rotates vertically or by dropping the bob from its maximum-
possible upward-vertical angle of = radians (= £ 180 degrees). (Of course,
we are still permitted to lift the pendulum to an angle /ess than r radians and
release it, just as we did in the case of the oscillating pendulum. Again, air
resistance and air currents are ignored.)

If we choose to release the pendulum from an angle less than +r radians, then
the representative point will trace an ellipse in the phase space, just as it did
in the case of the oscillating pendulum: The small ellipses in Figure 14 are
equivalent to the ellipses in Figure 12. (The only difference is that in

Figure 14 the vertical d8/dt axis has been removed for clarity.)

However, if instead we choose to push the bob so hard that the pendulum
rotates vertically in a circle, then we will get a physical system that is (in
general) just as integrable and deterministic as the oscillating-pendulum
system: The two waves drawn in Figure 14 are representative trajectories of
this vertical rotation of the pendulum when it is initially shoved hard enough.
Notice that the rotating pendulum never has zero momentum (i.e., it never
comes to a complete standstill). Notice too that the rotating pendulum never
reverses its direction of motion (which is why it remains on one side or the
other of the horizontal 0 axis). Lastly, the rotating pendulum’s motion is
periodic, even though this is not as evident from the phase-space diagram as
it was in the case of the oscillating pendulum: This periodicity results from
the fact that, as the phase-space wave trajectory passes (for example) Tt
radians, then 37 radians, then 57 radians, etc. on the 0 axis, it is really
passing through the same point in physical space.

Because almost all of the possible states of the rotating-pendulum system
(whether the pendulum is actually rotating or instead is merely oscillating) are
both integrable and deterministic, we have again chosen a trajectory
representation rather than an ensemble representation in phase space.

Nevertheless, there are two points shown in Figure 14 where the rotating-
pendulum system is not integrable and is not deterministic: These are the two
fixed hyperbolic points (i.e., saddle points) at zero-momentum and positions
+r radians (= £ 180 degrees) respectively.

To see the significance of these two hyperbolic points, we need to consider the
case in which the bob is lifted up to its maximum vertical angle of either ©t
radians or —7 radians (the sign depending on which way the bob is lifted up)
and then is released: Clearly we are then dealing with a two-dimensional
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version of the “saddle game”, which we played earlier. As in the saddle game,
a perfect transcendent being (such as God or Maxwell’s demon) could release
the bob exactly so that it balances forever-motionless above the swivel point.
(That’s because such a perfect transcendent being would have exactly
accurate information about the momenta and positions of both the pendulum
and the earth out to an infinity of decimal places, together with the ability to
control both the pendulum and the earth without any error.)

By contrast, whenever a finite human experimenter releases the bob vertically
upright at its maximum angle as accurately as he can, the pendulum system
bifurcates into two possible states having an equal probability. In fact, the
system actually experiences fwo such bifurcations simultaneously, giving a
combined total of four co-equal possibilities for the system: The first equally-
probable bifurcation is between a system state in which the pendulum begins
to fall clockwise and a system state in which the pendulum begins to fall
counterclockwise. This first bifurcation is due to the very slight error in
position q (i.e., the very slight deviation from *+ & radians) when the bob is
released. The second equally-probable bifurcation is between a system state
in which the pendulum falls back into its nearly-largest oscillation and a
system state in which the pendulum on the contrary achieves its nearly-
slowest-possible rotation. This second bifurcation is due to the very slight
error in momentum p (i.e., the very slight deviation from zero momentum)
when the bob is released. (Both of these bifurcations are saddle-node
bifurcations of the type we discussed earlier.)

Notice in Figure 14 that the two hyperbolic points (saddle points) are
connected by two separatrix orbits, one on each side of the horizontal 0 axis.
These two separatrix orbits lie exactly between those representative orbits in
the phase space that represent oscillations and those representative orbits in
the phase space that represent rotations. Furthermore, each of these
separatrixes has the following remarkable property: It is the unstable
manifold for one of the two hyperbolic points and the stable manifold for the
other. The reason for this is suggested by the following physical fact: If we
drop the bob from its maximum vertical angle, it is from one point-of-view
repelled away from the top point of its physically circular orbit. However
from another point-of-view it is also simultaneously attracted back to this
same top point of the physically circular orbit (as the bob circles back
around). As we mentioned in our earlier discussion of the “saddle game”, the
intersection of the unstable manifold of one hyperbolic point with the stable
manifold of a different hyperbolic point is called a heteroclinic intersection,
and the associated orbit is called a heteroclinic orbit.'”
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From an immanent objective point-of-view, the hyperbolic points at
momentum zero and positions *7 radians of the rotating pendulum’s phase
space are clearly associated with physical phenomena that manifest
immanently objective constrained chance. An ensemble representation of
one of these hyperbolic points is therefore of great interest. Figure 15, below,
shows two greatly magnified views of a Gibbs ensemble surrounding such a
hyperbolic point:

p

clockwise/ rotate/
counterclockwise oscillate

q
Figure 15 (loosely based on figure 1.5 on page 36 of Prigogine)

In the first such magnified view, plus-signs represent points in the Gibbs
ensemble whose trajectories will evolve into a clockwise movement of the
pendulum, while minus-signs are points which will evolve into a
counterclockwise movement. In the second such view, plus-signs represent
points in the Gibbs ensemble whose trajectories will evolve into a rotational
movement of the pendulum, while minus-signs are points which will evolve
into an oscillating movement. Furthermore, we assume in Figure 15 that the
accuracy of our vertically-upward initiation of the pendulum is not very good,
due to poor measurements or inadequate control mechanisms: That’s why the
pluses and minuses tend to be segregated to one side or the other of their
respective circles, with a fuzzy overlap between them.

But what happens if the accuracy of our measurements and actions improves
considerably? Figure 16, on the following page, shows a blow-up of a small
central portion of either of the Figure 15 magnified views. Figure 16
therefore represents a situation in which we have been able to significantly
reduce the initial volume of the Gibbs ensemble through improved technology.
But notice that shrinking the initial volume of the Gibbs ensemble does not
enable us to arrive at a deterministic result, due to the extreme sensitivity to
initial conditions at the hyperbolic point: The random mixture of pluses and
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minuses within the ensemble circle in Figure 16 is intended to symbolize the
fact that near a hyperbolic point the trajectories of even infinitesimally close
points in the phase space may evolve to radically different results. Indeed, the
more-accurate our measurements and actions become, the closer to exactly
50% is the probability that the pendulum will drop clockwise vs.
counterclockwise (or will rotate vs. oscillate):

P

q

Figure 16 (based on figure 1.6 on page 36 of Prigogine)

This 50% probability therefore cannot be dismissed as a “‘merely subjective”
error. Rather, it must be regarded as an immanent objective fact — an instance
of what Charles Sanders Peirce called absolute chance, or tychism.

The rotating pendulum is therefore a tychistic system — that is, a dominantly
deterministic system that is nevertheless punctuated with moments of
absolute constrained chance. Of course, from the transcendent objective
point-of-view of a being capable of measurement and action to infinite
precision (such as a transcendent God or Maxwell’s demon), tychistic
systems such as the rotating pendulum are still completely deterministic, but
for immanent beings such as ourselves, determinism makes no sense even as
an ideal, where hyperbolic points and tychistic systems are concerned.

Physical aside: It is interesting to note that during the moment when the bob
is being released from its vertically-upward position, the rotating-pendulum
system is really a three-body system: 1) the bob/pendulum, 2) the earth/
frame, and 3) whatever organic or mechanical system is being used to hold
and release the bob. This suggests that even a single moment of nonintegrable
immanently objective chance is associated with the interaction between three
or more bodies.
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Teleological aside: If the physical rotating-pendulum system were much more
complex than it is, we would be strongly inclined to relate it to a parallel
teleological system by saying that the system “decided” to fall clockwise
rather than counterclockwise (or “decided” to rotate rather than oscillate).
Indeed, a popular science writer might be tempted to use just such language
in describing the rotating-pendulum system itself, all the while regarding such
talk to be “merely a figure of speech”. But if we were correct in our argument
in Book I, WORLDVIEWS, that a renewed belief in animism is necessary to
revive our Western sensitivity to religious truth, then we need to consider the
possibility that the rotating-pendulum system in fact really does have a very
primitive consciousness that enables it to make such “decisions”, since
physical bifurcations are often analogous to tfeleological decision-points: The
rotating pendulum system is, in fact, characterized (minimally and simply)
with those qualities of external and internal conditional equifinality which we
will later see to be especially characteristic of those physical systems that
have significant teleological analogs (decisions, goals, purposes, and so on).

The Three-Body Gravitational System

The third type of physical system on our “physical spectrum” is the chaotic
system, and our conservative dynamic example of this type of system is the
three-body gravitational system. Like the tychistic system (of which the
rotating pendulum is an example), the chaotic system is (from an immanent
objective point-of-view) a mixture of determinism and absolute chance. The
only difference between these two types of physical systems is that in
tychistic systems determinism dominates over absolute chance, whereas in
chaotic systems absolute chance dominates over determinism. (In reality, of
course, a continuum exists between tychistic systems and chaotic systems.)
For example, let’s consider several instances of gravitational orbital systems,
ranging from the relatively tychistic to the relatively chaotic:

Our solar system is the most-familiar example of a gravitational orbital
system which is relatively tychistic: It consists of one massive, central body
(the sun) which gravitationally dominates the nine planets, the comets, and
the asteroids, all of which orbit about it. The mass of each of these bodies
relative to the sun is quite small (though not entirely negligible).

Computerized numerical simulations by G.J. Sussman and J. Wisdom, as well
as by J. Laskar, indicate that the solar system has an “exponential separation
time” of about 5 million years due to Poincare resonances between the inner
planets Mercury, Venus, Earth, and Mars. (These simulations ignore Pluto,
whose orbit is not in the same plane as the other planets and is highly
sensitive to initial conditions.)!”? Although our solar system may therefore be
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regarded as “chaotic” on this very long time scale, it is nearly deterministic
(or quasi-deterministic, and therefore tychistic) in the short run. Nicolis and
Prigogine explain:
The mass of the planets is about a thousand times less than the mass of
the sun, so at first approximation we can neglect their interaction and
take into account only their attraction by the sun. In this way we obtain
the two-body problem, which provides a classic example of an integrable
(and exactly soluble) system giving rise to a periodic motion [in phase

space] for each individual planet, and a quasi-periodic motion [in phase
space] for the entire planetary system.

The interaction between planets, small as it may be, is nevertheless always
present and will tend to perturb the keplerian trajectories. . .

Clearly, as long as one is interested in times scales of the order of the
inverse of the strength of the perturbation (these would be in the 1000-
year range for our planetary system), the effects induced by the latter can
be handled straight-forwardly by standard methods. But if we look for
solutions valid for very long times and, in particular, if we want to
understand the qualitative behavior of the exact solutions, we are
immediately faced with a number of formidable difficulties.'”

It turns out that, where the ratios between the various planetary years (orbital
frequencies) are irrational numbers (i.e., they are not expressible exactly as
the ratio between two integers), the trajectory of the corresponding integrable,
conservative planetary system in phase space is quasi-periodic and traces a
helix (i.e., a spiral) around a nonresonant torus (i.e., an inner-tube or
doughnut shape) in such a way that it never crosses itself or closes on itself,
but instead eventually passes near every point on the surface of the torus.
Such a motion in phase space is called “everywhere dense”.!”* Figure 17,
below, shows an early stage in this helical motion of the phase-space
trajectory around the torus:

Figure 17 (based on the torus.ds Dynamics Solver example
problem file, © 1992-1998 by Juan M. Aguirregabiria.)
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Figure 18, below, shows a Poincare section of this same torus at a later stage
in the system’s evolution:

Figure 18 (also based on the torus.ds Dynamics Solver file)

The Poincare section is an imaginary two-dimensional plane slicing vertically
through the center of the torus. Every time the phase-space trajectory of the
planetary system pierces this Poincare section, we record a dot. As you can
see, these piercings (dots) have formed two closed curves, right where the
Poincare section cuts through the torus. Soon we will be dealing with chaotic
planetary systems, and in such cases it is far easier to just calculate the
Poincare section rather than calculating the entire orbit of the phase-space
trajectory. (Poincare pioneered this technique in connection with his work on
the three-body gravitational system. By the way, the figures in this part of our
text were mostly generated using Juan M. Aguirregabiria’s excellent
Dynamics Solver program, which is available on the internet.)

Four observations with respect to this nonresonant torus: First, because a
conservative dynamical system is being represented, all points on the torus
represent equal total energy (i.e., the same value for the Hamiltonian
function). Second, because an integrable, nearly-deterministic planetary
system is being represented (since the planets have a very small mass in
relation to the sun and, furthermore, their orbital-frequency ratios are
assumed to be irrational numbers), the surface of the torus reflects additional
constraints. Thirdly, because a conservative dynamic system cannot achieve
asymptotic stability (as we saw in the case of the no-friction version of the
“bowl game”), in practice small perturbations of this planetary system will
cause its phase-space trajectory to “jump” between close, concentric
toruses.'” And, fourthly, if the ratios between the various planetary years
(orbital frequencies) were allowed to become rational numbers (so that they
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were expressible exactly as the ratio between two integers), then Poincare
resonances between the planetary orbits would become much-more
significant, and the system would consequently move from being tychistic to
being chaotic.

Next, let’s consider a theoretical gravitational orbital system containing
significantly more chaos than the nearly-deterministic tychistic solar
planetary system we have been discussing: That system is the planar
restricted three-body gravitational system. This is the simplified version of
the gravitational three-body problem that Poincare actually originally worked
on. It is simplified because the physical movement of the three bodies is
confined to a flat-plane surface, and one of the bodies is assumed to have
negligible mass. Figure 19, below, shows a planar restricted three-body
gravitational system within a coordinate frame that co-rotates with the two
bodies having non-negligible mass:
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Figure 19 (derived from the r3body1.ds Dynamics Solver
example problem file, © 1992-1998 Juan M. Aguirregabiria)

The chaotic physical trajectory of the third body, having negligible mass, is
what is primarily shown in Figure 19. Figure 20 shows this same system in a
center-of-mass frame of reference:

Figure 20 (also derived from the r3body1.ds example file)
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Because the mass of the third body is assumed to be negligible (i.e, zero), the
other two masses orbit around each other tracing the exact same circle as
their common trajectory, while the third body once more moves in a chaotic
physical trajectory.

In this intermediate case, the movements of the two bodies having non-
negligible mass are just as deterministic and integrable as were the
movements of the planets in our solar system example (even more so, since
this is a purely theoretical example). By contrast, the movement of the third
body having negligible mass is clearly chaotic: Depending sensitively on
initial conditions, this third body can be trapped forever in a chaotic orbit
around the other two massive bodies, or it can eventually become accelerated
enough to escape entirely from the two-body system, or it can crash into one
of the two massive bodies.

But what if we allow the third body to also have non-negligible mass, while
continuing to limit the movement of all three bodies to a flat plane? One
version of this theoretical gravitational system arises when we solve Burrau’s
problem: In Burrau’s problem we assume that the first mass is 4 (of any
arbitrary units), the second mass is 3, and the third mass is 5. Furthermore,
we assume that the initial conditions are such that these three masses start out
at rest at the corners of a 3:4:5 right triangle and then begin moving as a
result of mutual gravitational attraction. Figure 21, below, shows the result:
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Figure 21 (derived from the 3body.ds Dynamics Solver
example problem file, ©1996-1998 Juan M. Aguirregabiria)
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As you can see, the movement of all three masses is then chaotic.
Furthermore, the exact path followed by all three of these masses is highly
sensitive to the initial conditions. Eventually, after a complex evolution, the
second (lightest) mass escapes from the gravitational effects of the other two
masses and sails off at constant velocity, leaving the first and third masses to
circle one another forever as a deterministic, integrable binary system.

Figures 19, 20, and 21 all show physical representations of three-body
gravitational systems. But what does a phase-space representation of a three-
body system look like? Because of the extreme complexity of the movement
of the representative trajectory of a three-body system in phase space, only a
Poincare section of this phase space is generally depicted. Figure 22, below,
shows a Poincare section cutting through the phase space of one such three-
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Figure 22 (after a figure depicted in the article “Chaos!” by
James P. Sethna, http://www.physics.cornell.edu/sethna/
teaching/sss/jupiter/Web/Chaos.htm)
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This particular three-body system is a simulation of the Sun/Jupiter/Earth
system, except that the mass of Jupiter is assumed to be 22,000 times the
mass of the earth, rather than only 318 times, which in fact it actually is.
(Contrast Figure 22, which depicts the Poincare section for this chaotic
dynamical system, with Figure 18, which depicts the Poincare section for a
tychistic dynamical planetary system that is nearly deterministic.)

Notice that Figure 22 contains several sets of paired concentric closed curves.
Each of these pairs of closed curves is like the closed curves in Figure 18 and
represent regions of the phase space in which the representative phase-space
trajectory moves helically around a nonresonant torus in a quasi-periodic
orbit: Such phase-space regions are characterized by a fairly high degree of
determinism and integrability, just as was the case for the tychistic solar
planetary system which we studied. However, even in these phase-space
regions there is a significant element of absolute chance, reflected in the fact
that these paired closed curves occur in concentric sets: As we noted earlier,
because conservative dynamic systems cannot achieve asymptotic stability,
even a slight perturbation of a conservative orbital system will kick its phase-
space trajectory onto a nearby concentric torus. (That is what is happening in
Figure 22, except that these “kicks” are rather severe and arise from the
internal dynamics of the system, rather than from an outside influence.)

Also evident in Figure 22 is something that Figure 18 does not contain at all,
namely, dense areas of random dots (comprising the stochastic sea) that
completely surround the island areas containing the concentric curves. These
random dots reflect regions in the phase space where the behavior of the
three-body system is chaotic, is highly sensitive to initial conditions, and is
ergodic (meaning that continuously equal total energy is the only invariant).
Many hyperbolic points (saddle points) arise in these chaotic regions of the
phase space, and (as we noted earlier) the instability associated with these
hyperbolic points is quickly spread throughout a much wider phase-space
region due to their associated homoclinic points: Recall that the stable
manifold and unstable manifold of each hyperbolic point can intersect at a
homoclinic point, whose existence automatically causes the existence of an
infinite number of other nearby homoclinic points. As a result, both the stable
and the unstable manifolds undulate strongly around each hyperbolic point,
thus causing a homoclinic tangle. Furthermore, because the system is
conservative, no dampening of these undulations can occur and, in the words
of Nicolis and Prigogine, “these undulations are associated with ever-larger
excursions from the fixed [hyperbolic] point, followed by re-injections back
to its vicinity”.'” As a result the three-body system behaves chaotically in
those regions of phase space that we have called the stochastic sea.
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But what actually causes such a three-body system to become chaotic? In
other words, what causes its representative trajectory in phase space to jump
from tychistic quasi-periodic behavior (evident in the island areas of
concentric curves within the Poincare section) to chaotic behavior (evident in
the surrounding stochastic-sea areas of dense random dots within the
Poincare section)? The complete answer to this question is not known. As
George M. Zaslavsky has put it:

The vicinity of the island boundary is terra incognita, and, despite
significant mathematical effort, it is still poorly understood how a trajectory
shifts from regularity to the chaotic regime.

Simulation shows that the vicinity of an island, called the boundary layer,
is sticky. This means that a trajectory spends more time in the boundary
layer than in a domain of the stochastic sea of the same phase volume but
located far from the island . . .The island’s boundary can be more or less
sticky, depending on the control parameters of the system. There are also
special zones located near the island’s boundary where a trajectory can be
trapped for a long finite time, and the size of these zones depends on the
system parameters.'”’

Nevertheless, a partial answer to the question of why a dynamic system such
as the three-body gravitational system jumps from tychistic quasi-periodicity
to chaos can be found by considering the Poincare resonances arising
between the degrees of freedom in the phase space.!” (Poincare resonances
can also be seen as partially accounting for the non-integrability, i.e., non-
solvability, of chaotic dynamic systems.) Recall that one of the conditions for
the stable, integrable, quasi-periodic behavior of a planetary system in the
phase space is that the ratio between planetary years (orbital frequencies) be
an irrational number (i.e., not expressible evenly as the ratio of integers). If,
on the contrary, these ratios are rational numbers (or are sufficiently close to
being rational numbers), then the planetary system may easily become
unstable, and very slight perturbations may therefore kick it from tychistic
quasi-periodic behavior to chaotic behavior.

Rational orbital ratios result in instability because they are associated with
Poincare resonances. For example, if we give little shoves to a pendulum at a
frequency that is an exact rational ratio of the pendulum’s existing frequency,
the resonance between these two frequencies will cause the pendulum to
swing higher and higher. Or, to take another example, if soldiers march on a
bridge in a rhythm that is an exact rational ratio of the bridge’s undulation
frequency, that bridge’s undulation amplitude will increase and perhaps cause
the bridge to break (which is why soldiers “break step” when they cross a
bridge). Similarly, if planetary years (orbital frequencies) have exact (or
nearly exact) rational ratios, then the gravitational attraction between the
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planets will tend to magnify orbital perturbations to the point of chaos, such
that the system becomes nonintegrable (i.e., not deterministically solvable).

Ilya Prigogine explains:

[Clonsider the case of a [two-planet] system [going around a much-more-
massive star, and] characterized by two [orbital] frequencies. By definition,
whenever the sum n,®, + n,0, =0 , where n, and n, are nonvanishing
integers [and ®, and m, are the two orbital frequencies], we have resonance.
This means that ®/m, = -n,/n,; the ratio of the frequencies is then a
rational number. As Poincare has shown, in dynamics resonances lead to
terms with “dangerous” denominators [that are zero, or nearly zero,] such
as 1/( n,®, + n,0,). Whenever there are resonances (i.e., points in phase
space where n,®, + n,0, = 0), these terms diverge [towards infinity]. As a
result, we encounter obstacles whenever we try to calculate trajectories.

This is the origin of Poincare’s nonintegrability. The “problem of small
denominators” was already known by eighteenth-century astronomers,
but Poincare’s theorem shows that this difficulty, which he called the
“general problem of dynamics”, is shared by the great majority of
dynamical systems. For a considerable length of time, however, the
importance of Poincare’s findings was overlooked.!”

Although Poincare and Birkhoff established the foundations of nonlinear
dynamics in the late 1900s, it was not until the 1950s that Andrei
Kolmogorov, Vladimir Arnold, and Jurgen Moser further developed the theory
of nonlinear dynamics in detail. Their results are often called KAM theory
(after the initials of their last names), and the closed curves within the
Poincare sections of chaotic dynamical systems are often called KAM
curves.'®

Another very important result of KAM theory is here explained by Nicolis
and Prigogine:

[A]s the energy of the [chaotic dynamic] system increases, we observe
that the islands [of KAM curves] tend to retreat, and the chaotic trajectories
progressively invade ever larger portions of phase space. It is difficult to
draw qualitative conclusions from such observations, since this regime is
hardly accessible to analytical calculations or even to general topological
considerations. Still, it is possible to introduce a measure characterizing
the instability of the motion and the sensitivity to the initial conditions.
This is provided by the Lyapunov exponents, which describe the mean
rate of exponential divergence of two initially close trajectories.'®!

We can gain an understanding of Lyapunov numbers and Lyapunov
exponents by building on our results in formulas (20) and (21), which we
restate here:
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Let f be a map function which is continuous and smooth (i.e., derivatives
of all orders exist everywhere for the function). Let p be a fixed-point of
so that f(p) = p. Then, with respect to at least some sufficiently small
epsilon neighborhood of p :

If |f' ()| < 1 ,then pis an attractor (i.e., a sink)  (20)
If |f' ()| >1 ,then pis a repeller (i.e., a source) (21)

We also saw that if p is a hyperbolic point (i.e., a saddle point), then it is an
attractor along one axis, a repeller along the other axis, and a repeller along
all directions that do not line up with either axis.

We now seek to define Lyapunov numbers and Lyapunov exponents in such a
way as to express the attracting and repelling properties of not just a fixed
point, but of an entire trajectory (i.e., an orbir):

Let f(x) be a map function of x. Let {x, x,, x,, . . . x_} be an orbit under f
whose initial position is x,. Next, calculate | f ' (x) | for (say) each of the first
five points in this orbit. (Where | f ' (x) | varies by direction, we calculate the
largest | ' (x) | we can, since, as we have seen in the case of hyperbolic
points, the repelling properties of a point tend to significantly dominate over
its attracting properties.) Next, average the five | f' (x) | values by calculating
their geometric mean. (That is, multiply the five | f ' (x) | figures together and
take their fifth root, as follows.)

VAR VAN RO R VA CAN R CAIDES (23)

Now, clearly formula 23 represents the geometrical-mean rate of divergence
(or convergence) between orbit {x , x,, x,, x,, X} and its close neighboring
orbits. Thus, to arrive at the Lyapunov number for orbit {x, x,, x,, . . . x } as
n approaches infinity, all we have to do is to find the limit of formula 23 as n
approaches infinity, if such a limit exists. (In formula 23, of course, n =5.)

L) =lm ([f G [ [f G [ f ) D asn— oo (24)

where L(x,) is defined to be the Lyapunov number for the orbit of f starting at
initial position x,.

From formula 24 it is clear that L(x,) cannot be a negative number. Also, if
L(x,) > 1 then orbits of f starting at initial positions that are very close to x,
diverge from x ’s orbit (on the average), while if 0 < L(x ) <1 then such
orbits, by contrast, converge towards x,’s orbit (on the average). (Note also
that, while the rate of such divergence or convergence is often exponential,
this need not be the case.)

Instead of the Lyapunov number L(x,), mathematicians often prefer to specify
the Lyapunov exponent h(x,), which is the logarithm of L(x ) with respect to
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some arbitrary base (often e or 2). If we choose e as the base, then the
Lyapunov exponent h(x,) is simply the natural logarithm of the Lyapunov
number L(x,), so that:

h(x)) =In L(x)) (25a)
Or, equivalently:

h(x,) =lim (1/n)(n|f )|+ f ()] +.. +In|f (x)])asn— e
(25b)

Notice that A(x,) exists if and only if L(x,) exists. Additionally, if L(x ) > 1
(that is, nearby points on the average diverge from x,’s orbit), then a(x ) >0
(i.e., the Lyapunov exponent is positive). But if 0 < L(x ) < 1 (that is, nearby
points on the average converge towards x,’s orbit), then (x,) <0 (i.e., the
Lyapunov exponent is negative).

Finally, note that if the orbit {x, x,, x,, ... x } contains an x, such that f ' (x,)
=0, then no limit for either L(x,) or h(x,) can be asymptotically approached,
and both the Lyapunov number and the Lyapunov exponent are then
undefined.'®?

We are now in a position to mathematically specify what it means for an orbit
to be chaotic. Let f be a map function of x and let {x, x,, x,, . . .} be an orbit
of x under f'starting at initial position x,. Then this orbit is chaotic if and only
if:

1. its Lyapunov exponent h(x,) is greater than zero, and
2. {x,,x,x, ...} is not asymptotically periodic.'*’

The phrase “not asymptotically periodic”” means that the orbit does not end
either in a sink or in a set of periodic points (i.e., a set of points that just keep
repeating in a cycle). (As we mentioned earlier in connection with the “bowl
game”, a sink can be thought of as a periodic point with a period of one.)

It is also important to note that, while the idea behind Lyapunov numbers and
Lyapunov exponents is fairly straightforward, actually calculating them is
often highly nontrivial. For example, if all you have is experimental data, then
such a calculation is difficult-to-impossible.'3* Furthermore, even numerical
simulation on a computer has its difficulties because the computer can only
calculate a finite set of numbers to a finite number of decimal places. As the
Nonlinear FAQ explains:

Strictly speaking, chaos cannot occur on computers because they deal
with finite sets of numbers. Thus the initial condition is always precisely
known, and computer experiments are perfectly predictable, in principle.
In particular, because of the finite size, every trajectory computed will
eventually have to repeat (and thus be eventually periodic). On the other
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hand, computers can effectively simulate chaotic behavior for quite long
times (just so long as the discreteness is not noticeable). In particular if
one uses floating point numbers in double precision to iterate a map on
the unit square, then there are about 10* different points in the phase
space, and one would expect the “typical” chaotic orbit to have a period of
about 10+, '8

Even some famous mathematical examples of chaos, such as the Lorenz
attractor, have never been rigorously proved to satisfy the two required
conditions for chaos (i.e., both a positive Lyapunov exponent and
nonperiodicity).'%

The Ideal Gas

The fourth (and final) type of physical system in our “physical spectrum” is
the stochastic system, and our dynamic example of this type of system is an
ideal gas at equilibrium, considered at the molecular level. Recall that a
stochastic physical system is completely random and contains no (or
negligible) elements of order or determinism. Rather, immanently objective
absolute chance reins completely supreme at the level of detail being
considered. (From a transcendent objective point of view, of course, all
physical systems are deterministic systems.)

As scientists have become more aware of the existence of chaotic systems in
recent decades, they have increasingly come to realize that the stochastic
system, like the deferministic system, is an extreme idealization which is
seldom actually found in physical reality. In other words, virtually all
physically real systems are either tychistic or chaotic from an immanent
objective point-of-view. (An exception to this rule may be quantum
mechanical systems, where observational limitations may forever limit us to a
sub-microscopic stochastic description of physical reality that is encapsulated
within a macroscopic deterministic description of that same reality.)
Consequently, many physical systems that were formerly classified as
stochastic have now been found to be chaotic instead.

For example, computer simulations of molecules of an ideal gas bouncing
around inside an enclosure that contains certain elastic macroscopic obstacles
at rest, such as partial walls or variously sized “billiard balls”, in some cases
will result in the emergence of a surprising order, such as the preferential
gathering of the ideal gas in one region of the enclosure rather than another!'®’

In general, physical systems which closely approach the ideal of a stochastic
system are characterized by a fantastically high number of degrees of freedom
in the phase space — in other words, an extremely high number of elastically
colliding-and-rebounding particles (of the order of magnitude of around 10%).
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With this many degrees of freedom, the concepts of thermodynamics come
into play. We will therefore defer further discussion of stochastic systems
until we get to our chapter on Linear Thermodynamic Systems.

Once Again, Irreversible Time T

At last we can give our promised account of how irreversible time T (“big”
T) arises as a constitutive characteristic (a.k.a. “emergent property”) of
physical systems even at the level of simple, conservative dynamic systems
consisting of as few as three bodies that interact strongly and persistently:
For, although the laws of dynamics involve only reversible time t (“little” f),
which presents us with no new information that is not contained in the initial
conditions plus the dynamic laws themselves, the existence of infinitely many
moments of absolute chance during the chaotic behavior of the three-body
system causes irreversible time T to become manifest as a fundamental
immanent objective feature of reality.

We touched in passing on irreversible time 7" during our discussion of Figure
10 above, which generically shows the phase-space evolution of a Gibbs
ensemble for a conservative, ergodic, chaotic system (such as the three-body
gravitational system). There we noted that, while the volume of the Gibbs
ensemble is conserved (by Liouville’s theorem for conservative systems), its
shape becomes increasingly distorted, drawn out, and twisted over time, until
eventually all points of equal total energy in the phase space are visited. This
means that, from an immanent objective point-of-view, the three-body system
is continually presenting us with new, unique information that we cannot
deduce either from the initial conditions or from the gravitational dynamic
laws themselves. Faced with such a situation, we pointed out that the only
reasonable strategy for immanent beings such as ourselves to pursue is to
make periodic observations of the system and to record particular, unique
states of the system at various moments in time as best we can. This
procedure enables us to periodically reshape our Gibbs ensemble so that it
more-nearly approximates that unique point in phase space which represents
the transcendently objective state of the system at a particular point in time.
In other words, we must become historians in order to describe the
gravitational three-body system adequately.

But while the above description accounts for the fine grain of irreversible
time 7, it does not account for the single direction of irreversible T. After all,
itis conceivable that immanent objective time could have a very fine
granularity (i.e., be characterized by unique, nondeducible information at
infinitely many moments), yet still be reversible. What, then, is the specific
source of T'’s irreversibility?
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Imagine the two-step procedure that we, as immanent beings, would have to
use to temporally reverse the three-body gravitational system:

1. We would have to fake precise observations of the positions and
momenta of the three bodies for a particular point in time.

2. We would then have to apply force to all three bodies in the exact
magnitudes and directions required to temporally reverse the system.

The problem is that both our initial observations in step 1 and our
application of force in step 2 would have to be carried out with infinite
precision: Otherwise the “reversed” trajectories of the three bodies would
soon diverge widely from the original forward trajectories due to “sensitivity
to initial conditions”. More importantly, even if (by some miracle) we could
accomplish steps 1 and 2 for some particular moment in time, we would still
have to repeat this feat every time the three-body system encountered another
one of its many hyperbolic points (saddle points) during its journey
backwards in time.

In short, there is an infinite information barrier which ensures the
irreversibility (as well as the fine granularity) of time T for every immanent
being within the universe.

This association of the irreversibility of time T with an infinite information
barrier is widely recognized, but this barrier is generally erroneously
regarded as being established at the more-complex thermodynamic level,
rather than at the level of simple dynamic systems, such as the three-body
gravitational system. In our later chapter on Linear Thermodynamic
Systems we will see that one of the definitions of the thermodynamic concept
of entropy is “the negative of information” (or “the loss of information”), so
that references in the thermodynamic literature to an “infinite negative-
entropy barrier” are really equivalent to referring to an “infinite information
barrier”. Yet even Ilya Prigogine and his colleagues do not appear to
recognize the existence of irreversible time 7 as a fundamental constitutive
characteristic (“emergent property”) at the level of simple conservative
dynamic systems having relatively few degrees of freedom.

Constitutive Characteristics of Conservative Systems

In summary, we have established a surprising number of important
constitutive characteristics (a.k.a. “emergent properties”) for simple,
conservative dynamical systems having as few as three bodies that strongly
and persistently interact. These include: potential energy, fields, forces,
tensive distances, absolute chance, and irreversible time T. All of these
constitutive characteristics are immanently objective properties of simple,
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conservative dynamic systems such as the three-body gravitational system. In
addition, potential energy, fields, forces, and tensive distances (but not
absolute chance and not irreversible time 7)) are also transcendently objective
characteristics of such systems. None of these constitutive characteristics can
be explained or derived by reductionistically “summing up” properties of the
parts of the system. (This is not to say, of course, that summative
characteristics, such as the total number of parts of the system, the total
mass of the system, the total volume of the system, and the total kinetic
energy of all of the bodies within the system are not also important
characteristics of conservative dynamic systems as well.)

In establishing the real existence of constitutive characteristics at the level of
simple dynamic systems, it is nof my intention to imply that al// constitutive
characteristics can be “reduced” to the level of simple dynamics: On the
contrary, we will see that new constitutive characteristics continually appear
at higher levels of physical organization (for example, heat, pressure, and
entropy at the level of thermodynamics). But the fact that constitutive
characteristics such as potential energy and irreversible time do appear at the
level of simple dynamic systems decisively refutes the still-commonly-held
reductionistic view that constitutive characteristics are always either
reducible to summative characteristics, or are “merely subjective”.

Lastly, it is important to note that all four types of physical systems
(deterministic, tychistic, chaotic, and stochastic) can be illustrated with some
kind of simple, conservative dynamic system (with the possible exception of
the stochastic system, which may require many millions of degrees of
freedom in order to approach pure randomness). Moreover, the fact of
immanently objective absolute chance within even simple nonlinear dynamic
systems means that “doing science” in the future cannot just involve the
discovery of new scientific laws (as important as the discovery of such laws
will continue to be). Rather, the particular branchings at the bifurcation
points (such as the hyperbolic points) of particular physical systems must
also be modeled. This means that, to an increasing extent in the future, the
mathematical numerical simulation itself will be the scientific model. (And
where mathematical numerical simulation cannot be applied, verbal historical
description will be the scientific model.)

Two Unfair Criticisms of Nonlinear Science

In this context, two different types of unfair criticism are often leveled at
nonlinear science:

The first type of unfair criticism complains that nonlinear science hasn’t
yielded any new deterministic, immutable laws that have everywhere-precise
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solutions. This type of criticism is unfair because, as far back as the work of
Henri Poincare, it has been proven that, in general, physical laws having
everywhere-precise, deterministic solutions simply do not exist with respect to
the many nonlinear physical phenomena that involve strong and persistent
interaction between the parts of the system. It is therefore unreasonable to
demand that nonlinear scientists discover such laws.

The second type of unfair criticism of nonlinear science is that it is just
“playing around with computers”, because it never yields numerical
simulations which exactly reproduce the physical phenomenon being studied:
In other words, the critic is disappointed that, for example, a numerical
simulation of biological evolution doesn’t ultimately yield a high-resolution
image of homo sapiens striding majestically across the computer screen. This
type of criticism is unfair because complex nonlinear phenomena can involve
branching from multi-millions of bifurcation points at many of levels of
hierarchical organization, all of these bifurcation points being highly
sensitive to initial conditions. Under such circumstances it is unrealistic to
expect that a specific numerical simulation will exactly match physical
reality: Instead, the best we can hope for is that these numerical simulations
will give us a better understanding of that physical reality.

Teleological Implications of Nonlinear Dynamic Systems

In our earlier section concerning teleological analogs to classical mechanical
systems (which was the last section in our chapter on Classical Mechanical
Systems) we presented enough information on nonlinear dynamic systems to
refute those classical-mechanical teleological analogs (including social-
contract theory and deism): Most issues with respect to the teleological
implications of nonlinear dynamic systems were therefore dealt with in that
earlier section.

However, we might briefly extend our earlier observations on free-will vs.
determinism (which we originally presented in the context of classical-
mechanical teleology) by noting that this was also a very “hot topic” during
the Reformation period that immediately preceded the Enlightenment. During
the Reformation period, however, determinism did not so much mean
“determined by universal, immutable, impersonal natural laws” as it did
“determined by the omnipotent will of God”. Indeed, a case can be made that
the absolute affirmation of divine predestination, coupled with an absolute
rejection of the reality of human free-will, is even more-fundamental to the
classical Protestantism of Luther and Calvin than the oft-cited principles of
sola scriptura (scripture alone) and sola fides (faith alone). For example, in
the Catholic Encyclopedia article on “Calvinism” we read:
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Luther had written that man’s will is enslaved either to God or to Satan,
but it is never free. Melanchthon declaimed against the “impious dogma
of free-will”, adding that since all things happen by necessity according
to Divine predestination, no room was left for it. This was truly the article
by which the Reformation should stand or fall. God is sole agent. . . .
Luther, contending with Erasmus, declares that “God by an unchangeable,
eternal, infallible will, foresees purposes and effects all things. By this
thunderbolt free-will is utterly destroyed.”!#®

By contrast the Catholic Church strove to achieve a balance between divine
determinism and human free-will, with the Thomist school (favored by the
Dominicans) emphasizing divine determinism and the Molinist school
(favored by the Jesuits) emphasizing human free-will. Pope Clement VIII
convened the Dominicans and the Jesuits to the Congregatio de Auxiliis,
which was held in Rome from 1598-1607. There the two sides argued their
respective positions for nine years! Finally Pope Paul V (on the advice of St.
Francis de Sales) decided to permit both schools of thought, with the Jesuits
forbidden to call the Dominicans Calvinists and the Dominicans forbidden to
call the Jesuits Pelagians!'®

Now, clearly the distinction which we have drawn between immanent
objective truth and transcendent objective truth in the physical realm
suggests a corresponding distinction in the teleological realm: The fact of the
existence of human free-will is an immanently true teleological fact
(analogous to the immanent reality of absolute, constrained chance within the
physical world). By contrast, the fact of moment-to-moment divine
determinism is a transcendently true teleological fact (analogous to the
transcendent reality of complete determinism in the physical world). This
rather-simple observation seems to me to be the key to resolving this long-
standing controversy.
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’I‘hermodynamie systems are systems that consist of millions-upon-millions
of molecules. The order of magnitude of this “millions-upon-millions” is
usually given as 6.02252 X 10%, which is Avogadro’s number (roughly the
number of molecules in one gram of hydrogen). A mole of any substance is
the mass of that substance (usually expressed in grams) that contains
Avogadro’s number of molecules.

If we were to regard a thermodynamic system to be merely a dynamic system
with multi-millions of molecular parts, we would have to represent it in a
dynamic phase-space having a number of dimensions (“degrees of freedom”)
that is of the order of magnitude of six times Avogadro’s number (since each
molecule would have to be represented by a three-dimensional vector for its
momentum p and a three-dimensional vector for its position q). This is clearly
a humanly overwhelming number of dimensions.

Instead, thermodynamic systems present themselves to us macroscopically at
a higher level of organization that exists “above” the underlying dynamic
level in such a way that additional constitutive characteristics (i.e.,
“emergent properties”) appear beyond those we have previously encountered.
In our previous chapter on Nonlinear Dynamic Systems we discovered at the
dynamic level such constitutive characteristics as potential energy, fields,
forces, absolute chance, and irreversible time T. At the higher
thermodynamic-level of organization we will discover additional constitutive
characteristics, including temperature, pressure, heat, internal energy, and
entropy. These additional thermodynamic constitutive characteristics cannot
be merely “reduced” to the dynamic characteristics of molecules because they
involve configurational aspects that are unique to the macroscopic
thermodynamic level.

It is also important to note that many other interesting and highly complex
levels of organization can appear between the molecular level and the
macroscopic thermodynamic level, including the chemical organization and
morphology of the molecules themselves and various biological levels of
organization, such as supra-molecular structures, organelles, cells, tissues,
organs, and so on. Nevertheless, if we consider just the three organizational
levels represented by independent particles, three-or-more strongly &
persistently interacting particles, and (finally) macroscopic thermodynamic
systems consisting of over 10? particles, perhaps we can begin to form an
idea of how different hierarchical levels of physical organization are related.

In this chapter we will deal specifically with linear thermodynamic systems.
This means that the mathematics used will be of the same type as is used to

describe classical mechanical systems. (See the earlier chapter on Classical
Mechanical Systems for a definition and discussion of linear differential
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equations.) We will postpone our treatment of nonlinear thermodynamic
systems until the following chapter on Nonlinear Complex Physical
Systems.

Recall that in our previous chapters on Classical Mechanical Systems and
Nonlinear Dynamic Systems we dealt almost exclusively with conservative
systems involving only conservative forces. Here we repeat the definition(s)
of conservative force which we gave in Nonlinear Dynamic Systems:

e A force is conservative if the work done by it on a body that moves
between two points depends only on the position of those two points
and not on the path followed. Equivalently, we may say that a force
is conservative if the work done by the force on a body that moves
through any round trip is zero. Or, again equivalently, a force is
conservative if the body upon which the force acts has the same
amount of kinetic energy at the end of the round trip as it had at the
start (assuming that no other non-conservative forces act upon the
body during the round trip)."”

As might be imagined, the definition(s) of non-conservative force are the
exact opposite of the definition(s) of conservative force: The amount of work
done by a non-conservative does not just depend on the starting and ending
points, but rather does depend on the path followed. The amount of work
done by a non-conservative force during a round trip is not zero. And, finally,
the body upon which the non-conservative force acts does not have the same
kinetic energy at the end of a round trip as it did at the beginning.

Recall, however, that we did briefly mention two dynamic examples where a
non-conservative force was involved: namely, the friction version of the
“bowl game” and the friction version of the oscillating pendulum. Both of
these examples involved the non-conservative force of friction. In these
examples frictional forces eventually brought the ball to rest at the bottom of
the bowl and the oscillating pendulum to rest at the bottom of its swing. We
also indicated that such non-conservative physical systems could therefore
achieve true asymptotic stability rather than merely orbital stability, while
conservative physical systems could achieve (at best) only orbital stability.

An obvious question arises concerning the state of these non-conservative
systems when the ball has finally come to rest at the bottom of the bowl and
the pendulum has finally come to rest at the bottom of its swing: Where did
the energy of these systems go to? In dynamics only two kinds of energy are
recognized: kinetic energy and potential energy. Yet the ultimate state of these
two non-conservative systems clearly has neither of these kinds of energy (at
least, not at the macroscopic level). The answer is that all of the energy of
these systems has gone into heat energy. Frictional mechanical non-
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conservative systems therefore exist at the borderline between dynamics and
thermodynamics, and it will therefore be very useful for us to consider
another example of such a frictional mechanical system in more detail.

The Block on the Table

Imagine a children’s block resting on a large, empty kitchen table that is itself
at rest near the surface of the earth. Suppose that initially the surfaces of the
block and the table have been lubricated, so that the forces of friction between
them are negligible. Suppose furthermore that conservative forces push the
block around on the table and finally return it to the place from which it
started. Then, in that case, we know that the net amount of work which these
conservative forces have done on the block is zero, no matter what path the
block has taken on its round trip.

Now, from equations 4b (W = AK) and 6a (AK = —AU) in our chapter on
Nonlinear Dynamic Systems we know that:

AU=-W (1)

where AU is the change in the potential energy of a conservative dynamic
system and W is the work done by the system. (The work done by the system
is regarded to be positive, while the work done on the system is regarded to
be negative.)

If, instead, a conservative dynamic system undergoes only an infinitesimal
change in its potential energy due to an infinitesimal amount of work done by
the system, then we can write equation 1 in differential form as:

dU = -dW 2)

For a round trip in a conservative dynamic system, we know that the total
amount of work done is zero. We can now express this fact by the following
equation:

de = —de =0 for around trip 3)

Equation 3 essentially expresses the law of conservation of mechanical
energy in a different way.

But suppose that we remove the lubrication from the surfaces of the block
and the table in this example. Now when the block is pushed around on the
table and finally is returned to its original position, the non-conservative force
of kinetic friction has been acting in equal and opposite directions on both the
block and the table all the while the block was being moved. The magnitude
of this force of kinetic friction is approximately independent of the area of
contact between the block and the table, as well as being approximately
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independent of the instantaneous velocity of the block relative to the table.
However, the magnitude of this kinetic-friction force is directly proportional
to the magnitude of the normal force acting on the block. The magnitude of
this normal force is, in turn, equal to the weight of the block. (The normal
force is that force, ultimately arising from the microscopic elastic deformation
of the surfaces of the block and table in contact, which is equal and opposite
to the force of gravity pressing down on the block.) The proportionality
constant involved here is called the coefficient of kinetic friction, and it varies
depending on the particular surfaces involved. The force law for kinetic
friction is therefore as follows:

F =uN 4)

where F| is the magnitude of the force of kinetic friction, u, is the coefficient
of kinetic friction, and N is the magnitude of the normal force.™!

That’s the situation dynamically. However, thermodynamically the key point
is that the amount of work done in pushing the block around on the table and
returning it to its original position is no longer zero when the non-
conservative force of friction is involved. Instead, some of the system’s
macroscopic mechanical energy becomes dissipated as heat energy. How
much mechanical energy becomes dissipated as heat energy is dependent on
the path the block takes, not just on the beginning and end point of the block’s
motion. Non-conservative systems therefore violate the law of conservation of
mechanical energy (equation 3, above).

Fortunately, however, the constitutive characteristic potential energy (which
emerges at the dynamic level) can be modified in order to conceptualize the
related-but-different constitutive characteristic fotal internal energy (which
emerges at the thermodynamic level). Total internal energy, like potential
energy, is symbolized by the capital letter U. Also, like potential energy, its
actual value must be defined relative to an arbitrary initial value U . If Q is
the amount of heat that enters the system, then it turns out that empirically the
following equations (which are analogous to equations 1, 2, and 3 above for
conservative systems) hold true for non-conservative thermodynamic

systems:

AU=0-W (5a)
dU=dQ —dwW (5b)
de = fdQ —de =0 fora cyclic process (5¢)

where U is now the toral internal energy of the system. (A cyclic process in
this context is one that returns the system to its initial state.) Note also that, in
this formulation, Q is positive for heat entering the system, while W is
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positive for work done by the system. On the other hand, if heat energy leaves
the system, then Q is negative. And if work is done fo the system, then W is
negative."? (If we were to reverse the significance of positive and negative
with respect to work W, we could easily change the negative sign in equation
5c to a positive sign.)

Equation 5c above is one mathematical statement of the First Law of
Thermodynamics, also called the general Law of Conservation of Energy.
This law may be expressed verbally as follows:

When a system undergoes a transformation of state, the algebraic sum of
the different energy changes, heat exchanged, work done, etc., is
independent of the manner of transformation. It depends only on the initial
and final states of the transformation.'”

In other words, energy can only be transformed from one kind to another: It
can never be created or destroyed. In the famous formulation of Rudolf
Clausius:

Die Energie der Welt ist konstant. (The energy of the universe is
constant.)'*

The formulation of the First Law of Thermodynamics in equation 5c can be
extended to include additional algebraic terms for other kinds of energy,
including electrical energy, magnetic energy, and so on. Furthermore, since
Einstein demonstrated the equivalence of mass and energy in his famous
formula E=mc? (where E is energy, m is mass, and c is the speed of light in a
vacuum), even energy changes caused by the flow of matter into and out of
the system due to diffusion or chemical reactions can also be included in the
First Law of Thermodynamics.

The First Law of Thermodynamics can also be expressed as a negative (i.e.,
as an impossibility) with respect to the feasibility of a perpetual-motion
machine of the first kind. In the words of Max Planck:

It is in no way possible, either by mechanical, thermal, or chemical, or
other devices, to obtain perpetual motion, i.e., it is impossible to construct
an engine which will work in a cycle and produce continuous work, or
kinetic energy, from nothing.'®

To put it another way, because JdUu=0fora cyclic process, macroscopic
kinetic energy can only be produced by transforming some other kind of
energy into kinetic energy: It cannot be created ex nihilo.

Because any change in the value of total internal energy U depends only on
the state of the system at the system’s specified temporal starting and end
points and not on the path taken by the system, U is called a state variable.
By contrast, because both Q and W in non-conservative thermodynamic
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systems represent energy changes and flows that do depend on the path the
system takes, they are called path variables.

We will later discuss the First Law of Thermodynamics in more detail. But
for now let’s return to our example of the children’s block resting on the
kitchen table.

Imagine that we give a brief push to the block. If both the block and the table
are lubricated so that they are essentially frictionless, then the block will
move across the table at a constant velocity (so that it has a constant kinetic
energy of />2mv?) until it finally falls off the edge of the table.

But if, by contrast, the block and the table are not lubricated, then the non-
conservative force of friction acts on both the block and the table in equal and
opposite directions in accordance with Newton’s third law of motion. The
result is that the block decelerates until it comes to rest on the table (if the
table surface is large enough). Once the block has come to rest on the table,
all of its original macroscopic kinetic energy has been converted into heat
energy, which has been absorbed by both the block and the table in varying
proportions.

But what is heat energy, anyway? As far back as the 1600s and 1700s British
scientists such as Robert Boyle and Sir Isaac Newton correctly intuited that
heat at the macroscopic thermodynamic level is usually correlated with the
microscopic agitative motion of a given macroscopic body’s component
molecules. In other words, macroscopic heat is usually associated with
random microscopic molecular kinetic energy, whether that kinetic energy be
translational, rotational, or vibrational. However, a strongly competing
French school of thermodynamic thought (which included such luminaries as
Lavoisier, Fourier, Laplace, and even, for a time, Sadi Carnot) believed that,
on the contrary, heat is an indestructible fluid-like substance which they
called caloric. Only after the experiments of Benjamin Thompson (a.k.a.
Count von Rumford) and later James Prescott Joule conclusively proved that
mechanical energy can be transformed into heat and vice versa was the
caloric theory of heat abandoned in favor of the random molecular kinetic
energy theory of heat.!”

In passing, we should note that there are a few exceptions to the rule that
macroscopic heat is associated with random molecular kinetic energy: For one
thing, as heat is added to a macroscopic body, that body experiences phase
transitions at certain points, first from a solid state to a liquid state and later
from a liquid state to a gaseous state. During such phase transitions heat
energy goes into loosening the bonds between the body’s component
molecules, rather than into directly increasing the kinetic energy of those
molecules. Also, in certain situations, heat energy may exist as
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electromagnetic radiation in “thermal equilibrium” with matter. Such
radiation is called heat radiation or thermal radiation."”’ But, in general, the
association between macroscopic heat and microscopic random molecular
kinetic energy holds true.

If, now, we think dynamically about the process whereby friction slows the
block down and brings it to a stop on the table (while at the same time heating
up both the block and the table), we realize that kinetic energy has been
downshifted from the macroscopic level to the microscopic level (which is
another way of saying that the macroscopic kinetic energy has been
dissipated into heat energy). In other words, instead of the block being slowed
down and stopped by (say) hitting other blocks randomly at rest on the table,
the block has been gradually slowed to a stop by transferring its kinetic
energy to many millions of molecules (of the order of magnitude of 10%
molecules) existing near the contacting surfaces of the block and the table.

Clearly this process of the block coming to rest on the table due to friction is
an irreversible process (from an immanent objective point-of-view), due to
the considerations we advanced in our previous chapter on Nonlinear
Dynamic Systems. In that chapter, you will recall, we proved that the
immanent objectivity of irreversible time T at the level of dynamics is due to
the infinite information barrier which prevents finite beings such as
ourselves from successfully temporally reversing even simple nonlinear
dynamic systems having as few as three strongly and persistently interacting
bodies (for example, the famous three-body gravitational system). For exactly
the same reasons we advanced in Nonlinear Dynamic Systems, the
thermodynamic process of the block being slowed to rest by friction is
likewise irreversible from an immanent objective point-of-view, since there is
no way we could measure and record the momenta and trajectories of the
multi-millions of affected molecules with an infinite precision and then give
them all the perfect “shove” to reverse their motions precisely.

Of course, a transcendent being who did have such a precise knowledge of
this particular physical system out to an infinite number of decimal places,
together with the power to simultaneously change the momenta and
trajectories of multi-millions of molecules with similar infinite precision could
reverse this process. In that case what might we see? We might see the block
start from rest on the table and gradually accelerate, until it hit our hand with
the same magnitude of force that we originally released it with (just as if we
were watching a movie in reverse)!

But although this thermodynamic “arrow of time” is ultimately based on the
more-basic dynamic “arrow of time” we discussed in our chapter on
Nonlinear Dynamic Systems, an important new element is added at the
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thermodynamic level, namely, the inevitable tendency of an isolated
thermodynamic system to move towards a state in which more and more of its
total kinetic energy is downshifted (i.e., dissipated) into microscopic random
molecular kinetic energy. This is often described as an inevitable increase in
disorder, or an inevitable increase in “entropy”, within the isolated
thermodynamic system.

Of course, thermodynamic processes do occur in which kinetic energy is
upshifted from the microscopic to the macroscopic level (for example, when
a heated gas expands inside a cylinder, thus driving a piston, which, in turn,
helps to move an automobile). But the problem is that, while it is easy to
downshift 100% of a given amount of macroscopic mechanical kinetic energy
into microscopic Kinetic energy (as we saw in the case of the unlubricated
block being slowed to a complete stop on the unlubricated table), it is
impossible to upshift 100% of a given amount of microscopic random kinetic
energy (i.e., heat) into usable macroscopic mechanical kinetic energy.

This impossibility is expressed in the negative form of the Second Law of
Thermodynamics, which says that it is impossible to construct a perpetual-
motion machine of the second kind.:

It is impossible to construct an engine which will work in a complete
cycle and convert all the heat it absorbs from a [heat] reservoir into
mechanical work.'*

The positive form of the Second Law of Thermodynamics postulates the
existence of a new, emergent thermodynamic property which Rudolf Clausius
named entropy (from the Greek word for “transformation’). The exact
definition of the concept of entropy is highly nontrivial and even today is
controversial, but for now we can simply state that entropy is the negative of
a certain kind of information and is associated with an increase in a certain
kind of disorder, namely, the downshifting of macroscopic kinetic energy (and
other types of macroscopic energy) into random molecular kinetic energy (in
other words, energy dissipation). Using this concept of entropy, we can then
positively express the Second Law of Thermodynamics as follows:

The entropy of an isolated thermodynamic system (or of any
thermodynamic system plus its environment) always increases to a
maximum over time.

Now, it is important to stress that this entropy feature of the thermodynamic
“arrow of time” is newly emergent at the thermodynamic level and is not a
feature of irreversible time 7 at the dynamic level. To see this, consider again
Burrau’s problem, which we discussed in our prior chapter on Nonlinear
Dynamic Systems. Recall that in this particular version of the gravitational
three-body problem, three masses of proportions 3:4:5 start out at rest in a
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two-dimensional plane at the corners of a 3:4:5 right triangle. Starting from
these very orderly initial conditions, the three bodies begin to attract each
other. Soon the system goes through a very chaotic phase during which the
three bodies orbit each other in a way that is immanently unpredictable and
extremely sensitive to initial conditions. However, ultimately, the lightest of
the three bodies is thrown off and moves away at a constant velocity, while
the heavier two bodies orbit one another in perfectly deterministic classical
Newtonian fashion. Clearly, then, this dynamic system (which is
characterized by irreversible dynamic time T) evolves from an orderly state
to a disorderly state, and then back again to an orderly state once more. In
other words, there is no entropic arrow of time at the fundamental level of
dynamics!

This means that the thermodynamic entropic “arrow of time” does not have
the universal applicability often claimed for it, but rather only applies to
thermodynamic systems having multi-millions of microscopic molecular
components. It is not the “arrow of time”, as was claimed by Sir Arthur
Stanley Eddington, nor do the concepts of entropy and the Second Law of
Thermodynamics necessarily apply to the universe-as-a-whole (‘“die Welt”),
as was claimed by Rudolf Clausius. (In fact, at the cosmological level of
physical organization a much-more-natural “arrow of time” is provided by
the cosmological expansion of the universe from the initial moment of the
“big bang”.)

Entropy and the Second Law of Thermodynamics also do not apply to the
relationship between macroscopic physical objects in our everyday
experience, unless of course microscopic random molecular kinetic energy
(i.e., heat) is somehow involved. This point was made in an article by Frank
L. Lambert appropriately titled “Shuffled Cards, Messy Desks, and
Disorderly Dorm Rooms — Examples of Entropy Increase? Nonsense!”!”® As
Lambert puts it:

There is no more widespread error in chemistry and physics texts than
the identification of thermodynamic entropy increase with a change in
the pattern of a group of macro objects. The classic example is that of
playing cards. Shuffling a new deck is widely said to result in an increase
in entropy in the cards.

This erroneous impression is often extended to all kinds of things when
they are changed from humanly designated order to what is commonly
considered disorder: a group of marbles to scattered marbles, racked billiard
balls to a broken rack, neat groups of papers on a desk to the more usual
disarray. . .

. . . Chemically unchanged macro things do not spontaneously, by some
innate tendency, leap or even slowly lurch toward visible disorder.?”
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Nor do entropy and the Second Law of Thermodynamics apply to biological
levels of physical organization that are intermediate between the molecular
and thermodynamic levels. These biological levels include polymers, supra-
molecular structures, organelles, cells, tissues, organs, and biological
organisms as-a-whole. In fact, a contrary tendency towards increased
macroscopic order and increased macroscopic complexity has often been
noted in the history of the evolution of life on earth. (This contrary tendency
does not, of course, actually violate the Second Law of Thermodynamics at
the thermodynamic physical level, since the earth is not an isolated
thermodynamic system, but rather a system which continuously receives
significant amounts of solar energy.)

Nevertheless, while not universal, entropy and the Second Law of
Thermodynamics do apply to a wide range of phenomena in which energy is
downshifted from the macroscopic to the microscopic molecular level,
including not only heat generation, but also such phenomena as the diffusion
of matter, the dissipation of electric charge, chemical reactions, and so on.

Some “Laws of Hierarchy”

So far we have already learned quite a few things about thermodynamics,
even though we have considered only the “borderline-case” of frictional
dynamic systems. Before we move on to purely thermodynamic cases,
perhaps we might venture to formulate a few “laws of hierarchy” based on
our consideration of the following three hierarchical levels of physical
organization: the level of independent dynamic particles, the level of three-or-
more strongly and persistently interacting particles, and, finally, the
thermodynamic level consisting of bodies (or volumes) containing around 10%
component molecular particles.

The first such “law of hierarchy” may be expressed as follows:

e The definition of a summative characteristic is “passed up”
hierarchical levels of organization essentially unchanged.
Furthermore, in many (but not all) cases the value of a sum-
mative characteristic can simply be summed up the hierarchy.

Summative characteristics (a.k.a. “additive properties”) such as mass and
volume obey the above law completely: Physical hierarchies are completely
reductionistic with respect to such properties, so that (for example) the mass
of a macroscopic body considered thermodynamically may, to very close
approximation, be said to be “nothing but” the sum of the masses of its
component molecules. (In thermodynamics volume is an especially important
summative characteristic.)
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By contrast, although the definition of the summative characteristic kinetic
energy is passed unchanged up the physical hierarchy, and kinetic energy is
additive within a given organizational level, we cannot actually sum kinetic
energy from the molecular level of organization up to the macroscopic
thermodynamic level, because most molecular kinetic energy is reclassified as
the macroscopic emergent property of heat energy at the thermodynamic
level. Furthermore, heat energy is not “nothing but” microscopic kinetic
energy, because it also includes the energy associated with macroscopic
thermodynamic phase transitions (melting, freezing, boiling, condensation,
and so on), as well as thermal radiation.

Our second proposed “law of hierarchy” is:

e A constitutive characteristic (a.k.a. “emergent property”) arises
at a particular level of physical organization and is associated
with the configurational and structural aspects of systems at that
level of organization. Although often related to the summative
(and constitutive) characteristics of the system’s lower-level
components, a constitutive characteristic can never be merely
“reduced” to summative characteristics. Furthermore, a con-
stitutive characteristic may be both immanently objective and
transcendently objective, or it may be immanently objective only.

In our chapter on Nonlinear Dynamic Systems we discovered at the physical
hierarchical level of three-or-more strongly and persistently interacting
particles the following irreducible constitutive characteristics: potential
energy, fields, forces, tensive distances, absolute chance, and irreversible
time T. Of these six constitutive characteristics, we saw that both absolute
chance and irreversible time T are immanent objective properties of the
system but not transcendent objective properties, while the other four
characteristics are both immanently and transcendently objective.

At the thermodynamic organizational level we have so far discovered the
following irreducible newly-emergent constitutive characteristics: heat, total
internal energy, entropy, and irreversible thermodynamic time. Soon we
shall be dealing with additional specifically thermodynamic constitutive
characteristics, such as pressure and temperature.

Here’s a third proposed “law of hierarchy”:

e A constitutive characteristic that arises at a lower hierarchical
level may be “passed up” to a higher hierarchical level, but only
if it is transformed to allow for the (often significant) differences
between the configurational/structural features of the lower level
and the configurational/structural features of the higher level.
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For example, we have just seen that the constitutive characteristic potential
energy (which arises at the dynamic level) must be transformed into the
related-but-very-different constitutive characteristic fotal internal energy at
the thermodynamic level in order to allow for the significant differences in
configurational/structural features between the dynamic and thermodynamic
levels respectively.

We have also seen that, when the constitutive characteristic irreversible time
Tis “passed up” from the dynamic to the thermodynamic level, it becomes
transformed into irreversible thermodynamic time and acquires the additional
specifically-thermodynamic constitutive property of inevitable progression
towards maximum entropy (for an isolated thermodynamic system, or for any
thermodynamic system plus its environment).

Now, of course, the above three “laws of hierarchy” do not constitute a
complete theory of physical hierarchy, and much concerning the relationship
between hierarchical levels of physical organization is poorly understood,
especially where nonlinear physical processes are involved (as is the case in
biology). But for now the above three laws at least provide us with a
reasonable start. Moreover, we will propose additional “laws of hierarchy”
later on in this book.

The Ideal, Reversible, Cyclic Heat Engine

The next thermodynamic example we need to consider is the ideal, reversible,
cyclic heat engine, which was first studied in detail by the brilliant French
military engineer Sadi Carnot (1796-1832). In essence, at its most abstract
level, a heat engine simply absorbs heat energy from a hot reservoir,
transforms some of that heat energy into mechanical work (via a heated gas
expanding against a piston, or by other means), and expels any unused heat
energy into a cold reservoir. It was Carnot’s brilliant insight that the
maximum amount of work that could be obtained from a heat engine
depended only on the temperatures of the hot reservoir and cold reservoir
respectively and not on the particulars of how the heat engine was
constructed.?!

Furthermore, Carnot showed that this ideal limit of efficiency for a given
temperature ¢, for the hot reservoir and a given temperature 7, for the cold
reservoir could only be approached if the heat engine operated very slowly
with only minimal temperature gradients occurring between the reservoirs
and the heat engine, such that almost all of the change in the temperature of
the system was due to a change in volume (for example, due to expansion of a
gas pushing a piston) rather than to the flow of heat. At the theoretical limit
of infinite slowness, Carnot showed that such a heat engine was reversible: In
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the “forward” direction, heat flowing from the hot reservoir fo the cold
reservoir through the heat engine would cause the engine to do work on the
environment, while in the “reverse” direction work done on the heat engine by
the environment would cause heat to flow from the cold reservoir fo the hot
reservoir (like a refrigerator), with no net loss of energy or efficiency in either
direction. Lastly, Carnot showed how an ideal, reversible heat engine could
operate in a cycle by returning to its initial state after performing a certain
amount work, so that it was ready to perform work again.?*?

Carnot’s results lend themselves to a straightforward application of the First
Law of Thermodynamics (the Law of Conservation of Energy), which we
discussed in our earlier section concerning The Block on the Table: 1f Q| is
the quantity of heat energy that flows from the hot reservoir fo the ideal,
reversible heat engine during one cycle, W is the amount of work done by the
heat engine during that cycle, and Q, is the quantity of unused heat energy
that flows from the heat engine to the cold reservoir during that same cycle,
then the following equation holds, by virtue of the First Law of
Thermodynamics:

W=0 -0, (6) reversible

In this context it makes sense to define the efficiency of the reversible heat
engine (which we’ll symbolize by 1) to be the ratio of the work done W and
the initial heat supplied Q,. From this definition, together with equation 6
above, we can see that:

n=w/0, (7a) reversible
n=Q,-0)/9 (7b) reversible
n=1-90,/9 (7c) reversible

Although all ideal, reversible heat engines are maximally efficient for a given
Q, and Q,, formula 7¢ above shows that an absolute maximum of efficiency
of 1 (i.e., 100%) could only be achieved if O, = 0, that is, if the heat engine
actually succeeded in converting all of Q into work W during the given cycle.
But, as we noted earlier, the conversion of all of Q into W would be a
violation of the Second Law of Thermodynamics, one formulation of which
says that it is impossible to “upshift” all of the microscopic kinetic energy
(i.e., heat energy) in a thermodynamic system up to the level of macroscopic
kinetic energy with 100% efficiency.’*

Because both Q| and Q, are functions of the temperatures of the hot reservoir
and cold reservoir respectively (femperature being a macroscopic, emergent
measure of the average microscopic molecular kinetic energy within a given
body, or region of a given body), Lord Kelvin (a.k.a. William Thomson,
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1824-1907) realized that equation 7c above could be used to define an
absolute temperature scale that did not depend on any particular material
properties of the bodies whose temperature was being measured, but rather
depended solely on the theoretical properties of an ideal, reversible heat
engine. On this absolute temperature scale, called the Kelvin scale, a cold
reservoir at zero degrees Kelvin (absolute zero) corresponds to a theoretical,
ideal, reversible heat engine having an efficiency of 1 (that is, 100%), such
that 9, =0 and 7, =0, where T, is the temperature of the cold reservoir on
the Kelvin scale. If, additionally, we define 7 to be the temperature of the hot
reservoir on the Kelvin scale, then equation 7c can be rewritten as follows:

n=1-0,/0,=1-T,/T, (8a) reversible
from which it is evident that (because Q,/ Q =T,/ T,):
Q /T =0,/T, (8b) reversible
and

0/T-0,/T,=0 (8¢) reversible 2

Equation 8c above suggested to Rudolf Clausius (1822-1888) the existence of
a new, emergent thermodynamic state variable which (as we noted earlier) he
called entropy (symbolized by S). Clausius defined an infinitesimal change in
entropy, dS, for an ideal, reversible heat engine to be:

dS = dQ/T (9) reversible

where dS is an infinitesimal change in entropy, dQ is an infinitesimal change
in heat energy, and 7 is the temperature in degrees Kelvin. (It is assumed that
both Q and dQ are positive for heat energy flowing into the heat engine and
are negative for heat energy flowing out from the heat engine.)

Now, as we mentioned in our earlier discussion of total internal energy, the
change in the value of a state variable depends only on the state of the system
at the beginning and end of a system process and not on the path the system
takes to get between the beginning and end. Also, recall that the net change in
a state variable for a round trip is zero. By considering a composite of an
infinite number of ideal Carnot heat-engine cycles that differed only by an
infinitesimal amount of temperature d7 , Clausius was able to show that:

fds=/[ (dQ/T)=0, fora round-trip cycle (10) reversible

Now, because temperature gradients are assumed to be infinitesimal in an
ideal, reversible heat engine, the temperature 7 of the heat engine and the
reservoirs remains essentially constant while heat is being exchanged between
them. Therefore the change in entropy for a given reversible flow of heat QO
under these conditions may also be expressed as Q /T . Furthermore, because
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entropy is a state variable, we know that for a single round-trip cycle of an
ideal, reversible heat engine the sum of the change in entropy associated with
the flow of heat from the hot reservoir fo the heat engine and the change in
entropy associated with the flow of heat from the heat engine to the cold
reservoir must be zero:

Q, /T +Q,/T,=0, foraround-trip cycle (11) reversible

This Clausius equation is identical to Lord Kelvin’s equation 8c above,
except that it contains a plus sign rather than a minus sign due to the fact that
Q is here regarded to be a signed quantity. As signed quantities, Q, is
regarded to be negative (because it represents heat flowing out from the heat
engine), while Q| remains positive (because it represents heat flowing into the
heat engine).

Another point concerning entropy and heat engines: Because the flow of heat
with respect to both the hot and cold reservoirs is the negative of the flow of
heat with respect to the heat engine itself, the change in the entropy of the
environment is the negative of the change in entropy of the heat-engine (at
least in the case of an ideal, reversible heat engine). And, since the change in
the entropy for one cycle of an ideal, reversible heat engine is zero, it is
evident that the corresponding change in the entropy of the environment (i.e.,
the reservoirs) is also zero.?*

The Non-Ideal, Irreversible Cyclic Heat Engine

So far we have been discussing only the ideal, reversible cyclic heat engine.
But, as we mentioned earlier, the ideal, reversible heat engine works
infinitely slowly, which is another way of saying that it doesn’t work at all in
the real physical world! Rather, all real heat engines instead involve
irreversible thermodynamic processes to one degree or another. So the
question arises, how can we modify the equations in the previous section to
allow for these irreversible processes?

Essentially, for real irreversible heat engines, the magnitude of O, (the
amount of heat flowing out to the cold reservoir) is higher than would be the
case for an ideal, reversible heat engine. There are a number of reasons for
this:

e The irreversible heat engine is less efficient than the reversible heat
engine, so that [ess of its incoming heat energy Q, is converted into
work. Therefore proportionately more of its incoming heat energy
flows out to the cold reservoir unused.
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e There are significant temperature gradients between the irreversible
heat engine and its reservoirs, so that extra heat spontaneously and
irreversibly flows from the irreversible heat engine to the cold
Ireservoir.

e Frictional forces between the mechanical parts of the irreversible heat
engine irreversibly generate internal heat. This extra internally
generated heat then must be expelled out to the cold reservoir, again
making the magnitude of Q, correspondingly higher than would be
the case for an ideal, reversible heat engine.

(It is important to remember, of course, that this irreversibility aspect of the
physically real, irreversible heat engine emerges as an immanent objective
property of the system, but is not a transcendent objective property of that
system.)

In any event, let’s begin by modifying equations 8a, 8b, and 8c above to
apply to the real, irreversible heat engine, rather than to the ideal, reversible
heat engine. We can easily do this by simply remembering that the magnitude
of Q, is higher in the irreversible case than in the reversible case:

nN=1-0,/0<1-T,/T, (12a) irreversible
Q/T,<Q,/T, (12b) irreversible
Q /T -0Q,/T,<0 (12c¢) irreversible
Now, from equation 11 above we know that if Q is regarded to be a signed
quantity, so that Q, is positive and Q, is negative, then we can rewrite
inequality 12c as:
Q, /T +Q,/T, <0, foraround-trip cycle ~ (13) irreversible
from which we may conclude that:
/ (dQ/T)<0, foraround-trip cycle (14) irreversible

This puts us at a “moment of decision” with respect to our earlier definition
of the change in entropy: Either we continue to define the change in entropy
as dS = dQ /T (in which case entropy is no longer a state variable, since a
round trip no longer sums the entropy changes to zero), or we continue to
regard entropy as a state variable (in which case the entropy change has an
undefined component and dS > dQ /T). Clausius made the latter choice,
calling the undefined component the “uncompensated transformation”
(uncompensirte Verwandlung). Therefore the following formulas hold for an
irreversible heat engine:

ds > dQ/T (15a) irreversible
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d,S =dQo/T (15b) irreversible
s =d S +dS (15¢) irreversible

where d_ § is the change in entropy of the system due to the exchange of heat
between the system and its environment (i.e., the exchanges of heat between
the heat engine and its reservoirs), and d. S is the change in entropy of the
system due to infernal irreversible processes within the system (such as the
internal generation of frictional heat). From these formulas it is clear that d, S
is Clausius’s “uncompensated transformation”. Later on we will extend d_§
to include exchanges of other forms of energy (and even of matter) between

the thermodynamic system and its environment.

It also turns out to be the case that, while d_S may be either positive or
negative or zero, d, S can only be positive for any irreversible thermodynamic
system in the real world that is not at equilibrium, whether that system be
isolated (has no exchanges of energy or matter with its environment), closed
(exchanges only energy with its environment), or open (exchanges both
energy and matter with its environment). And this is true not only for every
real thermodynamic system, but also for every subsystem of every real
thermodynamic system. This always-positive value of d, S under all of these
conditions constitutes the strongest and most-general statement of the Second
Law of Thermodynamics.

Now, because we wish to continue to regard entropy to be a state variable for
at least certain types of irreversible thermodynamic systems, the following
holds true for the system where / dS<0:

fas =/ ds+ / d S =0 for a round-trip cycle
in the case where
Jds=[(d0/T)<0
(16) irreversible

However, we must also consider the entropy change for the environment.
Because the flow of heat with respect to both the hot and cold reservoirs is
the negative of the flow of heat with respect to the heat engine itself (as we
noted earlier), we may rewrite formulas 13 and 14 for the environment as
follows:

(=Q) T +(=Q)T, >0, round-trip, environment (17) irreversible
therefore

/ (dQ/T)>0, round-trip, environment (18) irreversible
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And while the system returns to its original thermodynamic state upon the
completion of its round-trip cycle (so that JdS =0 for the system), the
environment does not return to its original thermodynamic state, since the
environment has been the net recipient of dissipated (“downshifted”) energy,
in this case excess heat. Therefore formula 18 above suggests that fds > 0
for the environment, which makes the sum total of all entropy changes
resulting from a cyclical, irreversible thermodynamic process always greater
than zero, in spite of the fact that entropy may be a state variable with
respect to the system itself.*’ This, of course, leads us back to the positive
formulation of the Second Law of Thermodynamics, which we stated earlier
in connection with our section about The Block on the Table:

The entropy of an isolated thermodynamic system (or of any
thermodynamic system plus its environment) always increases to a
maximum over time.

Of course, for all real, irreversible thermodynamic systems, f dS can be equal
to zero for the system’s “round trip” only if / d, S is less than zero, since

/ d, S is always greater than zero for such systems. In particular, in the case
of an isolated thermodynamic system which has no exchanges of energy or
matter with its environment, so that d_S is zero, we have:

Jds=0, [dS >0, [dS >0, round-trip (19) isolated irreversible

Clearly, then, in the case of an isolated irreversible thermodynamic system
(as well as in cases where [ d S > 0), entropy is not a state variable.

As is the case with energy, we are usually interested in changes in entropy
(dS) rather than in the actual value of S itself. However, S can be given a
definite, objective value by means of the Nernst heat theorem (often called
the Third Law of Thermodynamics), which states that the entropy of any
chemically homogeneous solid or liquid body approaches zero as its

temperature approaches absolute zero degrees Kelvin:**

S—0 as T— 0°K (20)

This makes sense in terms of our discussion in the section concerning The
Block on the Table, because there we associated the concept of entropy with
the idea of the dissipation and downshifting of macroscopic energy to the
level of molecular kinetic energy: Therefore, where such molecular kinetic
energy vanishes and becomes zero, as it essentially does at absolute zero
degrees Kelvin, we would expect entropy to vanish and become zero as well.
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Thermodynamic Forces and Flows

Rudolf Clausius did not provide a way to directly calculate the always-
positive internally generated “uncompensated transformation” d, S.
Consequently, in most treatments of classical thermodynamics, the entropy
associated with an irreversible thermodynamic system can only be calculated
by finding a corresponding infinitely-slow reversible thermodynamic system
for which the net entropy change can be calculated.

It is the great merit of the modern Brussels (Belgium) school of
thermodynamics, beginning with Theophile De Donder (1872-1957) and
continuing with Ilya Prigogine and his followers, to have discovered how to
calculate d, S directly. Essentially what they discovered is that d, S can be
expressed as the sum of the products of thermodynamic forces and
thermodynamic flows, so that:

dS =XFdX >0 wherek=1ton (21)

Here F| is one of a number of thermodynamic forces and dX is the
corresponding resulting thermodynamic flow caused by that particular
thermodynamic force. Equation 21 can also be rewritten to capture the rate of
change (i.e. derivative) of d, S with respect to time:

dSldt =2 F_(dX /dt) 2 0 wherek=1ton (22a)

Now, if J =dX /dt is defined to be a thermodynamic flow per unit time
(that is, a thermodynamic current) and P = d, S/dt is defined to be the rate at
which internal entropy is produced per unit time, then we may rewrite
equation 22a as:

P=3XFJ 20 wherek=1ton (22b)

To take an example, consider the case of an isolated thermodynamic system
consisting of two blocks of iron, one cold and one hot, which are set right
next to one another so that their faces are in firm contact. We know from
experience and experiment that heat will spontaneously and irreversibly flow
from the hot block of iron to the cold block of iron until both blocks are the
same temperature. At that point this isolated thermodynamic system will be in
thermodynamic equilibrium with respect to heat, and no further flow of heat
will occur within the system.

In the above example the thermodynamic force F is the temperature gradient,
which may be expressed by the following empirically derived formula:

Fro =( l/Tcold_ l/Thot) (23)

where F_ . is the temperature gradient, T is the temperature of the cold
block of iron, and T, is the temperature of the hot block of iron.
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The internal thermodynamic flow dX is the internal flow of heat dQ between
the two iron blocks. The heat current J, = dQ/dt is defined by Fourier’s
famous empirical law of heat conduction:

‘/Q =« (Thot - Tcold ) (24

where o is a positive coefficient of heat conductivity that varies depending on
the material make-up of the two bodies involved.

Combining formulas 22b, 23, and 24 above, we may write:
P=FTGJQ: (/1 - 1/7 H)o(T, -T,) 20 (25a)
P =o(T T Y/ (T T )=20 (25b)

hot ~ * cold hot ™ cold

From formula 25b it is clear that, because o, T, , and T, are all positive
numbers, the value of P (i.e., the rate of internal entropy production) is
greater than zero so long as T, is not equal to T . However, as the

difference between T, and T approaches zero, P also approaches zero.

From formula 25b it is also evident that the rate of internal entropy
production P is a quadratic function of the difference in temperature between
the hot and cold blocks, A= (T, — T, ) . Figure 23 shows two graphs of
this situation:

P S

(A) (B)
Figure 23 (after figure 3.10 on page 94 of Kondepudi and Prigogine)

In the first graph (A) the rate of internal entropy production P is shown as a
function of A, while in the second graph (B) the total system entropy S is
shown as a function of A. (In these graphs A is negative if the roles of the
blocks are reversed, such that the hot block is the cold block and the cold
block is the hot block. Also, because this two-iron-blocks system is assumed
to be isolated, it follows that d S = 0, so that only d;S = 0 contributes to the
total system entropy S.)
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From the graphs in Figure 23 it is clear that the total entropy S of an isolated
thermodynamic system is at its maximum when the rate of entropy production
P has slowed to zero. Furthermore, when S is at its maximum and P is at
zero, then the isolated thermodynamic system is at thermodynamic
equilibrium and no further thermodynamic changes can occur. We can see
this because both figure 23 and formula 25b show that P = 0 if and only if A
=(T,,—T,.,)=0.Butin that case both the temperature gradient F, and

the heat current J, are also equal to zero by formulas 23 and 24, so that no
further internal heat transfers can take place.?”

At thermodynamic equilibrium the isolated thermodynamic system has
ultimately suffered what is sometimes called a heat death, in accordance with
the Second Law of Thermodynamics. It is also notable that this
thermodynamic equilibrium of an isolated thermodynamic system is truly
asymptotically stable, unlike the conservative dynamic systems that we
primarily studied in our previous chapter on Nonlinear Dynamic Systems:
(These conservative dynamic systems could only attain orbital stability,
involving a continually active “swinging”about a mean.)

Finally, note that the isolated thermodynamic system is characterized by
unconditional equifinality: No matter where the system starts out, it
ultimately ends in a completely stable thermodynamic equilibrium. This
thermodynamic equilibrium is therefore a global attractor for the isolated
thermodynamic system. (We have seen this phenomenon of unconditional
equifinality not only in this case of the two iron blocks, but also in the case of
the friction versions of both the bowl game and the oscillating pendulum in
our previous chapter on Nonlinear Dynamic Systems.)

So far we have considered only the thermodynamic force temperature
gradient and its associated thermodynamic flow heat current. But, as
formulas 21, 22a, and 22b above indicate, other thermodynamic force/flow
pairs can also be important in evaluating both the internally produced change
in entropy d, S 2 0 and the rate of internal entropy production P > 0 within a
given thermodynamic physical system. These force/flow pairs include:
diffusion gradient and diffusion current (i.e., mass flux), electromotive force
and ion current, hydrodynamic force and viscous flow, and (finally) chemical
affinity and the velocity of chemical reaction.*"

But how exactly do these thermodynamic forces differ from the conservative
dynamic forces we examined in our earlier chapters?

As we saw in our chapter on Nonlinear Dynamic Systems, a conservative
dynamic force gives a solid body kinetic energy by doing work on that body
in accordance with the formula W = f F(q) dgq , where W, the work, is equal to
the kinetic energy imparted to the body, F(q) is the magnitude of the
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conservative force as a function of position g, and dg is an infinitesimal
change in position. This conservative dynamic formula is strongly
reminiscent of the thermodynamic formula 21 above (d, S = > F dX 20),
yet the conservative dynamic formula relates to work and energy, while the
thermodynamic formula relates to entropy. Why is this?

The answer is that thermodynamic forces do not simply impart kinetic energy
to a solid body. Instead, they result in thermodynamic flows. A
thermodynamic flow is a thermodynamic process during which macroscopic
energy or structure is irreversibly “downshifted” (i.e., dissipated) to the
microscopic level: That is why the larger the magnitudes of the
thermodynamic forces and flows within a given system, the larger is the
increase in internal entropy d, S within that same system. (The irreversibility
of this “downshifting”, or dissipation, is, of course, an immanent objective
fact, but not a transcendent objective fact.)

Often a thermodynamic flow is a vector or tensor quantity and therefore has
a spatially directional character, but sometimes it is a scalar quantity and
therefore is not spatially directional (for example, the somewhat-misnamed
velocity of chemical reaction).

Thermodynamic forces, like conservative dynamic forces, are constitutive
characteristics (i.e., “emergent properties”) of physical systems taken as a
whole. Both types of forces are intimately related to the configurational
aspects of the entire physical system. The major difference between them is
that conservative dynamic forces and potentials arise holistically at the
physical level of several strongly and persistently interacting bodies, while
thermodynamic forces and potentials arise holistically at the physical level of
millions-upon-millions of strongly and persistently interacting particles (i.e.,
molecules).

It might here be objected that, while the molecules in solids and liquids may
be said to interact “strongly and persistently”, the same cannot be said of the
molecules which comprise gases. In fact, the random, colliding trajectories of
molecules in a gas would seem to be an almost-perfect realization of a
classical, linear, Newtonian “free-particle” system that has only summative
characteristics (i.e., “additive properties”).

But while this is largely true at the microscopic dynamic level, at the
macroscopic thermodynamic level holistic thermodynamic forces and
potentials still manage to arise because of macroscopic structural
considerations: For example, at the microscopic level millions-upon-millions
of molecular collisions and rebounds are occurring every moment within a
given volume of a gas. The forces involved in these collisions are immense,
but their duration is extremely brief. These forces are therefore not “strong
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and persistent” at the microscopic dynamical level, so the classical
Newtonian “free-particle” model can still be validly applied to the system at
that level. However, at the macroscopic thermodynamic level of physical
organization these same forces of molecular collision add up and average out
in such a way as to create the emergent thermodynamic force of gas pressure
with respect to the gas’s containing walls. This gas pressure does represent a
“strong and persistent” interaction at the macroscopic thermodynamic level
between the gas and its containing walls.

In fact, if one side of the gas’s container is replaced by a piston, it turns out
that the irreversible increase in internal system entropy as the expanding gas
drives the piston can be written as:

dS= (P ~Pyen) ! T AV 20 (26a)
P=dS/dt = (p, ~py,)! T dVide = 0 (26b)

where d_§ is the internally generated change in system entropy, P is the rate of
internal entropy production, Py is the pressure of the gas on the piston from
inside the container, P sision is the pressure acting on the piston from outside
the container, 7 is the temperature in degrees Kelvin, dt is the time
differential, and dV is the change in the volume of the container resulting from
the expansion of the gas against the piston.

In this case the “thermodynamic force” is (pgas = Piston )/ T and the
“thermodynamic flow” is dV/dt . Because Py =P iston) and dV always have
the same sign (and T is always positive), both d, S and P are also always
positive, except at thermodynamic equilibrium, where (pgas = Ppiston Y/ T, dV,
d.S, and P are all equal to zero and S is therefore at a maximum.*"!

The fact that the irreversible internally caused increase in entropy d, S for a
thermodynamic system is always associated with the dissipation
(“downshifting”) of energy or structure from the macroscopic thermodynamic
level to the microscopic level is dramatically illustrated by the Gibbs
paradox. Imagine a container containing two different gases which are
separated by a removable divider into the left and right halves of the
container, respectively. To make the situation clearer, imagine that the gas in
the left half of the container is red in color, while the gas in the right half of
the container is completely clear and transparent. When the removable barrier
is taken away, the two gases irreversibly diffuse into one another until they
thoroughly combine into a pink mixture, at which point the system is in
thermodynamic equilibrium with respect to both diffusion gradients and
diffusion currents (i.e., mass flux). Josiah Gibbs was able to demonstrate
that, so long as there is at least some slight difference between the two gases,
the entropy of the system increases to a maximum as a result of this diffusion
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process. (The degree of difference between the gases is immaterial, so long as
there is at least some small difference.) However, if the gases that start in the
left and right halves of the container are exactly the same, then no increase in
entropy results when the removable barrier is taken away and the gas
molecules intermix, even though the microscopic molecular mixing process
is exactly the same in both cases. (This is the Gibbs paradox.)*"?

The Gibbs paradox becomes understandable once we realize that the
difference between the two gases, however slight, creates a macroscopic
structure which becomes dissipated (‘“downshifted”) as the thermodynamic
process proceeds. Therefore entropy increases. On the other hand, if the gases
are the same, then no such macroscopic structure exists just after the
removable barrier is taken away, so there is no macroscopic structure to
dissipate. Therefore entropy remains the same.

Another way of thinking about this would be to say that, as the two different
gases begin to diffuse into one another, they each have a macroscopic kinetic
energy with respect to each other taken as macroscopic wholes. As the
intermixing process proceeds, however, this macroscopic kinetic energy
becomes dissipated (‘“downshifted”) into random molecular kinetic energy
until, finally, neither macroscopic kinetic energy nor macroscopic structure
remain between the two gases. (Of course, the actual magnitude of this
macroscopic kinetic energy of the gases taken-as-wholes is at all times trivial
when compared to the magnitude of the microscopic molecular kinetic energy
within the gases, so no measurable increase in heat energy results from this
particular “downshifting” of macroscopic kinetic energy.)

Sometimes it is maintained that thermodynamic systems can be successfully
dealt with in an entirely reductionistic manner by referring only to the
summative properties of their component molecules. It is especially tempting
to think this way when considering the thermodynamic properties of gases.
But, as we saw above, even gas pressure is a constitutive characteristic
(emergent property) at the macroscopic thermodynamic level. And when
massive amounts of gases are involved (as, for example, in the atmosphere of
the earth), both pressure gradients and temperature gradients (reflected in
weather diagrams showing isobars and isotherms) assume complicated
structures and forms that clearly involve macroscopic, holistic
configurational aspects.

Boltzmann’s Formula

Of course, in the “simple” case of an “ideal” gas (which involves only
random translational motions of its component molecules), it is possible to
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give a statistical account of entropy at the microscopic level by using Ludwig
Boltzmann’s famous formula

S=k,InW (27

where S is the total entropy, W is the number of possible microstates
corresponding to the macrostate whose entropy is S, &, is the Boltzmann
constant, and “In” is the natural log function: The macroscopic fact that one
kind of gas is in the left half of a container, while another kind of gas is in the
right half of a container, then corresponds to the microscopic fact of
statistical correlations between the multi-millions of molecules comprising
the two gases. These statistical correlations, in turn, affect the way in which
W is counted. Furthermore, the Second Law of Thermodynamics may then be
expressed at the microscopic level by saying that S increases irreversibly over
time because W increases irreversibly over time. And W, in turn, increases
irreversibly over time because a higher W is always more probable than a
lower W (according to Boltzmann).

For example, if there are N| gas molecules in the left half of a container and a
different number N, of gas molecules of the same type in the right half of a
container, then W is given by the formula:

W=(N_+NJ!/(NIND (28

where ! is the factorial operator. (N ! = 1 times 2 times 3 . . . times N.) It can
then be shown that, for formula 28, W is at a maximum when N, = N, . And
since (according to Boltzmann’s formula), when W is at a maximum, S is also
at a maximum, we may therefore conclude that this isolated thermodynamic
system has attained thermodynamic equilibrium when N, equals N, .*"

However, Boltzmann’s thesis that a higher W always becomes more probable
over time than a lower W merely because a higher W represents a higher
number of possible microstates is an assumption that is open to serious
question. Early on, for example, Boltzmann’s teacher, Josef Loschmidt,
presented Boltzmann with the “thought experiment” of an instantaneous
inversion of the velocity of all of the molecules in a gas, performed by
Maxwell’s transcendent, fictional demon. In that case (as Boltzmann had to
admit), entropy might very well decrease as the system returned to its original
“less probable” state, in contradiction to Boltzmann’s thesis.?!*

In fact, it needs to be admitted that all attempts to “reduce” the irreversible
temporal increase in thermodynamic entropy to “nothing but” particle
dynamics (including even the attempts of Ilya Prigogine and his colleagues)
have ultimately been failures. In our chapter on Quantum Mechanical
Systems we quoted what Griffiths and Omnes wrote in their August 1999
article in Physics Today, and it is worth repeating that quotation here:
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[TThe problem of showing that a system of [multi-millions of] classical
particles will exhibit thermodynamic irreversibility, a typical macroscopic
phenomenon, has not yet been settled to everyone’s satisfaction, despite a
continuing effort that goes back to Ludwig Boltzmann’s work a century
ago.2's

One key here is recognizing that some aspects of entropy (such as the
“downshifting” aspect) are both immanently and transcendently objective,
whereas other aspects of entropy (such as the “irreversibility” aspect) are
immanently objective only.

Chemical Thermodynamics

Another great scientific contribution of Theophile De Donder, the founder of
the Belgian school of thermodynamics, was the discovery of chemical affinity
as the thermodynamic force that is responsible for driving chemical reactions
(as well as many other phenomena) towards thermodynamic equilibrium. For
De Donder, the idea of chemical affinity rested on the idea of a chemical
potential and was related also to a corresponding thermodynamic flow which
he called the velocity of reaction.

For example, consider a chemical system having the form:
X+Y & 27 29)

Here one molecule of X combines with one molecule of Y to form two
molecules of Z. Simultaneously the reverse reaction is also occurring (i.e.,
two molecules of Z decomposing into one molecule of X and one molecule of
Y). If the rate of the reverse reaction is greater, then formula 29 proceeds
irreversibly from right to left. If, on the contrary, the rate of the forward
reaction is greater, then formula 29 instead proceeds irreversibly from /eft to
right. Finally, if the rates of the forward and the reverse reactions become
balanced and equal, then this chemical system has attained thermodynamic
(and chemical) equilibrium, and internal system entropy is therefore at a
maximum with respect to this chemical system (other things being equal).

Let N, be the number of moles of chemical X, let N, be the number of moles
of chemical Y, and let N, be the number of moles of chemical Z . Then dNX is
the change in the number of moles of chemical X, dN,, is the change in the
number of moles of chemical Y, and dN,, is the change in the number of
moles of chemical Z . Furthermore, each of these changes in the number of
moles of the particular chemical is associated with a chemical potential (1,
K, and p_, respectively). (Often the chemical potential of a chemical is
directly proportional to the concentration of that chemical, but this is not
always the case.)
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In any event, De Donder proved that, in general, the following relation holds:
dS =-1UT Ty dN, 20 fork=1ton (30)

where d,§ is the change in the internal entropy of the system, T'is the
temperature of the system, [, is the chemical potential of the various
chemicals involved in the reaction (k = 1 to n), and dN, is the change in the
number of moles of the various chemicals involved in the reaction (k=1 to

n.

Furthermore, for the particular chemical reaction system shown in formula 29
above, the rates of change dN, , dN,, and dN,, are given by the following
stoichiometric formula:

dN, /(1) =dN,/(-=1) =dN,/2 = d& (1)

where d £ is the change in variable & , which De Donder called the extent of
reaction (or the degree of advancement of the reaction) from left to right. The
basic idea behind formula 31 is that the changes in the mole numbers of X, Y,
and Z in the reaction system shown in formula 29 above are intimately related
because in the forward reaction (for example) one molecule of X is lost and
one molecule of Y is lost for every two molecules of Z that are gained. This
means that (for the particular reaction system shown in formula 29) all three
changes in mole numbers can be expressed in terms of the change in the
extent of reaction as follows:

dN, = —d§ (32a)
dN, = —d§ (32b)
dN, = 2dE (32¢)

Now, by substituting 32a, 32b, and 32c into formula 30 above, De Donder
arrived at the following formula for a reaction such as that shown in formula
29:

dS = [(u +pu,—2n)/T] dg =20 (33)

This, in turn, suggested to De Donder, that an overall thermodynamic force
for the whole reaction could be defined by using the chemical potentials of the
component chemicals. This thermodynamic force he called affinity, and he
defined it as follows (for a chemical reaction system such as formula 29):

A=+ M- 21) (34)
Substituting this definition for affinity into formula 33, we obtain:

dS=(A/IT)dE 20  (35)
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Clearly the definition of affinity in formula 34 (which applies only to
chemical reaction systems of the type shown in formula 29) can be extended
to any chemical reaction system by means of a suitable formalism, thus
making formula 35 perfectly general. Furthermore, if we differentiate formula
35 by time, we obtain:

dSldt = (A/T) dE/dt =0 (36a)
P=A/T)v 20 (36b)

where P =d, S /dt is the rate of internal entropy production due to the
chemical reaction and v = d&/dr is the rate of change in the extent of
reaction, which De Donder named the velocity of reaction.

Comparing formulas 22a and 22b above with formulas 36a and 36b, it is
easy to see that affinity divided by temperature (A / T') is the thermodynamic
force driving the chemical reaction, while the velocity of reaction v is the
thermodynamic flow (or thermodynamic current) which results from this
thermodynamic force. As is the case with all thermodynamic forces and
flows, both the affinity and the velocity of reaction become zero at
thermodynamic (and chemical) equilibrium, which is also the point at which
internal entropy is at a maximum (other things being equal).

A few other important facts about chemical affinity, as defined above: If the
affinity is greater than zero, then the chemical reaction proceeds from left to
right (i.e., in the forward direction). But if the affinity is less than zero, then
the chemical reaction proceeds from right to left (i.e., in the reverse
direction). Finally (as we just noted) if the affinity is equal to zero, then the
chemical reaction is in an equilibrium state (that is, the reverse reaction
exactly cancels out the forward reaction).

Another interesting “affinity fact”: If a complex chemical reaction can be
decomposed into two or more component chemical reactions, then the affinity
of the net reaction is equal to the sum of the affinities of the component
individual reactions.*'

Theophile De Donder soon realized that formula 36b above could be easily
extended to cover the case where several simultaneous (but quite separate)
chemical reactions are occurring within the same closed system: In that case
the rate of internal entropy production P would simply be the sum of the rate
of production of entropy for the individual reactions taken separately, as
follows:

P=X(A/T)v, 20 fork=lton (37)

where A, and v, are the affinities and velocities-of-reaction for the separate,
simultaneous chemical reactions taken separately and 7 is (of course) the
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temperature. (Note, however, that A, and v, are not truly summative
properties because the simultaneous chemical reactions can strongly and
persistently interact with one another, thus affecting the A, and v, values
holistically.)

In the above case, it is also important to note that the individual simultaneous
reactions faken separately do not have to have a positive-or-zero internal rate
of entropy production P : Rather, all that is required is that the total internal
entropy production for all of the reactions taken together are positive or zero.
Such so-called coupled affinities are common in biological systems and are
one of the ways in which a biological system can seem to defy the Second
Law of Thermodynamics, by allowing some of its simultaneous biochemical
reactions to proceed with a negative rate of internal entropy production, thus
preserving and even increasing the level of macroscopic biological
organization within the system.?’

Diffusion Thermodynamics

Chemical potentials and chemical affinities apply to far more than just
chemical reactions in the strict sense. As Konepudi and Prigogine have
written:

Other than heat conduction, every irreversible process — chemical
reactions, diffusion, the influence of electric, magnetic, and gravitational
fields, ionic conduction, dielectric relaxation, etc. — can be described in
terms of suitable chemical potentials.?'®

To take just one example of this, we will return again to our simple case of
the diffusion of a gas of constant composition, but uneven concentration,
from (say) the left half of a container to the right half of the same container
until the concentration of the gas is the same throughout. Let N, again be the
number of moles of the gas in the left half of the container, while N, is the
number of moles of the gas in the right half of the container. Suppose further
that N, > N, , so that the concentration of gas is higher in the left half of the
container than in the right half. Naturally, the gas will diffuse from the left
half of the container to the right half until thermodynamic equilibrium is
achieved. How might we express this in terms of chemical potentials, affinity,
and the extent of reaction?

To begin with, we can express this particular “chemical reaction” as follows:
N & N, (33)

meaning that moles of the gas can flow either to the left or to the right,
depending on which side of the container has the higher concentration of gas.
Next, we express the change in the “extent of reaction™:
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_dNL = dNR = di (39)

meaning that the loss of a molecule (or mole) of the gas from the left half of
the container is exactly matched by the gain of a molecule (or mole) of the
gas in the right half of the container. It is also clear from our earlier
discussion that affinity (in this case) can be defined as follows:

A= My (40)

In formula 40 the variable L, is the “chemical potential” associated with the
higher concentration of the molecules in the left half of the container, while
W, is the “chemical potential” associated with the lower concentration of the
molecules in the right half of the container. Since, in the situation as
described, the “reaction” proceeds from left to right (i.e., “forward”) as
molecules of the gas diffuse from the left half of the container to the right
half, it is to be expected that the affinity A will continue to be positive (since
K, > W) until thermodynamic equilibrium is achieved, at which point i, =
K, and A= 0.

The change in internal entropy for this simple diffusion example would be
given by:

dS = [ —p)/T1d& = (A/T) d& 20 1)

while the corresponding rate of internal entropy production P would be given
by:

P=[u -u)/Tlv =A/T)V 20 (42)

Of course, if we started out with a higher concentration of molecules on the
right side of the container rather than the /eft, then the gas would diffuse to
the left rather than the right (i.e., the “reaction” would proceed in reverse). In
that case the affinity would be negative rather than positive. But then the
velocity of reaction v would also be negative, so that P would remain
positive until equilibrium was reached, at which time P would become zero.
(We should note, however, that the concept of affinity, being a scalar, cannot
entirely replace the concept of a concentration gradient, which is a vector.)

Notice also that in all of the affinity examples we have so far presented, the
change in mole quantity (for example, dN) is really the internal change in that
mole quantity. In addition, there could be a change in mole quantity due to an
exchange with the environment, which is outside the system. Such an
exchange could, of course, result in a corresponding change in entropy that
could be negative as well as positive and that could, in fact, completely offset
the always-positive increase in the internal entropy of the system. (This is the
case, for example, with all viable biological systems.)
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Additionally, it is important to point out that even though, in the examples we
have considered, the chemical potential of a particular chemical is closely
identified with the concentration of that chemical per unit volume, this is not
always necessarily the case. As Kondepudi and Prigogine have noted in
connection with the phenomenon of diffusion:

The positivity of [entropy production], required by the Second Law, implies
that particle transport is from a region of higher chemical potential to a
region of lower chemical potential. . . In many situations this is a flow of
a component from a higher concentration to a lower concentration. At
equilibrium the concentrations become uniform. But this need not be so
in every case. For example, when a liquid is in equilibrium with its vapor
or when a gas reaches equilibrium in a gravitational field, the chemical
potentials become uniform, not the concentrations. The tendency of the
thermodynamic forces that drive matter flow is to equalize the chemical
potentials, not [necessarily] the concentrations. [italics in original]*"®

Linear Thermodynamic Forces and Flows

Recall now formula 22b above, which we reproduce for convenience below as
formula 43:

P=%FJ 20 wherek=1ton (43)

This formula says that the rate of production of internal entropy P is the sum
of the products of the respective thermodynamic forces and flows within the
system, and furthermore says that P is always greater than or equal to zero.
Unfortunately this formula tells us nothing about the quantitative relationship
between the magnitudes of thermodynamic forces and the magnitudes of the
resulting thermodynamic flows.

It turns out that, in general, thermodynamic flows are highly complicated
nonlinear functions of the thermodynamic forces. However, near equilibrium
thermodynamic flows are linear functions of these same thermodynamic
forces. (This is the realm of linear thermodynamics, which is the subject of
this chapter.) In the simplest near-equilibrium case, where only one
thermodynamic flow and one thermodynamic force are involved, the
following formula holds true:

J=LF (44)

where J is the thermodynamic flow, F is the thermodynamic force, and L is a
constant called the phenomenological coefficient. Following are some
formulas for particular thermodynamic flows and thermodynamic forces that
follow the pattern of formula 44 above:

e Fourier’s law of heat conduction:
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J, = —K VT(x) (45a)

where JQ is the flow of heat,
VT(x) is the temperature gradient as a function of position x,
and x is a heat conductivity constant for the particular material.

e Fick’s law of chemical diffusion:
Jo = =D, Vn (x) (45b)

where J__ is the rate of diffusion (diffusion current) of compound K,
Vn, (x) is the concentration gradient of K as a function of position x,
and D, is the diffusion coefficient of compound K.

e Ohm’s law of electrical conduction:
I =VIR (45¢)

where I is the electric current,
Vis the voltage,
and R is the (constant) electrical resistance. ?2°

But what if more than one thermodynamic flow/force pair are simultaneously
at work within the near-equilibrium system? In that case the thermodynamic
flow/force relationships are still linear and still depend on the
phenomenological coefficients, but the formula is a bit more complicated
than formula 44 above:

J, = > ijFj where k=1 ton and jis summed from 1 ton (46)

Notice that, in this case, each thermodynamic flow J, is a linear function of
not only its own corresponding thermodynamic force, but of all the other
thermodynamic forces involved in the near-equilibrium system as well.
Kondepudi and Prigogine give some examples:
The thermoelectric effect is one such cross effect, in which a thermal
gradient drives not only a heat flow but also an electrical current and vice

versa. Another example is cross diffusion, in which a gradient in the
concentration of one compound drives a diffusion current of another.?!

As other examples, there is the Soret effect, in which a heat gradient also
drives a flow of matter, and the corresponding Dufour effect, in which a
concentration gradient also drives a heat flow.

As might be expected, those linear phenomenological coefficients which
correspond to a thermodynamic force that is directly paired with its
corresponding thermodynamic flow, namely L, , are generally positive (with
a positive force resulting in a positive flow). However, those phenomeno-
logical coefficients which correspond to a thermodynamic force’s effect on a
non-corresponding thermodynamic flow (L, where £ is not equal to j) may be
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either positive or negative. For example, in the cross-diffusion case mentioned
above (where two compounds are diffusing into each other from opposite
halves of a container), it is clear that the stronger the concentration gradient is
for one compound, the more that gradient will retard the flow of the other
compound, so that in that case L, will be negative.

Now, if we use formula 46 to substitute for J, in formula 43 above, we can
then express the rate of internal entropy production P for near-equilibrium

systems solely as a function of the thermodynamic forces acting within the
system:

P:ZijFij >0 wherej=1ton andk=1ton (47)

In 1931 Lars Onsager (1903-1976), building on earlier conjectures by Lord
Kelvin and others, demonstrated that a further remarkable constraint exists on
the phenomenological coefficients in the linear regime. He proved that:

ij = ij for all j and k (48)

These relations are called the Onsager reciprocal relations, and they
essentially mean that if, for example, in a given near-equilibrium
thermodynamic system a thermal gradient also drives a flow of electric
current, then an electrical voltage within that same system will also drive a
heat flow in exactly the same way and to exactly the same degree.?*

A final important constraint on the coupling of thermodynamic forces and
flows is Ilya Prigogine’s symmetry principle (based on a similar principle
discovered by Pierre Curie), which Prigogine and Kondepudi explain as
follows:

[A] scalar thermodynamic force such as chemical affinity, which has the
high symmetry of isotropy, cannot drive a heat current, which has lower
symmetry because of its directionality. . . . Another way of stating this
principle is that a scalar cause cannot produce a vectorial effect. . . In
general, irreversible processes of different tensorial character (scalars,
vectors, and higher-order tensors) do not couple to each other. . .

Because of the symmetry principle, the [internal] entropy production due
to scalar, vectorial, and tensorial processes should each be positive.?*®

Non-Equilibrium Linear Thermodynamics

So far the only time-independent (i.e., macroscopically unchanging) thermo-
dynamic state we have discussed is thermodynamic equilibrium, where (for an
isolated system) the rate of internal entropy production P is zero and total
internal entropy S is at its maximum: Thermodynamic equilibrium is the
unconditionally equifinal state to which all such isolated thermodynamic
systems tend.
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However, a thermodynamic system can also be maintained in a time-
independent, macroscopically unchanging non-equilibrium state by means of
a constant flow of energy and/or matter through the system. (Such a system
is, then, of course, not isolated.)

Imagine an iron bar which is in firm contact with a hot reservoir on its left
end and a cold reservoir on its right end. Imagine further that, external to this
iron bar, the hot reservoir is kept at a constant temperature 7, and that no
other thermodynamic forces, other than the resulting thermal gradient, are at
work within the iron bar. In that case this thermodynamic system will evolve
to a time-independent, macroscopically unchanging (i.e., “stationary”) non-
equilibrium state in which the temperature of the cold reservoir on the right is
a constant 7' and the flow of heat through the bar from left to right is a
constant J,,. This constant flow of heat J,, through the system will then result
in a constant positive rate of internal entropy production P = d,S/dt within the
bar. (For purposes of this example we will regard the iron bar to be the
“system” and the reservoirs to be the “environment”.)

Now, because this thermodynamic system has evolved to a stationary
thermodynamic state, we know that the overall rate of change in system
entropy dS/dt must equal zero. We further know that the total dS/dt for this
system must be the sum of the internal rate of entropy production d,S/dt plus
the rate of change in system entropy due to entropy exchanges between the
system and its environment d S/dt. From these facts it is clear that:

dS/dt = d Sldt + dS/dt =0 [stationary non-equilibrium] (49a)
d S/dt =—dS/dt [stationary non-equilibrium] (49b)

But because d,S/dt is always necessarily positive, it follows from formula 49b
that d S/dr must necessarily be negative for the stationary non-equilibrium
case. This, in turn, means that the amount of entropy flowing info the system
from the hot reservoir is less than the amount of entropy flowing out of the
system into the cold reservoir, so that the net change d S is negative, from
the system’s point-of-view. Furthermore, this difference d S is exactly equal to
the negative of d,S, the change in entropy being internally produced by the
system. Another way of putting this is that “[t]he non-equilibrium state is
maintained through the exchange of negative entropy with the outside world;
the system discards the entropy produced by the [internal] irreversible
processes.”?**

Several points need to be made here:

e First, in a stationary, linear non-equilibrium thermodynamic system
the rate of internal entropy production d.S /dt never reaches zero, but
it does reach and stay at a constant, positive nonzero value.
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e Second, formulas 49a and 49b apply to all stationary non-equilibrium
thermodynamic systems, not just the thermal system described
explicitly above. For example, an industrial chemical process can be
kept in a stationary non-equilibrium state by constantly supplying
input chemicals and constantly removing the resulting chemical
products. (In this case, instead of a constant flow of heatJ _ , a
constant velocity of reaction J,, characterizes the stationary non-
equilibrium state.)

e Third, while formulas 49a and 49b are perfectly general, the pure
constancy of positive d,S/dt and negative d S/dt is guaranteed only
when the stationary non-equilibrium thermodynamic system is also
linear and near-equilibrium (rather than nonlinear and far-from-
equilibrium). By contrast, stable (“stationary”) nonlinear, far-from-
equilibrium thermodynamic systems (such as biological systems) are
characterized by far-more complex patterns of entropy flux and flow
than pure, constant positive d.S/dt and pure, constant negative d S/dt.

So far we have considered mainly stationary, linear non-equilibrium
thermodynamic systems involving only one thermodynamic force and one
thermodynamic flow. But, as we saw earlier, in more-complex linear
thermodynamic systems several thermodynamic forces and flows can be
active at once, with any given thermodynamic flow being a linear function of
all of the thermodynamic forces in play (i.e.,J = X L.F,, where j=1ton
and k = 1 to n). This suggests the question: How do more-complex stationary,
linear non-equilibrium thermodynamic systems behave?

It turns out that, in most cases, those thermodynamic flows which are directly
associated with thermodynamic forces that are being constrained from
outside the system ultimately produce a constant, positive, nonzero rate of
internal entropy production d,S/dt (just as in the case of the simple stationary,
linear, one-force-one-flow non-equilibrium systems that we have already
discussed). By contrast, those portions of the internal entropy production d,S/
dt produced by thermodynamic flows which are directly associated with
thermodynamic forces that are not being constrained from outside the system
ultimately fall to constant zero (just as in the case of simple isolated
equilibrium thermodynamic systems). For this reason, more-complex, linear,
non-equilibrium thermodynamic systems, taken as a whole, may be said to
usually evolve to a stationary state of constant minimum entropy production,
just as isolated thermodynamic systems evolve to a stationary state of zero
entropy production. (The general formulation of this Theorem of Minimum
Entropy Production is due to Ilya Prigogine, based on prior work by Lord
Rayleigh and Lars Onsager.)
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Kondepudi and Prigogine explain further:

[W]e have seen how different flows J k=1,2,...,n,are coupled to the
thermodynamic forces F, . In such situations the system may be maintained
away from equilibrium by constraining some forces F, k=12,...,s,t0
be at a fixed nonzero value, while leaving the remaining forces F L k=s
+1,...,n, free. In these cases, one often finds that the flows corresponding
to the constrained forces reach a constant, J, = constant, k=1,2,...s,
whereas the unconstrained forces adjust so as to make their corresponding
flows zero, J, = 0,k=s+1,...,n An example is thermal diffusion in
which the stationary state corresponds to a zero matter flow and constant
heat flow. . . In the linear regime, where the Onsager reciprocal relations
are valid, all stationary states are characterized by the following general
extremum principle. . . :

In the linear regime, the total [rate of internal] entropy production in a
system subject to flow of energy and matter (d,S /dt ) . . . reaches a minimum
value at the non-equilibrium stationary state.??

Figure 24, below, compares the evolution of an isolated thermodynamic
system towards an unconditionally equifinal equilibrium state of zero entropy
production with the evolution of a linear non-equilibrium thermodynamic
system towards a stationary conditionally equifinal state of constant positive
minimum entropy production (the condition being that at least some of the
thermodynamic forces acting on the system are subject to constant external
constraints):

P P

Figure 24 (after figure 17.5 on page 404 of Kondepudi and Prigogine)

In the above figure the vertical P axis represents the rate of internal entropy
production d.S/dt , while the horizontal 7 axis represents time.

In the following chapter on Nonlinear Complex Physical Systems we will
consider the fascinating properties of nonlinear far-from-equilibrium
thermodynamic systems, as well as other types of nonlinear complex physical
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systems. Such nonlinear far-from-equilibrium thermodynamic systems are
characterized by both external and internal conditional equifinality (unlike
linear near-equilibrium stationary thermodynamic systems, which are
characterized by external conditional equifinality only). Meanwhile, all that
remains to be done in this chapter is to consider the teleological implications
of the linear thermodynamic systems we have so far considered.

Teleological Implications of Linear Thermodynamic Systems

The unconditionally equifinal character of isolated thermodynamic systems —
specifically, their universal tendency to evolve to a state of maximum entropy
(“heat death”) — has exercised a powerful influence on the modern mind.
After all, isn’t the universe as-a-whole by definition an “isolated”
thermodynamic system? And doesn’t the universe’s purported inevitable
evolution to a state in which it consists of nothing but a “stochastic soup” of
randomly colliding molecules demonstrate more clearly than anything else the
teleological “meaninglessness and senselessness” of the universe? Merely
mentioning the Second Law of Thermodynamics at an academic cocktail
party will cause heads to nod in knowing, sad, cynical agreement concerning
the ultimate futility of existence.

The discoverer of the twin concepts of entropy and the Second Law of
Thermodynamics, Rudolf Clausius, explicitly applied them to the universe as-
a-whole: “The entropy of the universe [die Welf] approaches a maximum”, he
declared unequivocally.?”® And the suicide of the great physicist Ludwig
Boltzmann (1844-1906), whom we mentioned earlier in connection with his
famous formula relating entropy S to the number of microstates W, is widely
(though perhaps mythically) regarded as being due to his despair at the seemingly
unrelenting purposelessness of a universe so cruelly subjected to the Second
Law of Thermodynamics.

How can we reply to this? At the risk of sounding Pollyannaish, we must
reply that “things are not as bad as they seem”. Things are not as bad as they
seem because (as we have demonstrated earlier):

e The Second Law of Thermodynamics does rot apply to all aspects of
all physical systems, but only to relevant aspects of systems which
are composed of multi-millions of microscopic parts. Many physical
systems can also be usefully described without referring to their
microscopic parts, including the universe-as-a-whole.

e The Second Law of Thermodynamics is not the only “arrow of time”
that exists, and, in fact, the primary “arrow of time” associated with
the universe-as-a-whole is the cosmological arrow resulting from the
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universe’s continual expansion since the “big bang”, which we
discussed in our chapter on general relativistic systems.

e The ultimate basis for all arrows of time is the nonlinear dynamic
arrow, which (as we saw earlier in this chapter) does not entail any
necessary or inevitable movement towards system-wide disorder.

e The seemingly-inevitable (and therefore depressing?) irreversibility of
time is, from a nonlinear dynamic point-of-view, merely an
epistemological artifact that is intimately related to the inability of
finite beings such as ourselves within the universe to measure and/or
control things to infinite precision. By contrast, the perfect
transcendent God suffers no such limitations.

e Therefore, we must look to the perfect God who is transcendent (as
well as immanent) for ultimate purpose and meaning: By contrast, no
limited, finite teleological being having a complete physical analog
within the physical universe (including the purely-immanent
pantheistic God) can adequately supply such ultimate purpose and
meaning.

In addition to isolated, unconditionally equifinal linear thermodynamic
systems, which inevitably evolve to thermodynamic equilibrium (“heat
death”), there is also the interesting case of externally constrained
conditionally equifinal linear thermodynamic systems which conditionally
evolve to a stationary attractor state of constant minimum entropy
production. The relevant condition is, of course, that certain of the
thermodynamic forces acting on the system must be constantly constrained
from outside the system: If such outside conditional constraints cease to be
effective, then the system inevitably evolves to an equilibrium heat death, just
as in the case of the isolated system.

But note that, in the case of linear thermodynamic systems, any conditional
constraint must be external: Internally the linear thermodynamic system
continues to obey linear, deterministic laws, analogous to the linear,
deterministic laws of classical Newtonian mechanics. By contrast, in the
following chapter on Nonlinear Complex Physical Systems we will deal
with hierarchical nonlinear far-from-equilibrium thermodynamic systems

that also have internal macroscopic bifurcations and conditionalities. Here, at
last, we will find a rich, hierarchical pattern of physical, internal, conditional
equifinalities whose teleological analogs are the complex decisions, goals, and
purposes of life itself.
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What are nonlinear complex physical systems? First, let’s consider the
term nonlinear. As far back as our early chapter on Classical
Mechanical Systems we discussed nonlinear mathematical functions and
nonlinear systems in some detail (initially to contrast them with the linearity
of classical mechanical systems). To very briefly summarize, in a nonlinear
function the rate of change in the variables can be a higher power of (or a
complex function of) the variables themselves. Nonlinear functions are
required to describe nonlinear physical systems, which are any physical
systems that are characterized by strong and persistent interactions between
their parts and which therefore have emergent, constitutive properties (in
other words, the vast majority of physical systems). Furthermore, the
physical fact that nonlinear physical systems cannot be described only in
terms of summative (additive) properties corresponds to the mathematical
fact that nonlinear functions do not obey the superposition principle. In other
words, it is not generally true of nonlinear functions that f{x) + f(y) =f(x +y)
or that ¢ fix) = f(cx).

Next, let’s consider the term complex. This term is more difficult to define
than nonlinear, since it has a number of meanings, some of which are
relevant in the present context and some of which are not. In one sense it may
be said that any nonlinear system is complex, for the reasons stated in the
previous paragraph. Therefore complexity in the present context partially
derives from this nonlinearity of the physical systems being studied. In
particular, we will find that in nonlinear systems in which an “autocatalytic”
aspect (“the more of this, the more of this”) is almost, but not quite,
counterbalanced by an “autoinhibition” aspect (“the more of this, the /ess of
this”), a high degree of system complexity may be expected to arise because
of nonlinear mathematical considerations alone.

But, in addition, our earlier chapter on Nonlinear Dynamic Systems
presented a “spectrum” of physical systems, ranging from deterministic to
tychistic to chaotic to stochastic, which suggests a further relevant meaning
of complex in the present context: What is suggested is that the exact middle
of this spectrum (which we may describe as being at “the right edge of
tychism” or alternatively as being at “the left edge of chaos”) is the point at
which maximally complex physical systems may be found. Work by Chris
Langton, Stuart Kauffman, and others associated with the Santa Fe Institute
suggest that systems which are maximally complex in this sense may
represent an optimal balance between confirmation and novelty, from an
information-processing point-of-view. (Recall that we introduced the terms
tychistic and tychism to denote physical systems which are dominantly
deterministic and ordered, but which contain significant immanently objective
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elements of randomness and disorder, in contrast to chaotic systems which
are dominantly disordered, but which contain significant elements of order.)

Piero Scaruffi describes Stuart Kauffman’s insights with respect to this “[left]
edge of chaos” as follows:

[Stuart Kauffman’s] “candidate principle” states that organisms change
their interactions in such a way as to reach the boundary between order
and chaos. Examples include Per Bak’s pile of sand (whose collapse under
the weight of a new grain is unpredictable), any ecosystem (in which
organisms live at the border between extinction and overpopulation), the
price of a product (which is defined by supply and demand at the border
of where nobody wants to buy it and where everybody wants to buy it).
Evolution proceeds towards the [left] edge of chaos. Systems on the
boundary between order and chaos have the flexibility to adapt rapidly
and successfully.?’

There is a further requirement in order for a physical system to qualify as
“complex” in this present chapter: It must be composed of many parts (often
multi-millions of parts), usually arranged in multiple layers of hierarchy. (We
need to add this requirement because, as we saw in our chapter on Nonlinear
Dynamic Systems, even systems consisting of only three strongly and
persistently interacting bodies can be complex in the sense that they are
nonlinear and fall within the tychistic/chaotic range of the physical spectrum,
sometimes even at the midpoint of that range.)

In a sense, therefore, the physical systems we will be considering in this
chapter combine nonlinearity, which we studied in detail in our Nonlinear
Dynamic Systems chapter, with the hierarchical, emergent properties of
systems consisting of multi-millions of parts, which we studied in our Linear
Thermodynamic Systems chapter.

Finally, there is one important definition of “complexity” which does not
capture the meaning intended here in this chapter, namely the definition of
algorithmic complexity independently proposed around 1965 by the Soviet
mathematician A. Kolmogorov and the American mathematician G. Chaitin.
Nicolis and Prigogine explain:
The algorithmic complexity of a sequence of data is defined as the
minimum length of a computational algorithm (measured, for instance,

in number of bits if the algorithm is be communicated to a digital computer)
that would produce this sequence as output.

Is the algorithmic complexity just defined tantamount to the complexity
observed in the physical sciences and biology? Consider a sequence N
data long expressed in binary form and displaying an overall regularity
(e.g. 100 100 100 . . .). Clearly, the message contained in it can be
considerably compressed. For instance, it could be transmitted to a
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computer by the very simple algorithm “Print /00 ten [or one hundred, or
one million] times”. The number of binary digits in such an algorithm is
a small fraction of the number in the initial series, and as the series grows
larger in size the algorithm size increases at a much slower rate. According
to the definition, this therefore implies limited algorithmic complexity.??®

Kolmogorov and Chaitin were able to show that the number of such “orderly”
sequences of limited algorithmic complexity is very low compared to the total
number of possible ways of arranging N binary digits. Therefore, the vast
majority of sequences of N binary digits are incompressible and have high
algorithmic complexity, according to the Kolmogorov/Chaitin algorithmic
definition of complexity.

Such a definition would clearly tend to identify the most-stochastic systems
as maximally complex on the “physical spectrum” that ranges from
deterministic to tychistic to chaotic to stochastic. In other words, the
Kolmogorov/Chaitin definition of algorithmic complexity would identify
maximal complexity with the far-right edge of the physical spectrum, rather
than with its middle. Again, Nicolis and Prigogine:

In reality, physico-chemical complexity must somehow be sandwiched
between these two extremes [of low and high algorithmic complexity],
and thus should not be fully identified with [high] algorithmic
complexity.??

Later on in the same book, Nicolis and Prigogine indicate that the key reason
for this is that “in addition to randomness . . . [the complexity of natural
objects] . . . also involves some large-scale regularities.”>*°

Lastly, we need to consider the term physical in the title Nonlinear Complex
Physical Systems: Physical, in the context of this present chapter, refers to
the fact that we are here primarily dealing with physical (“bracket out the
subject”) systems rather than feleological (“bracket out the object”) systems.
Nevertheless, at the end of this chapter we will give some consideration to
teleological systems that are feleological analogs of the physical systems
described in the main part of the chapter (just as we considered similar
teleological analogs to various types of physical systems in earlier chapters).

This chapter will be unique with respect to earlier chapters in this book in
that it will use examples from a wide range of subject-matter, including
nonlinear thermodynamics, biology, and sociology. The perspective of this
chapter may therefore be loosely identified with that of General Systems
Theory, which was first proposed by Ludwig von Bertalanffy in the late
1930s and 1940s. General Systems Theory is currently controversial in
Anglo-American science for two reasons, one of which has no merit and the
other of which does.
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The meritless reason for rejecting General Systems Theory is the profound
bias in Anglo-American science in favor of reductionism, linear solutions, and
deterministic/stochastic models (resulting in the downplaying of chaotic
models and the outright rejecting of tychistic models). This reason is
meritless because, as we have seen, the vast majority of physical systems are
nonlinear and therefore have emergent, constitutive properties, which
automatically puts them somewhere within the tychistic/chaotic range of the
physical spectrum.

By contrast, the objection to General Systems Theory that does have some
merit claims that it merely identifies features that must be true of any physical
system that properly requires description in terms of nonlinear equations or
concepts, and that therefore General Systems Theory is really “about”
nonlinear mathematics (coupled perhaps with superficial physical analogies),
not about physical reality. Although von Bertalanffy has some good answers
to this objection, this controversy is irrelevant for purposes of the present
chapter: In other words, it is not necessary for the argument of this chapter to
prove that a truly universal General Systems Theory as a viable “theory of
everything” actually exists, or is even actually possible.

We should also note that in earlier chapters we have introduced (and often
resolved) many topics and issues that are normally thought to arise only at the
level of nonlinear complex physical systems. For example, our first chapter
on Classical Dynamic Systems established the reality of emergent,
constitutive, holistic properties (e.g., potential energy and force fields) at the
level of simple dynamics, while our chapter on Nonlinear Dynamic Systems
established the immanent-objective reality of irreversible time at the level of
as few as three bodies that strongly and persistently interact. And, in our
chapter on Linear Thermodynamic Systems, we have already proposed
three “laws of hierarchy” that apply to all systems having many parts.

Furthermore, the mathematical concept of phase space, which we discussed
in our chapter on Nonlinear Dynamic Systems, is fully applicable to
nonlinear complex physical systems as well, except that we are not limited to
the two dynamic variables momentum and position, but instead have a
potentially wide-range of emergent, constitutive variables to choose from. In a
similar fashion, we can easily build on other concepts that we introduced in
Nonlinear Dynamic Systems, including map functions, attractors, repellers,
stable manifolds, unstable manifolds, chaos, Lyapunov numbers, and
Lyapunov exponents.
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The Pitchfork Bifurcation

Our first “simple” example of a nonlinear complex physical system is the
pitchfork bifurcation, taken from the book Modern Thermodynamics by Dilip
Kondepudi and Ilya Prigogine.?*! In keeping with the General-System-Theory
orientation of this chapter, this particular example will be taken as
representative of a whole class of nonlinear complex physical systems, rather
than as describing a particular physical system within a particular subject-
matter area.

Figure 25, below, depicts the pitchfork bifurcation:

(04

0 A

Figure 25 (after Figure 19.1 on page 429 of Kondepudi and Prigogine)

Consider the following nonlinear equation in the context of Figure 25:
do/dt = —o® + Ao D

This equation is nonlinear with respect to the infernal variable o because the
rate of change in o with respect to time ¢, that is doi/dt, is dependent on a
higher power of o itself, namely o. Furthermore the value of o is also
dependent on the external variable A, which we presume to be the “control
variable” that is varied from outside the system in order to influence o.. Now,
as A is varied from outside the system by increasing it from a negative value
through zero and then up into the range of positive values, what happens to
the “stationary solutions” of o (that is, those solutions of o for which do/dt =
0)? Starting from formula 1 above and setting do/dt = 0 we get:
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0= —o’+ Acl (2a)
o = Ao (2b)
o> =\ (2¢)
o=tV (or, also, oo = 0, as can be seen from 2a & 2b) (2d)

Now, if we assume that, for physical reasons, o cannot be an imaginary
number, it follows that, whenever the value of A is less than zero, the only
possible stationary solution of ot is o0 = 0, as is evident from Figure 25.
However, if the value of A becomes greater than zero, then there are three
possible stationary solutions of @, as is also evident from Figure 25.
Unfortunately only two of these stationary solutions are stable, namely o =
VA, By contrast, the stationary solution o = 0 is not stable if A is greater
than 0. (The term “stable” in this context means that any small perturbation
from the particular stationary solution of o decays, and the system falls back
to that stationary solution, while “unstable” means that any such small
perturbation from the stationary solution of o is magnified away from the
stationary solution. The mathematical proof of these stability results is not
difficult, but is tedious, so we will not give it here.)

The net result, as can be clearly seen in Figure 25, is that, as the control
parameter A is increased upwards from negative values and into the range of
positive values, the value of the internal variable o bifurcates at A = 0. That
is, o begins to assume one of two possible stable values, either VA or—V A
(This particular kind of bifurcation is called a pitchfork bifurcation. Another
kind of bifurcation is the saddle-node bifurcation, which we met in our
chapter on Nonlinear Dynamic Systems.)

As Kondepudi and Prigogine note:

The bifurcation of new solutions at exactly the point where one solution
loses its stability is not a coincidence. It is a general property of the solutions
of nonlinear equations. (This general relation between bifurcation and
stability of solutions of nonlinear equations can be explained using
topological degree theory, which is beyond the scope of this discussion.)*?

Now, the key point here is that it is a matter of immanent-objective chance
which of the two possible paths the internal variable o begins to take as the
external control parameter A is increased above zero: This internal macro-
scopic system bifurcation therefore cannot be dismissed as being “merely
subjective”. To be sure, such a bifurcation would not be observed by a
transcendent being who had perfect knowledge of all variables and
contingencies out to an infinite number of decimal places: For such a being,
the system would remain absolutely determined, marred by no element of
either macroscopic or microscopic chance. But science is done by imperfect

240



Nonlinear Complex Physical Systems

finite beings who exist within the universe they are studying, and for such
beings phenomena such as macroscopic absolute chance and irreversible time
are immanent-objective facts, as we proved in our chapter on Nonlinear
Dynamic Systems.

In addition, even this present, relatively simple, example illustrates a
characteristic feature of many nonlinear complex physical systems, namely,
internal conditional equifinality. Recall from our previous chapter that a
near-equilibrium /inear thermodynamic system can be kept in a state of
constant minimum entropy production through the application of suitable
constant constraints from outside the system. We therefore described such a
system as being characterized by external conditional equifinality: In other
words, provided only that certain conditions were established external to the
system, the system would attain an attractor state of minimum entropy
production that was equifinal no matter where the system itself started from.

The present nonlinear example system is similar in that it is also subject to
an external conditional constraint, namely, the value of the external control
variable A. However, this nonlinear system is also subject to an internal
conditional constraint, namely, which of two possible paths the internal
variable o will take as the value of the external variable A passes upwards
through zero. Once the system starts along one or the other of these paths,
however, it proceeds in a deterministic manner that may be equifinal with
respect to that particular path. I say “may be” because, in more-complex
nonlinear situations, the system will probably once again arrive at a
bifurcation point that is characterized by absolute immanent-objective chance,
conditionally split at that point, proceed “deterministically” for a while, and
so on. In fact this structure, consisting of many nested internal conditional
equifinalities, is quite common in those nonlinear complex physical systems
which we have named tychistic (i.e., those systems which are dominantly
“deterministic”, but which contain significant elements of absolute immanent-
objective chance).

Tychistic nonlinear complex physical systems are therefore often
characterized by both external and internal conditional equifinality. (In our
chapter on Nonlinear Dynamic Systems we saw that even simple nonlinear
dynamic systems, such as the rotating pendulum, have this property as well,
though in very primitive form.)

It is important to note, too, that although we have used the word
“equifinality” in this context, there is no element of what we have earlier
defined to be feleology in our present discussion: Rather, everything we have
so far said involves only the proper scientific method of “bracketing out the

241



ON SYSTEMS

subject” (nuanced perhaps by the fact that we have had to distinguish
immanent, imperfect beings from transcendent, perfect ones).

Nevertheless this physical, scientific fact of internal conditional equifinality
within many tychistic nonlinear complex physical systems is obviously highly
suggestive of interesting teleological systems that are analogs of those
physical systems. For example, even with respect to the present pitchfork-
bifurcation example it is very easy (and convincing) to make the teleological
statement that the system decided to follow one of two possible paths in
response to the upward change in the value of A, and that thereafter the
system pursued the goal represented by that path. (As we have noted earlier,
teleological decisions are often analogous to instances of internal
macroscopic absolute chance within the corresponding physical tychistic
system.)

In fact, it is so easy to speak teleologically about nonlinear, tychistic,
complex physical systems that we will adopt the convention for the rest of
this book of putting words like “decided” and “goal” within quotation marks
when we mean “the physical property that is the analog of the corresponding
teleological property”. (Of course, at the end of this chapter we will also
discuss in far more detail possible teleological analogs to nonlinear complex
physical systems, just as was our practice at the end of prior chapters on the
other types of physical systems.)

Benard Cells

Our next relatively “simple” example of a nonlinear complex physical system
is the system of Benard cells, which were discovered by the French physicist
Benard in 1900. Benard cells represent a particular physical system within
the subject-matter of nonlinear thermodynamics. We will here discuss Benard
cells descriptively, without any attempt to model them mathematically, basing
our discussion on that of Nicolis and Prigogine.**

Imagine a very thin layer (only a few millimeters thick) of a fluid such as
water trapped between two large, flat horizontal plates near the earth’s
surface (and therefore subject to the earth’s gravity). Imagine further that
these plates are at ordinary “room temperature” and that initially there is no
difference in temperature between the two plates. Under such conditions the
motions of the water molecules are purely random, the system is in a state of
thermodynamic equilibrium, the rate of internal entropy production is zero,
and the system’s entropy is at a maximum. (We discussed all of these
concepts in our previous chapter on Linear Thermodynamic Systems).
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Furthermore, clearly this type of system is asymptotically stable. For
example, if you briefly touch your finger onto the bottom surface of the
bottom plate, thus briefly raising its temperature at that spot, and then remove
your finger, this local perturbation in temperature will quickly be dampened
and evened out, and the system will retain no “memory” of this event
whatsoever. Similarly, any minor internal fluctuations arising from within the
system will also be suppressed.

Suppose now that we continually apply a small amount of heat to the bottom
plate, so that we maintain a constant, small difference in temperature AT
between the two plates. In that case heat flows from the bottom plate up
through the thin layer of water to the top plate by means of thermal
conduction. Because of this external constraint AT, the system’s rate of
internal entropy production cannot fall to zero (as it does in the equilibrium
case), but it does fall to the minimum value possible in accordance with the
theorem of minimum entropy production, which we discussed in our previous
chapter on Linear Thermodynamic Systems. In this near-equilibrium
thermodynamic regime, thermodynamic flows are linear functions of the
thermodynamic forces, and the only macroscopic differentiation that is
observable in the water is a gradual, practically linear decrease in
temperature and increase in density as we move from the bottom plate up to
the top plate.

But now suppose that we drive the system even farther from thermodynamic
equilibrium by increasing the amount of heat that we apply to the bottom
plate, such that the AT difference between the temperatures of the two plates
arrives at a critical value AT . At this critical value, the water molecules
suddenly organize themselves into a set of vertically rotating convection cells,
as is shown in Figure 26 on the following page. This is the thermodynamic
regime of thermal convection, and these rotating convection cells are called
Benard cells.

Bernard cells have some remarkable properties. In the first place, they form
relatively suddenly and globally throughout the water layer when the critical
value AT is reached. In the second place, they are created via a holistic
nonlinear process in which a macroscopic continuum of random molecules
suddenly becomes macroscopically structured and differentiated: What
essentially happens is that a small amount of the microscopic kinetic energy
of the individual water molecules becomes suddenly “upshifted” into the
macroscopic kinetic energy of the bulk movements of the water that forms the
convection cells. Ilya Prigogine and his followers call the (often sudden)
appearance of such macroscopic structures symmetry breaking, a term which
I find to be unnecessarily confusing. For what is actually “broken” is not
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symmetry (except perhaps in a technical mathematical sense), but rather
macroscopic continuity. I will therefore henceforth refer to this typical
phenomenon of nonlinear processes as macroscopic continuity breaking, or
continuity breaking for short. (Other writers on nonlinear complex physical
systems use the term phase transition instead of symmetry breaking or
continuity breaking.)
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Figure 26 (after Figure 3 on page 11 of Nicolis and Prigogine)

Now this typical nonlinear phenomenon of relatively sudden macroscopic
continuity breaking is clearly associated with a corresponding sudden (though
perhaps small) decrease in entropy within the system: For if an increase in
entropy involves the “downshifting” of macroscopic structure and kinetic
energy to the microscopic level (as we established in our chapter on Linear
Thermodynamic Systems), then clearly macroscopic continuity breaking is
the reverse of this process, and therefore represents a decrease in system
entropy. (That is one reason why physical systems that are dominantly
characterized by tychistic nonlinear processes, such as Benard cells and
biological systems, can seem to defy the second law of thermodynamics.)
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There is another important aspect to continuity breaking, however: Notice in
Figure 26 that neighboring Benard cells rotate in opposite directions. If
Benard’s experiment is repeated, it is found that about half the time the odd-
numbered Benard cells rotate clockwise and the even-numbered Bernard cells
rotate counterclockwise, while the other half of the time the reverse is the
case. Which scenario happens is purely a matter of immanent-objective
absolute chance, just as was the case in our earlier pitchfork-bifurcation
example. In fact, we may say that AT plays the same role in the Benard-cells
example as the external control variable A did in the pitchfork-bifurcation
example. We may therefore also view the Benard-cells system as an example
of macroscopic temporal continuity breaking (as well as macroscopic spatial
continuity breaking), thus resulting in a system that has a unique
macroscopic history.

Although, as we have stated, Benard cells do form relatively suddenly and
holistically, the detailed process by which they arise is still of great interest.
As is typical of nonlinear complex physical systems, Benard cells form
through the amplification of small internal fluctuations. Nicolis and Prigogine
explain:

Owing to thermal expansion the confined fluid layer becomes stratified,
with the part close to the lower plate characterized by a lower density
than the upper part. This gives rise to a continuous change in density, a
gradient from low to high upward through the fluid that opposes the force
of gravity. Imagine that [a] volume element [near the lower plate] is weakly
displaced upward by a [fluctuation]. Being now in a colder — and hence
denser — region, it will experience an upward Archimedes force that will
tend to amplify the ascending movement further. If, on the other hand, a
small droplet initially close to the upper plate is displaced downward, it
will penetrate an environment of lower density, and the Archimedes force
will tend to amplify the initial descent further. We see therefore that, in
principle, the fluid can generate ascending and descending currents like
those observed in the experiment. The reason these currents do not appear
as soon as AT is not strictly zero is that the destabilizing effects are
counteracted by the stabilizing effects of the viscosity of the fluid, which
generates an internal friction opposing movement, as well as by thermal
conduction, which tends to smear out the temperature difference between
the displaced droplet and its environment. This explains the existence of
a critical threshold AT, observed in the experiment.***

As AT approaches the critical threshold value AT, these internal fluctuations
begin to become amplified, and proto-Benard cells characterized by some
degree of macroscopic bulk movement begin to form. However, these proto-
Benard cells are at first destroyed by the “old regime” of thermal conduction:
Only when the critical threshold value AT is actually reached do the Benard
cells suddenly establish themselves, such that the “new regime” of thermal
convection at last replaces the “old regime” of thermal conduction. (Ilya
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Prigogine describes this process of spatial and temporal continuity breaking
as order through fluctuations.)

It is also significant that the force of gravitation, which is minute compared to
the other forces acting on the water molecules, can be such a profoundly
effective cause of the emergence of the Benard cells. This is so only because
the system is extremely sensitive to minute forces and fluctuations at the
critical threshold value AT (which corresponds to the bifurcation point in our
pitchfork-bifurcation example). As Prigogine and Stengers put it:

[G]ravitation plays an essential role here and leads to a new structure in
spite of the fact that the Benard cell may have a thickness of only a few
millimeters. The effect of gravitation on such a thin layer would be
negligible at equilibrium, but because of the non-equilibrium induced by
the difference in temperature, macroscopic effects due to gravitation
become visible even in this thin layer. Non-equilibrium magnifies the
effect of gravitation.”®

Now, this process of continuity breaking at the macroscopic level
corresponds to the emergence of significant long-range statistical
correlations between the molecules at the microscopic level. Again, Nicolis
and Prigogine:

[Bleyond the threshold AT, everything happens as if each volume element
[within the water] was watching the behavior of its neighbors and was
taking it into account so as to play its own role adequately and to participate
in the overall pattern. This suggests the existence of correlations, that is,
statistically reproducible relations between distant parts of the system. . .
[I]t is important to note the long-range character of these correlations as
compared to the short range of the intermolecular forces. The characteristic
space dimension of a Benard cell in usual laboratory conditions is in the
millimeter range (10" centimeter), whereas the characteristic space scale
of the intermolecular forces is in the angstrom range (10*® centimeter).
Intermolecular forces operate up to a distance equal to about one molecule;
a single Benard cell comprises something like 10* molecules. That this
huge number of particles can [suddenly] behave in a coherent fashion, as
in the case of convective flow, despite the random thermal motion of each
of them, is one of the principal properties characterizing the emergence
of complex behavior.>*

What happens when AT increases well beyond the critical threshold value
AT? The answer is that ultimately a second critical threshold value AT is
crossed, the Benard cells break up, and a regime of thermal turbulence
suddenly becomes dominant. In this turbulent regime macroscopic disorder
becomes dominant over macroscopic order, but this macroscopic disorder
does not entirely vanquish macroscopic order: In other words the system
suddenly goes from being macroscopically tychistic to being macroscopically
chaotic.
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It is interesting to note that, as this Benard-cells system has been forced
farther-and-farther from equilibrium because of the steady increase in AT, it
has macroscopically traversed most of the way across our “physical
spectrum” from left-to-right: Macroscopically this system is deterministic in
the regime of thermal conduction, tychistic in the regime of thermal
convection (where the Benard cells actually appear), and, finally, chaotic in
the regime of thermal turbulence.

Meanwhile, at the microscopic level, from the point-of-view of the millions of
individual component molecules, this same system has moved in the opposite
direction from right-to-left across the “physical spectrum”: Microscopically
the system is stochastic in the regime of thermal conduction (since virtually
all of the kinetic energy of the molecules is random), chaotic in the regime of
thermal convection (since a pattern of bulk movement is overlaid onto still-
dominant random molecular motions), and tychistic in the regime of thermal
turbulence (since by this time the kinetic energy of bulk movement has come
to dominate random molecular kinetic energy).

This suggests a fourth law of hierarchy, which we may tentatively add to the
three laws of hierarchy that we presented in our previous chapter on Linear
Thermodynamic Systems:

e Whenever a physical system, considered from the point-of-view
of a higher level of hierarchical organization, moves from left-to-
right across the “physical spectrum” (or vice-versa), then that
same physical system, considered from the point-of-view of the
next lower level of hierarchical organization, tends to move in the
opposite direction across the “physical spectrum”. (This
“physical spectrum” is, from left to right, deterministic-tychistic-
chaotic-stochastic.)

That is why, for example, that an increase in freedom at a higher holistic
organizational level is always paid for by a loss of freedom by the component
parts (and vice-versa). (An exception to this fourth law of hierarchy is that
class of discrete, purely theoretical physical systems called cellular
automata, which always remain resolutely deterministic at their lowest
hierarchical level.)

A Chemical Nonlinear Complex Physical System

Our next “simple” example of a nonlinear complex physical system is also
taken from Nicolis and Prigogine.?’ It is the abstract chemical system
represented by the following two chemical reactions, taken together:

A+2X & 3X (3a)
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X < B (3b)

Reaction 3a (in the forward direction) shows that one molecule of A combines
with 2 molecules of X to form 3 molecules of X. This reaction can also
proceed in the reverse direction (as is indicated by the double-headed arrow).
At chemical equilibrium the reaction rates of these forward and reverse
reactions always exactly balance out, a chemical principle known as the
principle of detailed balance.

Reaction 3b (in the forward direction) shows that one molecule of X is
transformed into one molecule of B. Again, the principle of detailed balance
applies at chemical equilibrium with respect to the reaction in the reverse
direction.

Notice too that the forward-reaction part of reaction 3a (i.e., reading left-to-
right) is an example of autocatalysis: The more of X we have, the more of X
we get, i.e., “The more of this the more of this.” By contrast the forward-
reaction part of reaction 3b is an example of “autoinhibition” in the broadest
sense: The more of X we have, the less of X we get, i.e., “The more of this the
less of this.” (Technically, true autoinhibition refers to the case where a
chemical inhibits the production of its own catalyst and thereby inhibits the
production of itself, but we will here very loosely use the term to also include
the common case where the reaction, in the forward direction, consumes and
destroys the chemical.) This fine counterbalancing between an autocatalytic
process on the one hand with an “autoinhibitory” process on the other is
characteristic of many tychistic nonlinear complex physical systems. (For
example, in biology, the key autocatalytic process is reproduction, while the
key “autoinhibitory” process is death.)

Of course, if the autocatalytic process and the autoinhibitory process were to
exactly counteract one another, then they would completely cancel each other
out, and nothing interesting would happen. However, if these two processes
are slightly offset, so that they are not simply the exact reverse of one
another, then tychistic nonlinear physical phenomena of extraordinary
complexity can occur.

The nonlinear aspects of the chemical reactions shown in 3a plus 3b above
become evident when we write the corresponding equations for the rates of
reaction. Now, usually it is the case that the rate of a chemical reaction is
directly proportional to the concentrations of the reactants multiplied
together. This is so because the more concentrated the reactants, the more
frequent are the collisions between the molecules and the more likely it
therefore is that the reaction will actually occur. Assuming in the present case
that this proportionality holds, we will use a, b, and x to represent the
concentrations of chemicals A, B, and X respectively, and we will use k , k,,
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k,, and k, to represent the reaction-rate proportionality constants, with the
odd-numbered constants corresponding to the forward reactions, and the
even-numbered constants corresponding to the reverse reactions. Such
reaction-rate proportionality constants represent factors such as temperature,
pressure, and the presence or absence of catalysts, all of which factors we
will assume to be constant in this example. (A catalyst is a chemical that
speeds up a chemical reaction without itself being consumed or produced by
that chemical reaction.)

Since at chemical equilibrium the principle of detailed balance applies, so
that the forward and reverse reactions of each reaction pair faken individually
are exactly equal in reaction rate, the following reaction-rate equations are
therefore each individually true for this system when it is at chemical
equilibrium:

k,ax* = kx’ (4a, which corresponds to the reactions in 3a)
kx=kpb (4b, which corresponds to the reactions in 3b)

We will also assume that we can control the concentrations a and b at will by
continuously supplying and/or removing chemicals A and B from the system,
so that concentration x is the only dependent variable in the system. The
question then arises: What is the value of concentration x at chemical
equilibrium (which we will call xeq) for given values of a. beq, k., k,, k,, and
k,?

Assuming x # 0, k, # 0, and k,# 0, we can use ordinary algebra to solve the
simultaneous equations 4a and 4b above by dividing them as necessary with
x, k, , and k.. The result is:

x =kpb Ik =ka,lk, ®))
eq eq eq
Notice that this is a single, unique, determined solution for X, -

Furthermore, by algebraically rearranging the second equality in equation 5,
we can see that our choice of a and b is not entirely free, if we want the
system to attain chemical equilibrium. For the required ratio of a and b at
chemical equilibrium is determined by the reaction-rate proportionality
constants taken together:

b, la, =kk/kk, (6

But what if this chemical reaction system is driven by external constraints to
a stationary state that is far-from-equilibrium rather than at or near
equilibrium? In that case the principle of detailed balance does not apply.
Instead, all that is required is that the effect of the two forward reactions
taken together be exactly balanced by the effect of the two reverse reactions
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taken together. The resulting rate-of-reaction equation can be found by
essentially adding equations 4a and 4b above as follows:

—kx +kax*= 0 (7a, corresponding to 4a)
PLUS
—kx+kb=0 (7b, corresponding to 4b)
EQUALS
—kx* +kax*—kx+kpb=0 (7¢)

Now, equation 7c is a cubic (i.e., nonlinear) equation in x that can have as
many as three solutions for certain values of a and b (two of these solutions
being stable, and one being unstable) !

As Nicolis and Prigogine put it:

[N]on-equilibrium reveals the potentialities hidden in the nonlinearities,
potentialities that remain dormant at or near equilibrium.?*

If we now define a control parameter u that is a suitable combination of the
constant reaction-rate proportionality constants k , k., k,, and k, and the
independently variable concentrations a and b, then Figure 27, below, shows
how the dependent concentration x (at its far-from-equilibrium stationary

state) varies as the combined independent control variable i is altered:

X

H, oH, M

Figure 27 (after figure 75a on page 172 of Nicolis and Prigogine)
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Notice that the graph in Figure 27 is S-shaped, as is often the case with cubic
equations. Notice too that the middle portion of the graphed line is broken and
dashed, indicating that these solutions for x are mathematically unstable in
the sense that we defined in our pitchfork-bifurcation example. By contrast
the solid portions of the graphed line (the upper and lower branches of the
“S”) represent stable solutions of x.

Now, if we start with (1 at a very low value, so that the value of x is on the
lower branch of the “S”, and if we then slowly increase the value of i , then
the value of x moves slowly upward until  reaches the value labeled as u, in
Figure 27. At that point the concentration of x jumps suddenly upward, and
the system is instantly on the upper branch of the “S”. If, after ¢ has been
increased above 4, it is then slowly decreased below ., the value of x does
not immediately jump back down to the lower branch of the “S”: Instead, the
concentration x slowly goes down along the upper branch of the “S” until is
taken down to the value u , at which point the concentration of x suddenly
drops downward onto the lower branch of the “S”.

This example of a “simple” nonlinear chemical system illustrates three
important features that are shared by many other nonlinear complex physical
systems:

e Between the values u, and g, this system demonstrates the
nonlinear phenomenon of bistability, since, for any given value of
U within this range, x can have one of two very different stable
values.

e Which of these two stable values of x the system attains is
entirely dependent on the prior history of the system, a scientific
phenomenon known as hysteresis.*

e If that range of u between y and u, for which x is bistable is
relatively narrow, then the control variable (1 can act as a kind of
binary switch, switching the system discontinuously between a
high concentration of x and a low concentration of x. In this way
nonlinear complex physical systems can store binary information.

Nonlinear complex physical systems that display some or all of the above
three features include transistors, lasers, and biological membranes, as well
as other nonlinear chemical systems.?*
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Memory and History in Nonlinear Chemical Systems

Figure 28, below, represents (at an abstract level) a more-complex nonlinear
chemical system in which pitchfork bifurcations of the type depicted in Figure
25 are combined with hysteresis-related bistable transitions of the type
depicted in Figure 27:

X

00O

.'oooo

)7}

Figure 28 (after figure 12, on p. 49 of Jantsch’s Self-Organizing Universe)

In Figure 28, the horizontal u axis represents once again a suitable
combination of independent constants and control variables that can affect
the system, while the vertical x axis now represents a suitable combination of
dependent variables (usually chemical concentrations) which are driven by
in a nonlinear manner. The thick, solid curved arrows represent an actual path
which this system might take through the branching system “choices” (i.e.,
the bifurcation points represented by the small circles) as the control variable
U is increased. By contrast the dotted curved lines represent the paths not
taken by the system. As the system is driven farther and farther from chemical
equilibrium (i.e., as { is increased), each “choice” made by the system at a
bifurcation point usually results in holistic macroscopic continuity breaking
(both temporal and spatial), accompanied by a sudden momentary reduction
in system entropy.

Especially interesting in Figure 28 are the thin straight arrows that
approximately retrace in the opposite direction the forward path represented
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by the thick, solid curved arrows: For if we identify a gradual, continuous
increase in control variable u as driving this chemical system away from
equilibrium, then a subsequent gradual, continuous decrease in control
variable ( may be said to represent a retreat back fowards equilibrium.
Amazingly, in that case (unless the system is strongly perturbed) the value of
x will approximately retrace backwards its original forward path! (The reason
the backwards retrace path will only approximately match the forward path is
because of the effects of bistability and hysteresis, which we just discussed in
regard to Figure 27.) As Erich Jantsch observed:

This implies a primitive, holistic system memory which appears already
at the level of chemical reaction systems. The system “remembers” the
initial conditions which made a particular development possible, the
beginnings of each new structure in its evolution. We may say, the system
is capable of re-ligio, the linking backward to its own origin. In linking
backward, the system “relives” its own experience — not in separable
details, but in a sequence of holistic . . . regimes.*!

Thus teleological analogs to nonlinear chemical systems include not only
decisions and goals, but memory and re-lived history as well !

Another important point: Even though each “choice” made by the system as it
moves from left to right in Figure 28 (i.e., farther from equilibrium) usually
results in a relatively-sudden macroscopic continuity breaking, accompanied
by an equally sudden momentary decrease in system entropy, the amount of
entropy internally produced by the system on a continuous basis actually
increases after each such temporary entropy drop, due to the intensification
of internal chemical reactions as we move up to each successive level of the
far-from-equilibrium regime. As Kondepudi and Prigogine put it:
Each new structural instability generally increases the . . . entropy
production in the system because it increases the number of reactions.
This is in contrast to . . . near-equilibrium systems . . . in which the
entropy production tends to a minimum. Structural instability may
progressively drive far-from-equilibrium systems to higher states of entropy
production and higher states of order. . . [I]nstability, fluctuation, and

evolution to organized states is a general non-equilibrium process whose
most spectacular manifestation is the evolution of life.>*

This suddenly-increased continuous internal entropy production (which
usually accompanies the sudden emergence of the next-higher level of the
nonlinear far-from-equilibrium regime) results in yet-more internal entropy
that needs to be continuously dissipated out to the external environment in
accordance with the process we explained in our chapter on Linear
Thermodynamic Systems. That is why Ilya Prigogine and his colleagues call
the macroscopic structures created by nonlinear far-from-equilibrium
continuity-breaking dissipative structures.
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Cellular Automata

For a considerable change of pace, our next example of a nonlinear complex
physical system is British mathematician John Horton Conway’s famous
simulation called Life, which he developed in 1970. Life is a member of that
class of discrete dynamic systems called cellular automata (or CA for short).
Life is not a real physical system, but only an imagined one. Nevertheless it
may be regarded to be loosely analogous to biological systems involving
cellular reproduction and death.

Imagine a very large (theoretically infinite) flat plane that is marked by a fine
(perhaps invisible) rectangular grid. Each square of this grid is one “cell” that
can have one of two states, on or off (or, if you prefer, alive or dead), which
we may represent by having an on cell marked with a round black dot and an
off cell simply left blank. (In some cellular automata systems that are more-
complex then Life, each cell can have more than just these two states.) Each
such cell has eight immediate neighbors: four neighbors that are above,
below, left, and right of it, and four neighbors that are diagonally closest to it.

We start the Life simulation with a plane that consists entirely of off cells,
except for a small pattern of on and off cells in the center of the plane. (This
small initial “seed pattern” of cells is the only thing that is allowed to vary in
the standard Life simulation.) We then begin to evolve this seed pattern of on
and off cells in accordance with the following three simple rules:

1. If acell has exactly two neighbors, it stays the same (i.e., on if it
is already on, off if it is already off).

2. If a cell has exactly three neighbors, it is turned on if it is
presently off, or it stays on if it is already on.

3. [If a cell has any other number of neighbors (i.e., zero, one, four,
five, six, seven, or eight), it is turned off if it is presently on, or it
stays off if it is already off.?**

That’s all! The application of these three simple rules is repeated for
generation after generation for as long as you want, and the resulting patterns
are observed. Doing this simulation on a personal computer is relatively easy,
and you can try it yourself by using one of the many “freeware” and
“shareware” Life programs that can be found on the internet.

Depending on what small seed pattern you start with, the results can be
utterly astonishing: Intricately interacting “macroscopic” patterns often
quickly establish themselves in highly complex “lifelike” ways. To take but
one simple example, Figure 29, on the facing page, shows the evolution of a
very common set of Life patterns that Life enthusiasts call a “glider”:
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Figure 29 (after the figure on p. 30 of Poundstone’s The Recursive Universe)

The grids labeled Time 0 through Time 4 in Figure 29 represent successive
generations of the “glider” in the Life simulation. Notice that the pattern in
Time 4 is the same as the pattern in Time 0, except that it is shifted down and
to the right. This sequence of Time 0 through Time 4 repeats itself over and
over in subsequent Life generations, resulting in a single “macroscopic” glider
gestalt that either creeps or sails diagonally across your computer screen,
depending on how fast the computer presents the successive generations.

Many other such patterns-in-motion may appear and interact during a given
run of the Life simulation. Life enthusiasts have given some of them
whimsical, descriptive names, such as “spaceships”, “blinkers”, “traffic
lights”, “glider guns” (which shoot out a continuous stream of “gliders”), and
“eaters” (which eat and destroy any “gliders” unfortunate enough to run into
them). No written description can do justice to the complexity of interaction
of these Life patterns: You really do feel that you are watching some kind of
strange and varied “macroscopic” life forms (comprised of “on” cells)
interacting in surprising ways!

Any given run of Life eventually evolves to a relatively steady state
consisting of various stable unchanging patterns (such as “blocks”,
“beehives”, and “loafs”), plus various stable repeating, oscillating patterns
(such as “blinkers”, “traffic lights”, and “pulsars”), all strewn randomly
across the Life plane, together with “gliders” which have sailed off to infinity,
never to interact again. This steady state is often reached relatively quickly.
However, some initial seed patterns result in Life simulations that are
exceptionally prolific and continue for many generations before achieving
their steady state. For example, starting the Life simulation from the simple
R pentomino seed pattern depicted in Figure 30 on the following page results
in a Life simulation that continues for 7,703 generations before it finally
settles down to a steady state consisting of eight “blocks”, four “beehives”,
four “blinkers”, one “boat”, one “loaf”’, and one “ship”, together with six
“gliders” sailing off to infinity!*** During these 1,103 generations, hundreds
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of these and other types of “macroscopic” Life “creatures” have been both
created and destroyed!

R Pentomino

Figure 30 (after the figure on p. 33 of Poundstone’s The Recursive Universe)

Our wonder at how all of these Life “creatures” could have been created from
nothing but the simple R pentomino seed pattern and the three simple Life
rules faintly parallels our wonder at how all of the diversity of life on earth
throughout history could have arisen from (and therefore been implicit within)
earth’s simplest beginning life-forms.

But the Life simulation holds even more surprises if we consider that
hierarchical level of organization immediately above what we have so-far
called the “macroscopic”: For in 1982 Conway published a proof that, at that
level, Life “creatures” can exist which are capable of complete self-
reproduction! William Poundstone explains:

Conway’s proof is detailed. It is founded on the realization that the glider
gun and many other Life objects can be constructed in glider collisions.
Conway demonstrated that vast constellations of glider guns and eaters
can produce and manipulate gliders to collide in just the right way to
form a copy of the original constellation. Conway’s proof incorporates
[John] Von Neumann’s reasoning about self-reproducing machines and
machines that make machines more complex than themselves.*

Poundstone then goes on to describe Conway’s proof in some detail. Based on
this proof, Conway himself has speculated that:

There are Life patterns which behave like self-replicating animals. . . It’s
probable, given a large enough Life space, initially in a random state, that
after a long time, intelligent self-replicating animals will emerge and
populate some parts of the space.>*

We are far from knowing exactly how and why reproducing, potentially
intelligent macro-patterns in the Life space can emerge. But a closer
examination of the three simple Life rules does reveal that, at the heart of all
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of this complexity lies our (by now familiar) key concepts of autocatalysis
(a.k.a. reproduction), “autoinhibition” (a.k.a. death), and nonlinearity. For
the second Life rule (that a cell which is off and has exactly three immediate
neighbors is turned on in the next generation) is clearly an autocatalytic rule
(“the more of this the more of this”). By contrast, the third Life rule (that a
cell which is on and has any number of neighbors except two or three is
turned off in the next generation) is clearly an autoinhibitory rule (“the more
of this the less of this”). As in our previous examples, the third autoinhibitory
rule partially (but not completely) undoes the effects of the second auto-
catalytic rule. (The first Life rule, which states that a cell having two
neighbors stays the same in the next generation, is neutral and is neither
autocatalytic nor autoinhibitory.) It is also very interesting to note that in this
case the autoinhibitory rule works “on both sides” of the autocatalytic rule:
That is, a cell can “die” both because it has foo many immediate neighbors,
and because it has foo few.

As far as the nonlinearity of Life is concerned, in 1992 Leon O. Chua and his
colleagues proved that Conway’s Life could be successfully modeled as a
Cellular Nonlinear Network (CNN). Furthermore, Chua demonstrated that
the complex “macroscopic” emergent phenomena arising out of a given Life
simulation were closely associated with the strength and nature of the “local
activity” between the cells. (Chua’s “local activity” idea with respect to
discrete cellular-automata systems evidently bears a relation to the idea of
strong and persistent interaction between the parts of the continuous
nonlinear physical systems which we have previously studied.) As Chua puts
it:

[TThe local activity dogma . . . asserts that a homogeneous, non-
conservative medium with symmetric boundary conditions cannot exhibit
a heterogeneous static or dynamic pattern unless it is locally active in a
precise sense.

Chua and his colleagues identify the “[left] edge of chaos” as a particularly
fruitful subset of the local activity domain.>*’

Because of the nonlinearity of Life and other similar discrete cellular-
automata (CA) systems, it is not surprising that such systems display many of
the properties of the continuous nonlinear physical systems we have
previously considered. As Gravner and Griffeath note:

Even the most basic parameterized families of CA systems exhibit a
bewildering variety of phenomena: self-organization, meta-stability,
turbulence, self-similarity, and so forth. From a mathematical point-of-
view, cellular automata may rightly be viewed as the discrete counterparts
to nonlinear partial differential equations. As such, they are able to emulate
many aspects of the world around us, while at the same time being
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particularly easy to implement on a computer. The downside is their
resistance, for the most part, to traditional methods of deductive analysis.>*®

We can place Life within the context of other members of the family of
cellular-automata (CA) systems by considering the basic features of all such
systems:

e The system space of a CA system is the total collection of cells
which comprise the system. For Life this is an infinite 2-
dimensional plane of rectangularly arranged cells. Other cellular
automata use an infinite 1-dimensional line of cells, or a set of
cells arranged 1-dimensionally in a circle. It is also possible to
have a 3-dimensional system space, but this is rarely done
because of the extreme complexity of the resulting calculations.

e The neighborhood of each cell (often abbreviated as nbhd) is the
set of those immediately-nearby cells which determine the next
state of the cell. The nbhd always includes the cell itself. For
Life this neighborhood is the so-called Moore nbhd, which is 2-
dimensional and has 9 members (the cell itself, plus its 8
immediate neighbors, both rectangular and diagonal). Other
possible neighborhoods include the Von Neumann nbhd, which is
the same as the Moore nbhd, except it doesn’t count the diagonal
neighbors, so it has only 5 members. For cellular automata in 1-
dimensional space, the nbhd can be defined as including the
closest cell to a cell’s left and the closest cell to a cell’s right, or it
can be defined as including the two closest cells to a cell’s left
and the rwo closest cells to a cell’s right, and so on up to any
number of “closest” cells. The number of cells in the nbhd of a
given cellular automaton we will call N. (For Life, N=9.)

e The states which a single cell can assume is also a distinguishing
feature of CAs. For Life these states are on and off (also called
alive and dead, or 1 and 0). Typically the Life cell is colored with
a round black dot to mean “on” and is left empty to mean “off™.
While a Life cell has 2 states, the cell which John Von Neumann
used for his cellular automaton had 29 states. One of the states of
a CA can be designated as the guiescent state. In Life the
quiescent state is the off state. The number of states which a cell
can assume we will call S. (For Life, S =2.)

e The transition rule of the CA, which says how the current states
of the cells in a cell’s nbhd determine the state of that cell in the
next generation, is also an important feature of all CAs.
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Now, for a given CA, how many neighborhood configurations can its nbhd
assume? Since each cell can assume one of S possible states, and since the
nbhd of each cell contains N cells, it is clear that the total number of possible
configurations for the nbhd is SV (because there are S ways to choose the state
of the first cell in the nbhd, S ways to choose the state of the second cell in
the nbhd, and so on). For Life the number of neighborhood configurations is
2° =512.

Another interesting question is: For a given CA, how many possible
transition rules are there? Since each one of the S" possible neighborhood
configurations can determine the state of the cell in S possible ways, it
follows that the number of possible transition rules for the CA is S raised to
the power of SV. For Life this means that its transition rule (which we broke
down into three sub-rules for ease of comprehension) is one of 252 possible
transition rules. How big is 2512 ?

If every elementary particle in the universe were a supercomputer
examining a trillion CA per second, starting at the Big Bang, by now only
one part in 10* would have been examined. Failing some fundamental
advance in the physics of computation . . . we will never, Never, NEVER
see all the possibilities.*

Clearly, we need all the help we can get in our search for transition rules that
give “interesting” results for a wide range of initial seed patterns!

In our chapter on Nonlinear Dynamic Systems we described phase space as
a space in which each point in the space represents the complete state of a
system at a given point in time. For dynamic systems the number of
dimensions for this phase space is equal to the number of particles in the
system times six (since each particle is specified by a vector for position and
a vector for momentum, and each such vector requires three numbers to
specify it in 3-dimensional space.) Analogously, we may say that the phase
space for a cellular automaton is the set of all possible global configurations
of the cells in the system. For example, if the system space of a given CA
consists of 128 cells arranged in a circle and the number of possible cell
states is 2, then clearly there are 2'?® possible global configurations of this
CA system space, with each such global configuration representing one
“point” in the CA phase space. (Of course, if the CA system space is an
infinitely long line of cells or an infinite plane of cells, then the number of
points in the CA phase space is also infinite.)

In 1984 Stephen Wolfram examined CAs having a 1-dimensional circular
system space by starting from a random seed pattern. Studying the CA phase
space of such systems, he demonstrated that the behavior of such cellular
automata falls into four distinct classes, depending on the transition rule used.
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Each of Wolfram’s classes is loosely analogous to a classification on the
“physical spectrum” that we discussed earlier:

1. Single-point attractors (roughly corresponding to the left side of
determinism).

2. Periodic attractors (i.e., oscillators, roughly corresponding to the
right side of determinism).

3. Coherent structures that propagate, grow, split apart, and
recombine (corresponding to complex tychistic systems). Cellular
automatons in this class yield stable, periodic, and propagating
structures that can persist over arbitrary lengths of time, and can
include “extended transients” similar to the “gliders” in Life. In
fact, CAs in this regime have by-far the longest-lasting
“transients” and therefore take the highest number of generations
to settle down to a relatively steady state. (However, note that not
every randomly generated seed pattern produces this “tychistic”
behavior for the given transition rule.)

4. Strange attractors (corresponding to chaotic systems).

(Wolfram actually labeled his classes I, II, III, and IV, and reversed the order
of 3 and 4 relative to what we have presented above.)**

In 1990 Christopher Langton developed a parameter he called the lambda
parameter, which gives a rough idea of the average probability that a CA cell
will be alive in the next generation. More-precisely, if each CA cell has 2
possible states, then lambda is the ratio of the number of neighborhood
configurations resulting in a live cell in the next generation (in accordance
with the CA transition rule) to the total number of possible neighborhood
configurations. Langton then showed that lambda generally increases as we
go down Wolfram’s list from CA class 1 to CA class 4 (i.e., as we move from
left to right on the “physical spectrum”).

Langton also showed that there is a “critical region” of lambda within which
class 3 (i.e., complex tychistic) structures can exist. Furthermore, the width
of this “critical region” shrinks sharply as the total number of possible
neighborhood configurations increases.”' We may therefore identify this
“critical region” of lambda with the “right edge of tychism”, with the “left
edge of chaos”, with the “center of the physical spectrum”, and with
maximum complexity (as we have defined the term).

Finally, Langton suggested that living creatures maintain themselves (for as
long as they can) in a class 3 (complex tychistic) state by making use of the
very long transients available within the “critical region” of lambda.*?
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Particularly surprising is Langton’s finding (mentioned above) that the
average probability of cell survival as measured by lambda may actually
increase as we move from complex tychistic CA systems (class 3) to chaotic
CA systems (class 4). If we take a hierarchical perspective, however, and
regard the CA patterns at each level of hierarchical organization as the “cells”
for the next level up, and we furthermore define a revised “lambda” to be the
average probability of survival of all of these “cells” taken together (at
whatever level), then it seems intuitively obvious that the existence of a
complex tychistic regime of organization at every hierarchical level would
maximize revised “lambda’ as we have redefined it. This leads us to
tentatively propose a fifth law of hierarchy:

e For any nonlinear, far-from-equilibrium hierarchical system, the
average survival rate for all entities within the system (taken
together from all hierarchical levels) tends to be maximized when
a complex tychistic organizational regime prevails at every
hierarchical level.

That is probably one reason why the evolution of life on earth has (with some
reversals) tended to result in increasing complexity within the biosphere over
time (though such neo-Darwinists as Stephen Jay Gould would strenuously
deny even the fact of such increasing complexity).

Interestingly, taking the fourth law of hierarchy and the fifth law of hierarchy
together suggests that nonlinear complex hierarchical physical systems will
tend to move towards their complex tychistic optimum from alternatingly
opposite directions as we move up and down their holistic hierarchical levels.

Another similarity between discrete nonlinear CA systems and the continuous
nonlinear complex physical systems we have previously considered is that the
emergence of CA pattern-entities such as “gliders”, “blinkers”, “eaters”, and
so on is clearly an example of “macroscopic” continuity breaking, and many
of the properties of these CA pattern entities are therefore emergent,
constitutive properties of the system. As Nicolis and Prigogine put it:

Could a [CA] network . . . give rise to global “computation” patterns as a
function of time featuring some new, emerging properties not included in
the initial “programmed” units? In principle, the answer to this question
is yes. ... An attractor corresponding to a self-organizing pattern emerging
through a [continuity]-breaking instability necessarily endows the system
with a collective property that transcends the properties of the individual
subunits.?*

Russell K. Standish explains this in a way that defines the key concept of
emergent properties with particular clarity. He takes as his example the
“glider” pattern in Conway’s Life (our Figure 29), and proposes that two
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“languages” exist to describe this pattern, namely the macroscopic language
(or macro-language) and the microscopic language (or micro-language):

An emergent phenomenon is simply one that is described by the atomic
concepts available in the macro-language, but cannot be so described in
the micro-language. In the case of the glider in [Conway’s] Game of Life,
any attempt at describing a glider would involve the CA transition table
(naturally), but also the specific pattern of cell states that make up the
glider. But which pattern? A glider can appear at any location within the
CA, and may have one of four possible orientations. The [micro-]
description cannot represent the fact that two gliders separated diagonally
by one cell along each axis with the same orientation are temporally related.
A glider, as an object-in-itself, is a pure macro-description object.

. . . Of considerable interest is, given a system specified in its micro-
language, does it have emergent properties? There is no general procedure
for answering this question. One has to construct a macro-description of
the system. If this macro-description contains atomic concepts that are
not simple compounds of micro-concepts, then one has emergent
properties.*

In spite of the many similarities we have found between the “artificial”
discrete cellular nonlinear networks (CNNs) and the “natural” continuous
nonlinear complex physical systems which we actually experience in the “real
world”, there is one very important way in which they differ: At their lowest
level of micro-description, CNNss (i.e., CAs) are resolutely and completely
deterministic. That is, for a given system space, neighborhood, set of possible
cell states, transition rule, and initial seed pattern, every CA system always
evolves in exactly the same way in every run of the computer. Moreover, it is
theoretically possible (perhaps even easy) to stop any given CA run and
reverse it back to its seed pattern. Therefore, the immanent-objective features
of absolute chance and temporal irreversibility that characterize continuous
nonlinear complex physical systems are simply not present in discrete CNNs.

However, if we were to imagine ourselves to be ignorant of the CA micro-
language and if we were to be confined to experiencing a single run of the
CA, then absolute chance and temporal irreversibility would for us become
immanent-objective features of the macro-language for that CA, as the
presence of both tychistic (class 3) macro-descriptions and chaotic (class 4)
macro-descriptions for CA systems clearly demonstrates.

This strongly suggests that one reason that immanent-objective absolute
chance and temporal irreversibility do characterize continuous nonlinear
complex physical systems is that the lowest possible (presumably
deterministic) level of micro-description for such systems is simply not
available to us as finite intelligent beings existing within the physical world.
Rather, the lowest level of micro-description we can actually attain is
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microscopically stochastic (i.e., quantum theory). Nor (according to quantum
theory) will we ever be able to control experimental conditions sufficiently to
be able to rerun a given quantum-mechanical experiment deterministically:
For us, therefore, the element of immanent-objective absolute chance at the
quantum level is simply a fact that we must accept. Consequently, absolute
chance and temporal irreversibility are also immanent-objective facts of the
macroscopic physical universe that we must accept as well.

Teleological aside: We might speculate that our view of Conway’s Life and
other discrete CAs may be analogous to how God views our continuous
physical universe: deterministic at its ultimately lowest and finest level, yet
still “surprising” (and even “spontaneous”) at its higher levels.

Molecular Biological Systems

Our next examples of nonlinear physical complexity are taken from the field
of molecular biology. This area is far too vast for us to cover in detail within
this limited section: The most we can do is to present convincing evidence that
molecular biological systems are, in fact, nonlinear complex physical systems
in the sense in which we have been using that term.

Recall that John Conway based his proof that high-level self-reproducing
patterns could evolve in the Life system space on John Von Neumann’s earlier
proof of self-reproduction for his cellular automaton. Recall also that each
cell in Von Neumann’s automaton has 29 possible states (one of which is off),
as opposed to Life’s 2 states, and that the neighborhood for Von Neumann’s
cellular automaton is the 5-cell Von Neumann nbhd, as opposed to Life’s 9-
cell Moore nbhd. Von Neumann’s theoretical self-reproducing cellular
automaton consists of the following major “macroscopic” parts:

1. A universal constructor capable of constructing a wide variety of
patterns, depending on the instructions given to it.

2. A duplicator that copies any instructions given to it.
3. A supervisory unit that

a. Passes a set of instructions (the blueprint [item 4 below])
to the universal constructor, which uses those
instructions to manufacture a copy of the universal
constructor, duplicator, and supervisory unit.

b. Passes this same blueprint to the duplicator for copying.
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c. Appends the resulting copy of the blueprint to the output of
the universal constructor, while retaining a copy of these
instructions for itself.

4. A blueprint that contains instructions for manufacturing the

universal constructor, duplicator, and supervisory unit (but not
itself).

(The essential reason that a supervisory unit is needed for this process of self-
reproduction is that the universal constructor by itself is too “dumb” to
realize that a copy of the blueprint must become a part of the final copy of the
self-reproducing automaton.)>3

Now, remarkably, molecular biological systems are similar to Von Neumann’s
cellular automaton in a number of ways:

e #4 the blueprint, is similar to the DNA-based chromosomes,
plus the messenger RNA that carries DNA’s blueprint “message”
to other locations within the biological cell.

o #2, the duplicator, is similar to the enzyme DNA polymerase,
which rapidly “unzips” the double-stranded DNA and thus
enables it to reproduce. (Duplication also occurs when the
enzyme RNA polymerase aids in the copying of DNA to
messenger RNA.)

e #1, the universal constructor, is similar to the living cell’s
ribosomes, which act like automated factories, producing a wide
variety of proteins in accordance with the instructions delivered
by the messenger RNA. If a needed material cannot be produced
directly by the ribosomes (and this is true of DNA, RNA, ATP,
phosphates, etc.), then the ribosomes instead produce protein
enzymes (such as the DNA polyermerase and RNA polymerase
we just mentioned) to do the actual work of making the needed
material.

e Finally, the role of #3, the supervisory unit, is played by protein
enzymes that “turn on” and “turn off” the various biological
functions.

As William Poundstone has expressed it:

The only basic difference between organic [reproduction] and Von
Neumann’s reproduction is that Von Neumann arbitrarily pictured his
machine as duplicating its blueprint after the machine itself had been
duplicated. In living cells, duplication of DNA takes place early in the
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replication process. The construction of the new cellular “machinery” is
an ongoing process, continuing even after the cell has split in two.>®

Before continuing, we must issue three cautions with respect to the above
analogy between molecular biology and Von Neumann'’s theoretical self-
reproducing cellular automaton: First, the term “blueprint” suggests
something that “looks like” the thing that will be produced from it, whereas in
fact the “blueprints” for both Von Neumann’s theoretical self-reproducing
automaton and for real self-reproducing biological cells consist of coded
instructions that look nothing like what the “universal constructor” produces
using them. Second, terms such as “machine” and “factory”, when applied to
either Von Neumann’s automaton or to a biological cell, suggest a near-
equilibrium machine that is merely “the sum of its parts”, whereas in fact
each is, in its own way, a nonlinear holistic organic system with strongly &
persistently interacting parts and (therefore) many important emergent,
constitutive characteristics. Third, ribosomes only manufacture one class of
important biochemical materials needed to make a copy of the full-
functioning cell (i.e., the class of proteins), but do not, by themselves,
actually construct the full copy of the cell. By contrast, Von Neumann’s
universal constructor actually constructs the entire copy of the automaton
(excepting only the blueprint, which is added by the supervisory unit).

This analogy between Von Neumann’s nonlinear, cellular, self-reproducing
automaton and the inner workings of the biological cell is our first piece of
evidence that molecular biological systems are nonlinear complex physical
systems.

Our second piece of evidence that molecular biological systems are nonlinear
complex physical systems is the elementary fact that they reproduce
themselves (i.e., they are autocatalytic systems). Furthermore, this process of
reproduction is offset (but not quite completely offset) by the process of death
(i.e., they are also autoinhibitory systems in the very broad sense in which we
have defined that term). As we have seen earlier, this very close “competition”
between nearly-offsetting autocatalytic and autoinhibitory processes is one
characteristic feature of many nonlinear complex physical systems, especially
those that exist at the “right edge of tychism” (i.e., at the “left edge of
chaos™).

Furthermore, molecular biological systems are not only macroscopically
autocatalytic and autoinhibitory: The biochemical reactions which
characterize their lower-level inner workings are autocatalytic and auto-
inhibitory as well. Once more we turn to Prigogine and Stengers:

Although the effects of “nonlinear” [chemical] reactions . . . are
comparatively rare in the inorganic world, molecular biology has
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discovered that they are virtually the rule as far as living systems are
concerned. Autocatalysis (the presence of X accelerates its own synthesis),
autoinhibition (the presence of X blocks a catalyst needed to synthesize
it), and crosscatalysis (two products belonging to two different reaction
chains activate each other’s synthesis) provide the classical regulation
mechanism guaranteeing the metabolic function.

Let us emphasize an interesting difference. In the [relatively few] examples
[of nonlinear chemical reactions] known in inorganic chemistry, the
molecules involved are simple but the reaction mechanisms are complex.
... On the contrary, in the many biological examples we have, the reaction
scheme is [relatively] simple, but the molecules (proteins, nucleic acids,
etc.) are highly complex and specific. This can hardly be an accident.
Here we encounter an initial element marking the difference between
physics and biology. Biological systems have a past. Their constitutive
molecules are the result of an evolution.”’

Although nonlinear biochemical reaction schemes may be “simple” in
comparison to non-organic nonlinear chemical reactions, they are anything
but “simple” when compared to any kind of /inear chemical reactions.
Michael Behe, in his excellent book Darwin’s Black Box, discusses in detail
five nonlinear, complex biochemical systems: the cilium or flagellum (a “tail”
which some cells possess that thrashes or spins, thus propelling the cell), the
blood-clotting system, the chemical transport-system within each cell, the
immune system, and (finally) the cell’s energy-storage system. He
demonstrates that all of these biochemical systems (and presumably many
more) are irreducibly complex. Behe explains:

By irreducibly complex 1 mean a single system composed of . . . interacting
parts that contribute to the basic function, wherein the removal of any one
of the parts causes the system to effectively cease functioning. An
irreducibly complex system cannot be produced directly (that is, by
continuously improving the initial function, which continues to work by
the same mechanism) by slight, successive modifications of a precursor
system, because any precursor to an irreducibly complex system that is
missing a part is by definition nonfunctional.>*®

From Behe’s definition, it would seem that the irreducible complexity of
biochemical systems is closely related to the fact that they are nonlinear
holistic systems comprised of parts that interact strongly and persistently.
This impression is confirmed when we look at the details of Behe’s
descriptions of his five chosen biochemical systems. For example, Behe’s
discussion of the blood-clotting system focuses on a dizzying “cascade” of
biochemical reactions which clearly involve complex patterns of
autocatalysis, autoinhibition, and crosscatalysis.>”

Behe wishes to use his concept of irreducible complexity to show that
nonlinear complex biochemical systems could not have arisen by the linear,
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minute, step-by-step process of pure microscopic random mutations being
selected individually for survival value by a purely deterministic macroscopic
process of natural selection, as is envisioned by neo-Darwinism. In this he
succeeds brilliantly!

However, instead of proceeding to propose a nonlinear theory of biological
evolution (such as Robert F. de Haan’s theory of macrodevelopment, which
we will consider in part 2 of this book), Behe instead proposes the theory that
life on earth was intelligently designed. Unfortunately this violates our
criterion that, insofar as possible, a scientific theory must “bracket out”
references to particular subjects, including any “intelligent designer”. While it
is certainly a solid, transcendent feleological theory of the origin and
development of life on earth, we must unfortunately reject intelligent design
as a scientific theory of biological evolution for purposes of our future
discussion.

Instead, we will strongly affirm that nonlinear biological processes are
capable of creating irreducibly complex biological systems without the need
to invoke an intelligent designer because, via continuity-breaking, such
nonlinear processes are capable of suddenly organizing relatively large
regions of biological “space” in an all-at-once holistic manner. (A very simple
non-biological example of this is the sudden, global emergence of Benard
cells.) In other words, a nonlinear theory of evolution (such as the theory of
macrodevelopment) does not require a linear, reductionistic, minute, step-by-
step, mechanical, “trial and error” assembly-line process of the kind required
by neo-Darwinism.

Furthermore, we have seen that the kinds of structures created by nonlinear
continuity-breaking are often characterized by both external and internal
conditional equifinality, which is why such structures often contain physical
analogs to teleological entities such as “decisions”, “goals”, “purposes”,
“functions”, and the like. This further suggests that pursuing the study of
both molecular biology and evolution from a nonlinear perspective is the
most fruitful way to proceed from a scientific point-of-view, even though (of
course) we are at present far from being able to offer precise nonlinear

explanations of most biological phenomena.

Now, quite apart from his important concept of irreducible complexity,
Michael Behe has still more to teach us concerning the holistic nature of
biomolecular systems: The appendix of his book Darwin’s Black Box, titled
“The Chemistry of Life”, is an excellent “crash course” in molecular biology.
There we learn that there are (at least) four levels of organization of each
protein in a biological system:
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e The primary structure of the protein is simply the linear sequence
of amino acids which comprise the protein (“like beads on a
string”). One single such linear structure (also called a
polypeptide) may consist of hundreds, or even thousands, of
amino acids.

e The secondary structure of the protein consists of the a-helixes
(i.e., spirals) and B-pleated sheets into which, typically, 40% to
50% of the protein’s amino acids are twisted or folded. (The rest
of the amino acids form either turns connecting the o-helixes and
B-pleated sheets, or else form irregular structures.)

e The tertiary structure is the way in which these a-helixes, [3-
pleated sheets, and irregular structures pack against each other
to form (in most cases) a compact globular shape. Behe explains:

The driving force for the packing of the helices and sheets
comes from the oily nature of many protein side chains. Just
as oil separates from water to form a distinct layer, so the oily,
hydrophobic side chains huddle together to form a water-free
zone in the interior of the protein. ... [H]owever, . .. some
protein side chains are either polar or charged, and they want
to stay in the water. The pattern of oily and polar side chains
along the amino acid sequence, and the need for the protein to
fold so that most of the hydrophobic groups are in the interior
of the protein and most of the hydrophilic groups are on the
exterior, provides the information that drives a specific protein
to fold to a specific [tertiary] structure.*®

e Finally, a quaternary structure may arise when several different
tertiary structures stick together and act as one protein unit
composed of several subunits.

Now, the key points here are: Each of the higher levels of biological organ-
ization mentioned above is composed of parts taken from the next-lower level
of organization which are in strong and persistent interaction. Furthermore,
specifically biological functions and properties emerge at the organizational
levels of the tertiary and quaternary structures and can in no way be
“reduced” to the primary-structure properties of the separate amino acids
strung together in a linear fashion “like beads on a string”.

For example, the key protein hemoglobin, which carries oxygen in the blood
throughout the body, is a quaternary structure comprised of four tertiary
structures. Only the entire quaternary structure has oxygen-binding
properties: Taken separately, the four component tertiary structures have no
oxygen-binding properties whatsoever.?' Similarly, proteins known as
enzymes, which catalyze biochemical reactions, must be precisely shaped at
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the tertiary or quaternary level in order to bind to their biochemical target and
thus enhance that target’s chemical reactivity. As Behe puts it:

If it is the job of . . . [an enzyme] to catalyze a chemical reaction, then the
shape of the enzyme generally matches the shape of the chemical that is
its target. When it binds, the enzyme has amino acids precisely positioned
to cause a chemical reaction.?®

The folding of enzymes and other proteins into their proper (and critical)
tertiary and quaternary structures is a reliable biological process. However,
because of the extreme complexity of the strong and persistent interactions
between the “parts” of the protein (with “parts” being defined at multiple
levels of hierarchical organization), it is extremely difficult (and may prove
impossible) for biologists to model exactly why any given protein assumes its
particular tertiary or quaternary shape. David Berlinski explains:

Within the cell, most proteins fold themselves into their proper
configuration within seconds. Folding commences as the protein itself is
being formed, the head of an amino-acid chain apparently knowing its
own tail. Some proteins fold entirely on their own; others require molecular
chaperones to block certain intermediate configurations and encourage
others. Just how a protein manages to organize itself in space, using only
the sequence of its own amino acids, remains a mystery, perhaps the deepest
in computational biology.

Mathematicians and computer scientists have endeavored to develop
powerful algorithms in order to predict the three-dimensional configuration
of a given protein. The most successful of these algorithms gobble up the
computer’s time and waste prodigally its power. To little effect. Protein-
folding remains a mystery.

Just recently, IBM announced the formation of a new division, intended
to supply computational assistance to the biological community. A
supercomputer named Blue Gene is under development. Operating at
processing speeds 100 times faster than existing supercomputers, the
monster will be dedicated largely to the problem of protein folding.?®*

As Berlinski mentions, some proteins require other “chaperone” proteins in
order to properly fold into their correct biologically-effective three-
dimensional shape. Particularly striking is the case of so-called “prions”,
which are the infectious proteins that cause scrapie and mad cow disease:
Prions act as “traitor” chaperones that go about re-folding normal brain
proteins into a shape that matches their own. These anomalous re-folded
proteins then re-fold still other normal brain proteins until the death of the
infected host ultimately results. Note that DNA and/or RNA “genes” are not
involved at all here, and the entire process occurs at a structural level well-
above that of the linear “beads-on-string” primary-structure of the proteins!?**
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Similarly complex structural considerations apply to the non-protein
components of living systems, such as deoxyribonucleic acid (DNA), which
we identified earlier as the main “blueprint” containing the information
needed by a biological organism in order to reproduce. DNA is a long
biochemical chain like the proteins, except that it consists (at the primary-
structure level) of many millions of nucleotides (rather than amino acids)
strung together “like beads on a string”. (Hence it is known as a
polynucleotide.) Each individual nucleotide consists of the carbohydrate
deoxyribose, with a phosphate group attached to one side and one of four
bases attached to the other side. These four bases are: adenine, cytidine,
guanine, and thymine (abbreviated A, C, G, and T, respectively). Only the
difference in bases distinguishes one nucleotide from another.

In the early 1960s Nobel laureates Marshall Nirenberg, Severo Ochoa, H.
Gobind Khorana, and their associates proved that biological systems use each
group of three nucleotide bases (which they called codons) to code for the
production of one amino acid needed by a protein. Michael Behe explains:

Since there are sixty-four possible combinations of four bases taken three
at a time, there are more than enough permutations to code for all twenty
amino acids. All possible three-base “codons” are used by the cell, so the
genetic code is redundant, meaning that several different codons can
designate the same amino acid. For example ACT, ACC, ACA, and ACG
all code for the amino acid threonine. Most amino acids have two or more
codons designating them; several, however, have only one. A total of sixty-
one of the possible sixty-four codons designate amino acids; the remaining
three are used as “stop” codons. When the decoding apparatus encounters
one of these special signals, it halts its production of protein at that point.?%

In addition to its primary structure, DNA (like the proteins) also has a
secondary structure, which in this case is the famous double-helix discovered
by Crick and Watson in the early 1950s. That is, DNA comes as a
complementary pair of polynucleotides which are wound together to form a
spiral such that base C on one strand is always matched by base G on the
other, and base A on one strand is always matched with base T on the other.
The enzyme DNA-polymerase “unzips” (i.e., separates) these two
complementary strands, thus enabling the DNA to reproduce by having each
separated strand attract its complementary nucleotide bases. This results in
two identical double-helixes where once there was one.

In addition, the enzyme RNA-polymerase (with the help of the enzyme
topoisomerase) can partially unzip a middle section of the DNA double-
helix, so that a polynucleotide of messenger RNA (coding for a specific
protein) can be created by matching up nucleotide bases with one of the
strands of the partially opened DNA double-helix. This messenger-RNA
polynucleotide is then transported to a ribosome, which uses it as the
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blueprint to actually manufacture the desired protein in accordance with the
3-base codon code discussed above. (RNA stands for ribonucleic acid. It is
very similar to DNA, except that the central carbohydrate of each nucleotide
is ribose, rather than deoxyribose, the base uracil (U) replaces DNA’s base
thymine (T) in RNA’s genetic code, and RNA does not form a double-helix.)

Note, however, that the above scenario of a single DNA nucleotide (codon)
sequence being translated into a single messenger-RNA sequence, and thence
into a single protein amino-acid sequence is not the only possibility: Not
infrequently a process of alternative splicing occurs. Barry Commoner
explains:

The molecular events that accomplish [alternative splicing] are focused
on a particular stage in the overall DNA-RNA-protein progression. It
occurs when the DNA gene’s nucleotide sequence is transferred to the
next genetic carrier — messenger RNA. A specialized group of fifty to
sixty proteins, together with five small molecules of RNA — known as a
“spliceosome” — assembles at sites along the length of the messenger
RNA, where it cuts apart various segments of the messenger RNA. Certain
of these fragments are spliced together into a number of alternative
combinations, which then have nucleotide sequences that differ from the
gene’s original one. These numerous, redesigned messenger RNAs govern
the production of an equal number of proteins that differ in their amino
acid sequence and hence in the inherited traits they engender. . .

Alternative splicing can have an extraordinary impact on gene/protein
ratio. We now know that s single [DNA] gene originally believed to encode
a single protein that occurs in the cells of the inner ear of chicks (and of
humans) gives rise to 576 variant proteins, differing in their amino acid
sequences. The current record for the number of different proteins produced
from a single gene by alternative splicing is held by the fruit fly, in which
one [DNA] gene generates up to 38,016 variant protein molecules. . .

. .. By rearranging the single [DNA] gene’s nucleotide sequence into a
multiplicity of new messenger RNA sequences, each of them different
from the unspliced original, alternative splicing can be said to generate
new genetic information. Certain of the spliceosome’s proteins and RNA
components have an affinity for particular sites and, binding to them,
form an active catalyst that cuts the messenger RNA and then rejoins the
resulting fragments. The spliceosome proteins thus contribute to the added
genetic information that alternative splicing creates.?

In addition to its primary and secondary structure, DNA also has a “tertiary
structure” like the proteins (although this specific term is generally not used
in connection with DNA). What we will call the DNA’s “tertiary structure”
consists of the way in which the DNA double-helix is wrapped around small
blobs of a class of proteins called histones at regular intervals along the
length of the DNA’s double-helix. At this higher “tertiary” level of
organization we therefore also have “beads on a string”, but this time the
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histone blobs are the “beads”, while the DNA double-helix is the “string”! In
the assembling of this DNA “tertiary structure”, these histone “beads” take an
active role in shaping the DNA. The final resulting DNA “tertiary structure”
is called a chromosome in the biological literature.

Microbiologists used to think that this higher-level “tertiary structure” (i.e.,
the chromosome structure) of DNA was of no importance. Now, however,
they realize that chromosome structure is vital in determining which regions
(or “genes”) of the DNA double-helix are allowed to be active, and which are
suppressed. Scientists at the Cold Spring Harbor Laboratory explain:

In the August 10 [2001] issue of Science, Cold Spring Harbor Laboratory
researcher Shiv Grewal and his colleagues report that seemingly small
differences between two varieties of histone have dramatic effects on
chromosome structure and gene expression. They found that “silent”
regions of chromosomes — where genes are kept “off” and DNA resists
genetic recombination — contain one variety of histone H3. In contrast,
the researchers found that “active” regions of chromosomes — where genes
can easily be switched “on” and DNA can readily recombine — contain a
slightly different variety of histone H3. Histone H3 in silent DNA had a
“methyl” group attached to a particular lysine amino acid, #9. Histone H3
in active DNA had a methyl group attached to a different, nearby lysine
amino acid, #4. . . .

David Allis (University of Virginia), Grewal’s colleague in this and another
study published earlier this year in Science, has proposed that in addition
to the now familiar genetic code of repeating As, Cs, Gs, and Ts in the
sequence of DNA, a “histone code” exists in which differentially modified
histone proteins can organize the genome into active and silent regions
that can be stably inherited.

Indeed, working at the National Cancer Institute in 1996, Grewal and
former Cold Spring Harbor Laboratory scientist Amar Klar showed that
active and silent chromosomal states can be stably inherited through
mitosis (cell division) and, remarkably, through meiosis (the production
of gametes such as egg and sperm). In essence, Grewal and Klar found
that the Mendelian inheritance of traits sometimes depends not only on
the faithful replication of DNA sequences, but also on the transmission of
“higher order” chromosome structure. . . . The scientists proposed a
chromosome replication model in which both the DNA molecule plus
higher order chromosome structure are duplicated.?®’

Differing methylation, affecting the expression of “genes”, is not only
characteristic of the histones within the chromosome, but of the DNA itself: It
has been discovered that one of the DNA bases, cytosine (C), comes in a
second form, methylated cytosine (abbreviated mC), and that the pattern of C
and mC along the DNA double-helix is related to whether any particular
region (or “gene”) of the DNA double-helix is switched “on” or “off”.
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All of the factors relating to whether or not a given “gene” on the DNA
double-helix is actually expressed or not (and, if so, what form that “gene’
expression will take) are called epigenetic factors. Epigenetic factors are
associated not only with the DNA’s “tertiary structure” (i.e., chromosome-
structure), but ultimately with the multi-level structure of the biological
organism taken as a whole. For this reason, epigenetics has put enormous
strain on the reigning linear, reductionistic, mechanical paradigm within
biology — a paradigm which has tended to focus only on the linear primary
structure of DNA and on the ultimately reductionistic concept of a “gene”,
simplistically identified as a region of the DNA that uniquely determines a
single protein, which in turn is supposed to uniquely determine a single
biological “trait”.

bl

Richard C. Strohman, Professor Emeritus of Molecular and Cell Biology at
the University of California, Berkeley, sees the following problems with this
reigning linear, reductionistic biological paradigm:

¢ Population Biology: Complex traits are not accessible to linear
genetic analysis.

¢ Disease Natural History: Most common diseases are not
genetic.

¢ Evolutionary Biology: No relationship exists between genetic
and morphological complexity.

¢ Developmental Biology: There are no genetic programs.

e Molecular and Cell Biology: Informational redundancy
confounds linear genetics.”*®

Professor Strohman elaborates on the above points:

Genetic determinism in current biomedical technology is based on the
general equation of uniqueness between genes and phenotype: Unique
Genes — Unique Effects (unique phenotypes). . .

. .. Essentially, the unique relationship between genes and phenotypes is
flawed because most complex phenotypes (including diseases) [do not]
have a unique genetic basis. Rather the relationship between genome and
phenome is characterized by great complexity involving interaction
between many genes, gene products, and environmental signaling. This
interaction may involve 10, 100, or 1,000 or more genes for any common
disease like cancer or heart diseases. . . .

... Diseases determined at fertilization, as Thomas McKeown has made
clear, are based on genetic abnormalities of one kind or another. Examples
are sickle cell anemia, cystic fibrosis, and Duchenne muscular dystrophy.
There are literally thousands of these diseases, but they occur within the
human population at extremely low frequency and account for less than 2
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percent of our total disease load. So, only 2 percent of the time does the
‘bad gene causes disease’ mechanism operate. . .

. . . [T]here is [an] absence of relationship between genetic and
morphological complexity of species. Some closely related species cannot
be seen by expert examination to be different (have different morphology),
yet they show great variation in complexity at both the genetic and protein
sequence levels. Somehow organisms are able to take vastly different
genomes and construct nearly identical phenomes. This cannot be
explained by a simple linear genetic paradigm. Equally puzzling, humans
and chimps have a very different morphology, yet humans do not differ
genetically from chimps by more than one to two percent. Somehow we
are able to construct very different organisms from very similar genomes;
this is currently not explained by genetic theory. . .

. . .[G]enetic determinism for complex traits has assumed the notion of
‘gene programs’ to help explain the causal linkage between genes and
phenotype. But this assumption has been found to be without experimental
verification. There are no genetic programs. There are only genes that
encode for proteins. . . . Genes, for example, do not control developmental
traits; they only contain information necessary for the synthesis of proteins
used in development — in the assembly of the organism. The control for
this assembly is not found in the DNA; it is elsewhere within the cell and
it depends on a vast array of information coming from many sectors of the
organism. This control corresponds to epigenetic regulation. Far from
being controlled by simple, linear genetic causality, development is seen
to rely on a complex, nonlinear [process]. . .

[Finally], informational redundancy in organisms, especially within cells,
confounds the uniqueness equation because more than one gene can bring
about the same result. The uniqueness equation completely fails, as there
is informational redundancy not only at the gene level, but the epigenetic
level as well. There are many examples in the current literature of
experimental biology testifying to the ability of the organism to get along
without what were thought to be crucial genes. The organism, when a
gene is missing, finds other genes or finds new ways (epigenetic controls)
to use vast numbers of remaining genes to produce the same or highly
similar phenotypes.*®

The limits of the reigning linear, reductionistic paradigm in biology were
amusingly revealed by the hype surrounding the recent completion of the
human genome project, the 1.5 billion dollar national project to map all of the
“genes” in all of the 23 pairs of human chromosomes. This was certainly a
notable scientific achievement. However, claims that “the secret of life”” had
now been “decoded” were clearly overblown, and even curious laymen could
see that being able to read the order of (and group into “genes”) the
nucleotide bases A, C, G, and T within the human genome hardly constituted
an adequate linear, reductionistic explanation of human life.
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As if to emphasize this point, only around 30,000 human genes were actually
found (about twice the number of genes possessed by a fruit fly, or by a
nematode worm), far fewer than biologists expected. Biologists “spun” this
unexpected fact by saying that it proved that we humans should be humble,
since we are really “nothing but” animals, hardly more complex or interesting
than a fly or a worm. Laymen rightly suspected, however, that all the small
number of human genes really proved was that there is far more to
understanding human life than simply invoking the reductionistic concept of a
DNA “gene”.

A few scientists were even willing to acknowledge this. The famous Harvard
paleontologist Stephen Jay Gould, writing in the New York Times, observed
that, thanks to the human genome project, we may finally be liberated from
the “harmful and simplistic idea” that each aspect of our being, “either
physical or behavioral, may be ascribed to the action of a particular gene
‘for’ the trait in question”. The collapse of the doctrine of one gene equals one
protein equals one trait, ““and one direction of causal flow from basic codes to
elaborate totality, marks the failure of reductionism for the complex system
that we call biology. . . Organisms must be explained as organisms, not as a
summation of genes.”?”°

Our final piece of evidence for the nonlinearity of molecular biological
systems is provided by the following striking instance of continuity breaking,
namely, the fact of the one-sided chirality (i.e., asymmetrical “handedness”)
of virtually all biological molecules, a fact which was discovered by Louis
Pasteur in 1857. Kondepudi and Prigogine explain:

The chemistry of life as we know it is founded on a remarkable asymmetry.
A molecule whose geometrical structure is not identical to its mirror image
is said to possess chirality, or handedness. Mirror-image structures of a
chiral molecule are called enantiomers. Just as we distinguish the left and
the right hand, the two mirror-image structures are identified as L- and
D-enantiomers (L for “levo” and D for “dextro”; R and S is another
convention for identifying the two enantiomers). Amino acids, the building
blocks of proteins, and deoxyribose in DNA are chiral molecules. From
bacteria to man, nearly all amino acids that take part in the chemistry of
life are L-amino acids . . . and the riboses in DNA and RNA are D-riboses
. . . As Francis Crick notes: “The first great unifying principle of
biochemistry is that the key molecules have the same hand in all
organisms.” That is all the more remarkable because chemical reactions
show equal preference for the two mirror-image forms (except for very
small differences due to parity-conserving electroweak interactions).?’!

The exact origins of this striking continuity-breaking asymmetry are not
known, but Kondepudi and Prigogine present convincing evidence that only

within a nonlinear far-from-equilibrium biochemical system could such a
global, chiral continuity-break arise:
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First, we note that such an asymmetry can arise only under far-from-
equilibrium conditions; at equilibrium the concentrations of the two
enantiomers will be equal. The maintenance of this asymmetry requires
constant catalytic production of the preferred enantiomer in the face of
interconversion between enantiomers, called racemization. (Racemization
drives the system to the equilibrium state in which the concentrations of
the two enantiomers will become equal.) Second, following the paradigm
of order through fluctuations, we [can] see how in systems with appropriate
chiral autocatalysis, the thermodynamic branch, which contains equal
amounts of L- and D-enantiomers, can become unstable. The instability
is accompanied by the bifurcation of asymmetric states, or states of broken
[continuity], in which one enantiomer dominates. Driven by random
fluctuations, the system makes a transition to one of the two possible
states."

Morphogenesis

Of all of the examples of continuity breaking in nonlinear complex physical
systems, the most awesome and spectacular is perhaps the process of
morphogenesis, i.e., the process by which the embryo of a living organism
transforms from being comprised of generic stem cells to being comprised of
a set of increasingly specific cells organized regionally into biological organs,
each organ having a separate, but coordinated, biological function. Clearly
this is not a linear, reductionistic, assembly-line process, but rather a
nonlinear, holistic process that is characterized by both continuity-breaking
and conditional equifinality.

As is typical of many other tychistic nonlinear physical processes, the
conditions involved in morphogenesis are both external and internal.
External conditions include the maintenance of the embryo’s temperature
within a certain range, the supplying of the proper amount and kind of food to
the embryo, etc. By contrast, internal conditions include all of the “decisions”
which the embryo makes during its development, such as: the sex of the
developing organism, which “traits” will be taken from the mother and which
from the father, and so on.

Furthermore, the equifinality aspect of morphogenesis is shown by the fact
that (as Hans Driesch discovered in the early 1900s) severely disturbing and
rearranging some types of embryos at an early stage of their development
does not affect the final outcome: The embryo still ultimately organizes itself
in such a way as to develop normally.?”? However, if the embryo is
experimentally disturbed and rearranged at a lafer stage of its development,
the embryo will not be able to recover and develop normally. This shows that
equifinality is a key characteristic of morphogenesis, but that it is a
conditional equifinality (in this case, externally conditional on when the
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embryo is experimentally disturbed and rearranged). Prigogine and Stengers
comment:

[W]hen we observe embryological development on film, we “see” jumps
corresponding to radical reorganizations followed by periods of more
“pacific” quantitative growth. There are, fortunately, few mistakes. . .

Many years ago embryologists introduced the concept of a morphogenetic
field and put forward the hypothesis that the differentiation of a cell
depends on its position in that field. But how does a cell “recognize” its
position? One idea that is often debated is that of a “gradient” of a
characteristic substance, of one or more “morphogens”. Such gradients
could actually be produced by [continuity]-breaking instabilities in far-
from-equilibrium conditions. Once it has been produced, a chemical
gradient can provide each cell with a different chemical environment and
thus induce each of them to synthesize a specific set of proteins. This
model, which is now widely used, seems to be in agreement with
experimental evidence. In particular, we may refer to [Stuart] Kauffman’s
work on drosophila. A reaction-diffusion system is taken as responsible
for the commitment to alternative development programs that appear to
occur in different groups of cells in the early embryo. Each compartment
would be specified by a unique combination of binary choices, each of
these choices being the result of a spatial [continuity]-breaking
bifurcation.?™

The details of this awesome nonlinear process of morphogenesis are at
present far beyond our ability to fully understand. But certainly one reason
for the extreme complexity of morphogenesis is the fact that morphogenic
processes are going on at a number of hierarchical levels simultaneously.
Now, at any given higher hierarchical level, a nonlinear complex physical
system is constantly presented with fluctuations emerging from the next-lower
hierarchical level. Most of these fluctuations are suppressed (more accurately,
controlled), but occasionally a fluctuation, or set of fluctuations, is amplified
and becomes an instance of continuity-breaking at that next-higher level.
Notice, however, that the only fluctuations which can “get through” from this
next-lower hierarchical level (and therefore be processed at all at the next-
higher hierarchical level) are those which have not been suppressed/controlled
at that lower level and have therefore become lower-level continuity breaks.
In other words, what emerges from the lower-level is a “randomness” which
has already been constrained (or “filtered”). This suggests a sixth law of
hierarchy, which we may tentatively add to the five laws of hierarchy which
we have previously formulated:

¢ Innonlinear complex physical systems, continuity breaks at a
lower hierarchical level become the fluctuations for the next-
higher hierarchical level.
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In other words, a “decision” made at a lower hierarchical level is generally
controlled (or even suppressed) at the next-higher hierarchical level, but very
occasionally it is instead amplified and transformed, becoming a “decision”
at that next-higher hierarchical level as well. Erich Jantsch has expressed this
aspect of morphogenesis very well:

Up to now, all attempts to find valid formulations for morphogenesis at
each level are based at best on a view which considers the interaction of
stochastic and deterministic factors from an angle of view pertaining to a
single level only. . . All processes which impinge on this level from another
level are considered as random. But what is the meaning of “randomness”
in the context of multilevel evolution in which each level brings new
ordering principles into play? How random is the fluctuation which is
introduced into a system by one of its members or by an outsider if this
individual is itself the product of a long evolutionary chain and of its own
ontogeny? . .. Indeterminacy is the freedom available at each level which,
however, cannot jump over the shadow of its own history. Evolution is the
history of an unfolding complexity, not the history of [purely] random
processes. Out of this fog emerge the contours of a world in which . . .
much is indetermined and free within limits.?”

The Basic Logistic Equation

Our next example illustrates two possible behaviors of nonlinear systems
which we discussed in some detail in our earlier chapter on Nonlinear
Dynamic Systems, but which we have not yet discussed in detail in this
chapter on Nonlinear Complex Physical Systems. These two behaviors are
periodic behavior (also known as limit-cycle behavior) and chaotic behavior.
The example we will choose to illustrate these two behaviors is the nonlinear
complex physical system that is defined by the well-known logistic equation.

Let f(x) be a map function whose domain/range are the real numbers between
Oand 1. Let {x, x,, Xy X, . .} be the orbit of f(x) starting at x, which is a
randomly selected initial value between O and 1. Furthermore, let this map
function f(x) be defined by the following equation:

x,=rx (I—-x) (8

n+

Equation 8 is one version of the basic logistic equation.

To give this logistic equation some biological meaning, let’s say thatx
represents an organism’s population within a simple ecosystem (expressed as
a fraction of the total ecosystem carrying capacity of 1 for that organism)
during the current generation, while x  represents this population fraction of
total carrying capacity during the next generation. The variable r represents
the organism’s reproductive rate, or fecundity rate (which is associated with
such environmental factors as the availability of food, etc.). It is then easy to
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see that the right side of equation 8 can be split into two parts: Factor r x_
represents the autocatalytic part (“the more of x in the current generation, the
more of x in the next generation™), while factor (1 — x ) represents the
autoinhibitory part (‘“the more of x in the current generation, the less of x in
the next generation”). Once again, as is typical for many nonlinear physical
systems, autocatalysis and autoinhibition nearly offset one another — but not
quite. Put in simplified biological terms, factor r x_ is associated with the rate
of reproduction for the organism, while factor (1 —x ) is associated with an
increasing rate of death for the organism as the ecosystem reaches its
carrying capacity for that particular organism.

Notice also that, taken separately, the factors r x_and (1 — x ) are linear.
However, when multiplied together (as in equation 8), they equal —rx >+ r x_
thus making equation 8 a nonlinear (in this case quadratic) equation in x.

Let’s now try the following mathematical experiment: Let r assume
continuous values from 1 up to 4. For each such value of r, let’s select a
random initial seed value for x, between 0 and 1 and begin iterating the
logistic equation. Ignore the first 100 iterations, then start plotting the orbit of
x for that value of r. The result is shown in Figure 31, below:

~2.75 3 3.45 3.57 ~3.84 4
[ |
\ 1 \ \ 1 1

Figure 31 (based on the Dynamic Solver example file liapunov.ds and
on figure 1.6 on page 19 of Alligood, Sauer, and Yorke)

The matching graph below the main graph in Figure 31 shows the Lyapunov
exponent A for the orbit of x associated with each value of » (Values of this
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Lyapunov exponent which are above the zero line indicate probable chaotic
orbits of x, as we saw in our chapter on Nonlinear Dynamic Systems.)

Next, let’s describe how the basic logistic equation (equation 8) behaves for
each range of the value of r:

280

For r =1 (and for 0 < r < 1), x stabilizes to a sink (i.e., an attractor)
at x = 0. In other words, if the rate of reproduction ris 1 or less, the
organism soon dies out. (This range of r is not shown in Figure 31.)

For 1 < r < 3 the value of x eventually stabilizes to a sink (i.e., an
attractor) at a value of x = (r — 1)/r . In other words, for r within this
range, the population level x settles to a constant value that is greater
the greater the reproductive rate r itself is. The basic reason x
stabilizes to a sink within this range of r is that the absolute value of
the first derivative of the logistic equation at x = (r — 1)/r is less than
1 within this range, i.e. | f' (x) | < 1 atx = (r— 1)/r . However, if

r >3, then the point x = (r — 1)/r is no longer a sink, but rather
becomes a source (i.e., a repeller), since then | f ' (x) | > 1. (Note
that only the small highest-portion of this range of r, between
approximately 2.75 and 3, is shown in Figure 31.)

For 3 < r < 3.45 the orbit of x becomes a periodic attractor of period
2. In other words, x eventually settles into a state in which it jumps
between two different x values on alternate iterations of the logistic
equation, as can be clearly seen in Figure 31.

For 3.45 < r < 3.57 the orbit of x is a periodic attractor of ever-
increasing periodicity: first 4, then 8, then 16, 32, 64, 128, etc. In
other words, as r increases within this range, we get a period-
doubling cascade, until, at around r = 3.57, chaotic behavior
emerges. Such a period-doubling cascade is one common way in
which chaos may be approached within a physical system.

For 3.57 < r < 4 the orbit of x generally “stabilizes” into an attracting
infinite set of points known as a chaotic attractor. Remarkably,
however, there are a few periodic “windows” within this range of r
values. For example, within the range of r that is around 3.84 (i.e.,
3.82 < r < 3.86) a periodic attractor of period 3 emerges for a while.
Such periodic “windows” within this logistic-equation chaos (which
can be clearly seen as white, vertical bands in Figure 31) are strongly
reminiscent of the “islands” of KAM curves within the “stochastic
sea” of dynamic chaos, which we discussed in our earlier chapter on
Nonlinear Dynamic Systems. Notice too that the value of the
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corresponding Lyapunov exponent spikes strongly, but briefly, below
zero during these periodic “windows” within the chaos.?’

Some important observations:

First, we note that values such as 2.75, 3.45, 3.569, 3.82, 3.84, and 3.86 in
the above discussion are only approximate values. (For example 3.45 is only
an approximation for 1 + V6 )

Second, we note that the point plotted on the graph in Figure 31 at r =3 is
known as a bifurcation point (as are similar points at r = 3.45, etc.), and the
graph as-a-whole is known as a bifurcation graph. However, unlike in our
earlier figures, these bifurcation points do not represent points at which the
system branches to one of two possible behaviors. Instead, they are points at
which the periodicity of the system radically changes. For example, at r =3
the periodicity changes from 1 to 2, and the stable orbit of x starts to alternate
between two values, while at r = 3.45 the periodicity changes from 2 to 4, and
the stable orbit of x starts to alternate between four values, and so on. Notice
also that at each bifurcation point the value of the Lyapunov exponent spikes
briefly but strongly upward to zero (i.e., to the “edge of chaos”) and then
sharply back down again when the next periodic regime is established. (The
Lyapunov exponent is less than zero throughout each individual periodic
regime, as might be expected.)

When an orbit of x settles down to cycle continuously between several
periodic values, we have what is known as limit-cycle behavior within the
system. Limit-cycle behavior is quite common within nonlinear complex
physical systems. For example, the biological system of bacteria in a food
medium in a Petri dish is (approximately) an example of a system governed
by the logistic equation, and a regular, periodic, up-and-down rhythm in
bacteria population has in fact often been observed within such systems.
Another example of nonlinear limit-cycle behavior is that of chemical clocks,
such as the famous Belousov-Zhabotinski (BZ) reaction in which a mixture of
cerium sulfate, malonic acid, and potassium bromate (all dissolved in sulfuric
acid) alternates sharply and regularly in a clock-like manner between being
yellow-tinted and being colorless, with each stage lasting anywhere from
several minutes down to a fraction of a minute.?”’

Biological rhythms of all kinds, superimposed on one another at all
hierarchical levels, may also be regarded to be examples of limit-cycle
behavior. Erich Jantsch writes:

The coupling of the endogenous rhythms of biological systems (i.e. the
rhythms due to their own dynamics) with cosmic rhythms is an essential
aspect of the co-evolution of life and its environment. . . . Circadian
rhythms (meaning in literal translation “approximately of the period of
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one day”) have, of course, to do with the alternation of day and night,
light and darkness, which is of decisive importance for most life forms.
Many basic activities of life are organized in circadian rhythms, ranging
from biochemical processes within the cell and in the communication
between cells to co-coordinated process systems in the organism as a
whole.””®

Perhaps the most personal example of nonlinear biological limit-cycle
behavior is the beating of the human heart. An important feature of the human
heartbeat (and of all other nonlinear periodic attractors) is their great
stability in the face of perturbations, as compared to linear, near-equilibrium
mechanical clocks, such as the ordinary pendulum. Nicolis and Prigogine
explain:

An oscillator with which each of us is intimately familiar throughout our
lives is the human heart. It beats more-or-less regularly at about 70 or 80
beats per minute for the average individual . . . Suppose now that because
of some perturbation, the pattern of oscillation — the normal heart beat
rhythm — is upset. Since the human system is subject to a great many
perturbations every day, if the heart functioned as the pendulum does,
fibrillation [the sudden inability to perform the complete set of muscular
actions that constitute an entire heartbeat] could well have occurred in
the embryo, before birth. But the heart is not like a pendulum, it does not
“remember” the effect of a perturbation by permanently changing its pattern
of oscillation; if no permanent damage has occurred and the cause of the
perturbation is removed, the heart resumes its normal rhythm. This is
true of any other reproducible phenomenon observed in nature, from
circadian rhythms and the cell division cycle to the change in luminosity
of variable stars, the cepheids. The fact that these and all other reproducible
rhythmic phenomena observed in nature belong to the same realm as the
oscillations in the BZ reagent shows the tremendous importance of
irreversibility and dissipative systems.?”

Let’s return now to physical systems that are defined by the logistic equation:
We have seen that the predicted periodicity has actually been observed in
bacteria populations growing in a food medium in a Petri dish. But what of
chaotic behavior? It turns out that, for simple ecological systems that are
defined by the logistic equation, the value of r never gets so high that the
chaotic regime is reached. However, for more-complex ecologies, such as
those that can be modeled using the nonlinear Lotka-Volterra predator-prey
equations, there is some evidence that chaos can arise in ecological systems.
In their article “Bifurcations and Chaos in Ecology: Lynx Returns Revisited”,
Javier G.P. Gamarra and Ricard V. Sole write:

The most famous compilation of population data along time comes from
the well-known two centuries [of] statistics of [the] Canadian lynx . . . fur
trade compiled from the Hudson’s Bay Company archives. . . . Its meaning
and interpretation have been a matter of controversy over the last fifty
years. . . [M]ost of the theories found a ten-year cycle in lynx returns. . .

282



Nonlinear Complex Physical Systems

... [A]n alternative theoretical framework for the lynx case was developed
by Gilpin (1973, 1979). Based on continuous Lotka-Volterra 3D equations,
the model was able to display chaos. Further work, using the technique of
attractor reconstruction (Takens 1981) showed that a three-dimensional
system could be responsible for lynx fluctuations, suggesting that three
variables (lynx, hare and vegetation) might be at play (Schaffer 1984,
1985). . .

. .. The introduction of [a] trapping effort as the “intervention variable”
shows . . . that a period-doubling route to chaos might have acted over the
system.*

To conclude our discussion of the basic logistic equation (equation 8, above),
it is important to point out that, so long as the value of r is between 1 and 4
(exclusive), it does not matter which initial seed value of x we choose,
provided only that this initial x is between 0 and 1 (exclusive): In all of these
cases the orbit of x will eventually settle down to the periodic or chaotic
attractor for r that is shown in the bifurcation diagram in Figure 31.
However, if r = 4 then this is no longer the case: Instead, if r = 4, then the nth
iteration of the logistic equation has 2" fixed points, and the situation becomes
even more complicated.?®!

The General Logistic Equation

So far we have been discussing the basic logistic equation (equation 8), in
which the “carrying capacity” of the system is regarded as fixed and is
represented by the numeral 1. If, instead, we replace this numeral 1 with a
new carrying-capacity parameter K, we get the following general version of
the logistic equation:

x, ,=rx (K-x) (9

In this context, ecologists like to talk about r-strategies versus K-strategies
for survival. Prigogine and Stengers explain:

In this view, the typical evolution for a prey population will be the increase
in the reproduction rate r. [By contrast,] the predator will evolve toward
more effective ways of capturing its prey — that is, toward an [increase in]
K. But this [increase in K], defined in a logistic frame, is liable to have
consequences that go beyond the situations defined by logistic equations.

As Stephen J. Gould remarked, a K strategy implies individuals becoming
more and more able to learn from experience and to store memories —
that is, more-complex individuals with a longer period of maturation and
apprenticeship. This in turn means individuals both more “valuable” —
representing a larger biological investment — and characterized by a longer
period of vulnerability. The development of “social” and “family” ties
thus appears as a logical counterpart of the K strategy. From that point
on, other factors, besides the mere number of individuals in the population,
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become more and more relevant, and the logistic equation measuring
success by the number of individuals becomes misleading. . .

... We cannot ask the same questions about a population of flies that
reproduce and die by millions without apparently learning from or
enlarging their experience and about a population of primates where each
individual is an entanglement of its own experiences and the traditions of
the populations in which he lives.??

As a specific example of a system in which the carrying capacity K varies as
the system evolves, let’s consider the following highly simplified model of a
particular human society: Imagine a total human population of N people, each
of whom can continuously “choose” either option o or option 3. At any given
time, which we’ll call “the current time”, X _people out of the total population
N have “chosen” and are living in accordance with option o, while X, people
out of the total population N have “chosen” and are living in accordance with
option . Furthermore, everyone in population N are considered always to
have “chosen” (and therefore to be living in accordance with) either option o
or B, so that it is always true that X _+ X, =N.( have placed the words
“choose” and “chosen” in quotation marks to indicate that we are here
referring to that physical process which is the analog of the feleological
process of choosing between options.)

In addition, we also define A  and AB to be the “attractiveness” of options o
and B, respectively, at the current time. (Again, “attractiveness” is in quotes
because it is the objective physical analog of the average subjective
attractiveness of o and 3 with respect to the individuals in the whole
population N at the current time.)

Nicolis and Prigogine now explain:

Clearly, the relative number of individuals wishing to switch to choice 3
will be proportional to the number of those having adopted some other
choice, like o, multiplied by the relative attractiveness of J3: AB/(Aa+ Ap.
Similarly, those individuals wishing to leave choice B in favor of o will
be proportional to X, multiplied by the relative attractiveness of o: A /
A+ AB).283

This suggests the following equation as a model for the rate of change in X |
over time ¢ :

dX Jdt=rX [ X;AJ(A+AY - X AJ(A+AY] (10)

In this equation r represents the rate of recruitment per individual to choice o,
while the expression between brackets indicates the number of X, individuals
currently wishing to switch to choice o, minus the number of X  individuals
currently wishing to switch to choice . Multiplying r times X_times the
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bracketed expression gives us an approximate measure of the rate of change
in X over time (i.e., dX /dr).

But, since, by hypothesis, X, + X[3 = N and therefore X[3 =N-X_,wecan
substitute N —X_ for X, in equation 10 and algebraically simplify, resulting
in:

dXJdt=r X, [NAJ(A+A)—-X,] (11)

Comparing equation 11 to equation 9 we see that the only differences between
the two equations are:

e Equation 11 is a continuous equation, whereas equation 9 is a
discrete equation.

e The expression for the carrying capacity of the system in equation 9
is K. By contrast, in equation 11 the carrying capacity of the system
is expressed by NA /(A + Ay, which is the number of people who
would want to switch to o at the present time if everyone was
currently an X,

Nicolis and Prigogine continue their explanation:

[W]e see that the existence of options affects the carrying capacity of the
system and makes it, through the dependence on the attractiveness on the
X ’s, a function of the instantaneous state.

The above discussion can easily be extended to an arbitrary number of
choices. . . and to the more realistic situation in which the attractiveness
of an option i depends on the particular population j envisioning this
option. . .

[For example,] consider the development of an urban center as certain
areas specialize in specific economic activities and as residential
segregation produces neighborhoods differing in their living conditions
and access to jobs and services. . .

... As the equations are highly nonlinear, it is expected that there will be
several solution branches exhibiting a complicated set of bifurcation
phenomena. Different initial conditions will place the system in different
basins of attraction, thus switching on different evolutions, different
histories. . .

Numerical solution of the equations of the model establish unequivocally
the existence of a large number of solutions and of intricate bifurcation
phenomena. Starting from a space in which variables are initially
distributed at random, we observe the gradual emergence of an organized
pattern with its own administrative and business centers, its industrial
zones, its shopping centers, and its residential neighborhoods of varying
qualities. In the absence of any massive disturbance the pattern remains
stable indefinitely. This spontaneous [continuity] breaking is very similar
to the formation of spatial structures in hydrodynamics and chemical
kinetics . . .

285



ON SYSTEMS

... If a new activity is launched at a certain time, it [may] grow and
stabilize. If the place is well chosen, it may even prevent the success of
similar attempts made nearby at a later time. However, if the same activity
is launched at a different time, it need not succeed; it may regress to zero
and represent a total loss. This illustrates the dangers of short-term, narrow
planning based on the direct extrapolation of past experience. Such static
[linear, reductionistic] methods threaten society with fossilization or, in
the long term, with collapse.?*

In their book Order Out of Chaos, llya Prigogine and Isabelle Stengers
describe nonlinear socio-economic models from a different, but
complementary perspective:

A set of equations extending the logistic equations is constructed, starting
from the basic supposition that populations tend to migrate as a function
of local levels of economic activity, which thus define a kind of local
“carrying capacity”, here reduced to an “employment” capacity. But the
local population is also a potential consumer for locally produced goods.
We have, in fact, a double positive feedback, called the “urban multiplier”,
for local development: both the local population and the economic
infrastructure produced by the already-attained level of economic activity
accelerate the increase of this activity. But each local level of activity is
also determined by competition with similar centers of activity located
elsewhere. The sale of produced goods or services depends on the cost of
transporting them to consumers and on the size of the “enterprise”. The
expansion of each such enterprise depends on a demand that this expansion
itself helps to create and for which it competes. Thus the respective growth
of population and manufacturing or service activities is linked by strong
feedback and nonlinearities.?s

There are many other fascinating aspects of nonlinear complex physical
systems (and the mathematics that can describe them) which we do not have
time to go into in this short chapter. Interested readers are referred to
discussions of such topics as: fractals,?¢ catastrophe theory,”’ the Lorenz
attractor,?®® and the Rossler attractor® in such books as CHAOS: An
Introduction to Dynamical Systems by Kathleen Alligood, Tim Sauer, and
James Yorke, ORDER OUT OF CHAOS: Man’s New Dialogue with Nature
by Ilya Prigogine and Isabelle Stengers, and THE SELF-ORGANIZING
UNIVERSE: Scientific and Human Implications of the Emerging Paradigm
of Evolution by Erich Jantsch.

The Anglo-American Bias Against Nonlinear Science

From all that we have previously said it is clear that nonlinear science is the
science of the future, if for no other reason than that the vast majority of
scientific phenomena that we experience in our everyday lives are either
tychistic or (more rarely) chaotic, rather than being deterministic or
stochastic. Nevertheless, there exist strong philosophical biases against
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nonlinear science and in favor of linear science, especially in Anglo-American
countries, where the mechanical, reductionistic tone of Newtonian and neo-
Darwinian thinking remain strong.

For example, we noted at the end of our chapter on Nonlinear Dynamic
Systems that nonlinear science is often unfairly faulted for failing to provide
accurate deterministic predictions of the future (or retrodictions of the past):
At best (because of the immanent-objective fact of absolute chance) it can
only provide numerical computer simulations that are similar fo their real-
world counterparts in some important respects. That is why nonlinear
scientists are frequently accused of “just playing with computers” and why
the prominent neo-Darwinist John Maynard Smith has attacked the artificial-
life work of Chris Langton and Stuart Kauffman as being “basically a fact-
free science”.?® That is also the reason for P. Hohenberg’s oft-quoted remark
concerning Ilya Prigogine’s theory of nonlinear thermodynamics and
dissipative structures: “I don’t know of a single phenomenon his theory has
explained”, a remark made after Prigogine won the Nobel Prize in chemistry!

But consider this: Suppose (as a worst-case scenario) that the nonlinear
scientific theories of Ilya Prigogine, Chris Langton, Stuart Kauffman, Erich
Jantsch, etc. are all wrong. Even then, we have seen that the mere existence
of strong and persistent interactions between three or more parts within a
physical system is enough to require nonlinear equations to describe that
system. This discovery by Henri Poincare during the late 1900s should by
itselfhave been the death of the all-embracing linear, reductionistic program
in Anglo-American science. That this linear, reductionistic program continues
virtually unabated in Britain and America over 100 years later is a powerful
testimony to the strength of ideology (as opposed to facts) in the formation
and maintenance of scientific paradigms.

Many Anglo-American scientists have become especially uncomfortable with
nonlinear science now that its focus has shifted from chaos to complexity
(i.e., what we have termed tychism). For complex tychistic physical entities
clearly are often characterized by external and internal conditional
equifinality, strongly suggesting such teleological analogs as decisions, goals,
purposes, and functions. Yet the prestige of scientists within secular Anglo-
American society is closely tied with their presumed ability to deliver a
teleologically “meaningless and senseless” universe as a tabla rosa on which
the radically autonomous human individual can write his will unencumbered.
Such, then, is their dilemma.

Interestingly, Anglo-American advocates of creationism, intelligent design,
and vitalism are scarcely less hostile to nonlinear science than are the
reductionists, since they basically agree with the reductionists that, physically,

287



ON SYSTEMS

life is “nothing but” an intricate, linear, near-equilibrium machine: They
disagree with the reductionists only in wanting to super-add spiritual,
metaphysical, or teleological causation to physical causation within the realm
of science.

Seven Laws of Hierarchy

Of course, much work still needs to be done in order to develop compelling
nonlinear scientific theories for many phenomena in nature, especially
phenomena which arise in the biological sciences. In many ways nonlinear
science is still in its infancy. Advances in nonlinear mathematics are also
urgently needed, especially to deal with the problem of the interaction
between nonlinearity and hierarchy in physical systems: We are still very far
from having an adequate and comprehensive nonlinear theory of hierarchy.
The importance of finding such a theory is reflected in Piero Scaruffi’s
definition of a “living organism” (which follows similar definitions by
Ludwig von Bertalanffy and others):

[A] living organism can be viewed as a hierarchical order of open [i.e.,
nonlinear] systems, where each level maintains its structure thanks to a
continuous change of components at the next-lower level.?!

Throughout our chapters on Linear Thermodynamic Systems and
Nonlinear Complex Physical Systems we have tentatively proposed six laws
of hierarchy. Let’s restate them here without comment, and then see if we can
add one more:

1. The definition of a summative characteristic is “passed up”
hierarchical levels of organization essentially unchanged. Further-
more, in many (but not all) cases the value of a summative
characteristic can simply be summed up the hierarchy.

2. A constitutive characteristic (a.k.a. “emergent property”) arises at a
particular level of physical organization and is associated with the
configurational and structural aspects of systems at that level of
organization taken as a whole. Although often related to the
summative (and constitutive) characteristics of the system’s
components, a constitutive characteristic can never be merely
“reduced” to summative characteristics. Furthermore, a consti