
Preconditioning Iterative Methods

for PDE Constrained Optimization

Tyrone Rees

New College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Hilary 2010

This thesis is dedicated to my wife, Kristal.

Acknowledgements

First and foremost I would like to thank my supervisor, Andy Wathen. It was through

his lectures I was first introduced to numerical analysis as an undergraduate, and later as

his DPhil student he initiated me in the rich field of numerical linear algebra and PDE-

constrained optimization. He has been a constant source of support both academically

and personally. I would also like to thank my co-authors, Martin Stoll and Sue Thorne,

with whom it has been a pleasure to work. Having these three people to bounce ideas

off and get feedback from has enabled me to write this thesis.

I would like to thank the EPSRC for funding my research. I am especially grateful to all

organizations and bodies that helped me travel to conferences and research visits. These

include New College, Oxford Computing Laboratory, Oxford Mathematical Institute,

WIAS Berlin, the Copper Mountain conference on Iterative Methods, SIAM, BIRS and

the LMS. I am particularly grateful to the organizers of the first Elgersburg School on

Mathematical Systems Theory, and to Volkswagen Stiftung, who funded my place. It

was here that I learned much of the material that would go on to form the first chapter

of this thesis.

I would like to thank the Numerical Analysis group here in Oxford for making the

department such a stimulating place to study. I have got to talk with so many inspiring

people as they pass through Oxford. A special mention has to go to the students in

the department – in particular my office mates, Siobhan Burke, Nick Hale and Ricardo

Pachón, who have always been on hand to answer a ‘quick question’.

Last, but certainly not least, I have to thank my family. Without my parents’ constant

love and support I would certainly not be where I am today, and for that I cannot

thank them enough. Finally I must thank my wife, Kristal, for being amazing and a

constant source of strength. She has had to put up with me working late, being absent

at conferences, and missing two Easters over the last four years. She deserves an extra

special thanks for spending our first wedding anniversary at a maths conference!

Abstract

Methods for solving PDE-constrained optimization problems generally require the so-

lution of a large linear system in saddle point form. This system is sparse, symmetric

and indefinite, so it is amenable to solution by certain Krylov subspace methods, such

as MINRES or modified versions of Conjugate Gradients. Such methods need good

preconditioners to be effective.

In this thesis we describe block preconditioners, which make use of our knowledge of

the individual blocks that make up the system. These are based on approximations to

the mass matrix and the Schur complement. We show that a fixed number of steps

of the Chebyshev semi-iteration is spectrally equivalent to the mass matrix, so can be

used in the preconditioner. The only component that is needed to approximate the

Schur complement is, at least for larger values of the regularization parameter, a suitable

preconditioner for the forward PDE problem.

We explicitly describe preconditioners to solve control problems with three PDEs – Pois-

son’s equation, the convection-diffusion equation and the Stokes equations – and consider

both distributed and boundary control. We prove the effectiveness of the methods pro-

posed by showing eigenvalue bounds for the preconditioned system, and also give a range

of numerical examples.

Contents

1 Introduction 1

2 Optimal control of PDEs: theoretical background 3

2.1 The Finite Element method . 3

2.2 Distributed control . 8

2.2.1 Discretize-then-optimize . 8

2.2.2 Optimize-then-discretize . 11

2.2.3 Bound constraints . 14

2.2.4 Different boundary conditions . 16

2.3 Boundary control . 17

3 The Numerical Solution of Linear Systems of Equations 21

3.1 General Iterative Methods . 22

3.1.1 Simple Iteration . 22

3.1.2 Richardson Iteration . 25

3.1.3 Steepest Descent . 26

3.1.4 Chebyshev Semi-iteration . 29

3.1.5 Conjugate Gradients . 34

3.1.6 CG with a non-standard inner product . 39

3.1.7 MINRES . 40

3.1.8 GMRES . 42

3.2 Multigrid . 44

3.3 Comments . 52

4 The Numerical Solution of Saddle Point Systems 55

4.1 Simple iterations and Inexact Uzawa . 55

4.2 Block diagonal preconditioners for MINRES . 66

4.3 Bramble-Pasciak CG . 68

4.4 Null space methods and Projected Conjugate Gradients 70

i

4.4.1 Null space methods . 70

4.4.2 Projected Conjugate Gradients . 70

5 Preconditioners for the optimal control of Poisson’s equation 75

5.1 Model Problems . 75

5.2 Approximating the mass matrix . 79

5.3 Approximating the Schur Complement . 82

5.4 Block diagonal preconditioners . 87

5.5 Block lower triangular preconditioners . 93

5.6 Constraint preconditioners . 96

5.7 Comments . 101

6 Preconditioners for the opt. cont. of the convection-diffusion eqn. 105

6.1 The Convection-Diffusion equation . 105

6.2 Iterative solution of the convection-diffusion equation 107

6.3 Optimal control of the convection-diffusion equation 108

6.3.1 Optimize-then-discretize . 109

6.3.2 Discretize-then-optimize . 111

6.3.3 Comparison of the solutions . 112

6.4 Preconditioning . 112

6.5 Comments . 119

7 Preconditioners for the optimal control of the Stokes equations 121

7.1 The Stokes Equations . 121

7.2 Iterative solution of the discrete Stokes equations . 124

7.3 Optimal control of the Stokes equations . 127

7.4 Preconditioning the control problem . 130

7.5 Comments . 138

8 Conclusion 141

A Further Numerical Results 143

A.1 Poisson control with MINRES . 143

A.2 Poisson control with BPCG . 145

A.3 Stokes Control . 146

Bibliography 148

ii

List of Figures

2.1 A Q1 grid. 6

3.1 Schematic illustration of direct vs iterative methods 22

3.2 Plots of Ti, where i = 1, 2, 3, 4, 5, 20 . 31

3.3 Sequence of grids used by the two-grid algorithm. 46

3.4 Coarse grid space and basis and fine grid basis . 46

3.5 Schematic diagram of two methods of restriction in 1D 47

3.6 Multigrid V-cycle and W-cycle . 49

4.1 Diagram of geometry for proof of Theorem 4.1.2 . 65

5.1 Desired state and optimal functions for Example 5.1.1, 2D 77

5.2 Desired state and optimal functions for Example 5.1.2, 2D 78

5.3 Eigenvalues in 2D for Schur complement approximation 80

5.4 Comparison of convergence of PCG and Chebyshev semi-iteration. 81

5.5 Extremal eigenvalues vs β . 84

5.6 Plot of smallest eigenvalue of C2 −B2, a = [1, 15] . 86

5.7 Eigenvalues of the preconditioned system: block diagonal 89

5.8 Problem size vs MINRES its for different β i) . 90

5.9 Problem size vs MINRES its for different β ii) . 92

5.10 Problem size vs MINRES its for different β iii) . 92

5.11 Eigenvalues of the preconditioned system: block lower triangular 95

5.12 Problem size vs NSCG its for different β i) . 95

5.13 Problem size vs NSCG its for different β ii) . 97

5.14 Eigenvalues of preconditioned system: constraint . 100

5.15 Problem size vs PPCG its for different β i) . 100

5.16 Optimal functions for Example 5.1.1 in 2D with PPCG 102

5.17 Residuals for solution with PPCG . 102

6.1 Plots of stabilized and unstabilized solutions . 106

iii

6.2 Plot of optimal state (left) and control (right) for θ = π/4. 113

6.3 Plot of optimal state (left) and control (right) for θ = 0. 114

6.4 Plot of optimal state (left) and control (right) for θ = 3π/2. 115

6.5 Plot of optimal state (left) and control (right) for θ = 2.4. 116

6.6 Extremal eigenvalues vs β . 117

7.1 Pressure and streamlines for Example 7.1.1 . 122

7.2 Streamlines of ~̂v . 129

7.3 Computed states for Example 7.3.1 in two dimensions, β = 10−2. 129

7.4 Computed states for Example 7.3.1 in two dimensions, β = 10−5. 130

7.5 Eigenvalues of (KQ−1K)−1S . 131

7.6 Eigenvalues and bounds for inexact Uzawa iteration matrix 133

7.7 Pseudospectra of I −M−1K . 134

7.8 Plot of problem size vs iterations needed for different β, δ = 1 138

7.9 Plot of problem size vs iterations needed for different β, δ = 10−2 139

iv

Chapter 1

Introduction

Let Ω denote some body of mass. Suppose that we have some desired heat distribution, or desired
state, which we will denote ŷ, which we would like the mass to possess. Suppose the heat distribution
satisfies a partial differential equation,

Ly = u,

and we have some mechanism of heating the body – for example, microwaves or electromagnetic
induction. Mathematically, this means that we are free to choose the forcing term, u, on the right
hand side of the PDE. A practial situation would be, for example, a tumor in a body; here we would
like to heat the tumor to a high enough temperature to cure it, yet keep the tissue surrounding the
tumor at a low temperature. The question is, how do we choose the heat to apply to the body – i.e.
the function u – to give us our desired distribution.

The answer to this question depends on which sense we mean that our state y is close to the
desired state ŷ? If we take this as being in the L2(Ω) norm – which makes the theory work well, as
we shall see in Chapter 2 – the question can be formulated as the following minimization problem:

min
y

1

2
‖y − ŷ‖2L2(Ω)

s.t. Ly = u.

We shall see in Chapter 2 that this problem is, in general, ill-posed. We can make the solution
well-defined by the addition of the norm of the control, and a Tychonoff regularization parameter
to the cost functional, so our problem becomes

min
y,u

1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω)

s.t. Ly = u.

Since u is now included in the cost functional its size in the L2 norm is prevented from becoming
too large, and u has better regularity properties. We call the functions u and y that acheive this
minimum the optimal control and optimal state respectively.

The problem above is called a distributed control problem, as the quantity you can change is
distributed throughout the domain Ω. A related problem is boundary control, where you can only
change the boundary conditions of the PDE.

The mathematical foundations for problems of this type were set down by J.L. Lions in the 1960s
[79]. Many problems in many fields can be formulated in this way – there are examples in medicine
[2, 76], aerodynamics [46, 105] and mathematical finance [14, 36] to name but a few. It is therefore
very important that we have good techniques for solving such problems. Our aim was to develop
methods which are factorization free, and for which the time needed to solve such problems scales
linearly with the problem size.

In Chapter 2 we review some of the theory behind such control problems. We describe the

1

finite element method for solving PDEs numerically, and show how applying this method to a PDE-
constrained optimization problem leads to a discrete optimality system which is in saddle point
form.

Chapter 3 describes some of the standard iterative methods for solving linear systems of equa-
tions. These are presented as linear methods – such as Jacobi iteration, and the Chebyshev semi-
iteration – and non-linear methods, such as Krylov subspace methods. We also give a brief intro-
duction to multigrid methods.

We look at solving systems with saddle point structure in Chapter 4. We again consider linear
methods – such as the inexact Uzawa method – and non-linear Krylov subspace methods. This
chapter includes an original derivation of bounds for the eigenvalues, λ, satisfying the generalized
eigenvalue problem [

A BT

B 0

] [
x

y

]
= λ

[
C 0
B D

] [
x

y

]
.

These confirm those previously reported in the literature for the case when A − C > 0 – i.e. when
the eigenvalues are real. The bounds proved for the general case differ from those already published,
and could offer new insights.

Chapter 5 introduces the paradigm that is the main contribution of this thesis: we can develop
optimal block preconditioners for PDE constrained optimization problems by using (suitable) pre-
conditioners for the forward problem and an approximation to the mass matrix. We show that the
Chebyshev semi-iteration gives a good approximation to the mass matrix in block preconditioners
of this type. We present eigenvalue bounds to justify our claims, as well as numerical examples for
a variety of control problems where the constraint is Poisson’s equation.

In Chapter 6 we look at a PDE that is not self-adjoint – the convection diffusion equation.
Here we have to deal with the question of whether to optimize first and then discretize, or do the
discretization before the optimization. We give numerical results, based on the methods introduced
in the previous chapter, for both techniques.

Finally we will look at a flow control problem in Chapter 7, where the constraints are the Stokes
equations. Again, the methods introduced in Chapter 5 can be applied, although in this case we
must be careful with the approximation to the PDE that we use in our preconditioner. We show
theoretically that we can derive effective preconditioners for this problem, and give numerical results
which support our theory.

2

Chapter 2

Optimal control of PDEs:

theoretical background

2.1 The Finite Element method

Before we consider how to solve the control problem introduced in Chapter 1, we give a brief review
of how to discretize the forward problem using the finite element method. Suppose we want to solve
Laplace’s equation in some domain Ω,

−∇2u = f, (2.1)

together with mixed boundary conditions

u = g1 on ∂ΩD,
∂u

∂n
= g2 on ∂ΩN , (2.2)

where ∂ΩD ∪ ∂ΩN = ∂Ω, ∂ΩD ∩ ∂ΩN = ∅, and ∂u/∂n denotes the directional derivative in the
direction normal to ∂Ω. We call boundary conditions of the type on ∂ΩD Dirichlet boundary
conditions, and those on ∂ΩN Neumann boundary conditions.

Let H1(Ω) be the Sobolev space of functions u such that u ∈ L2(Ω) and it possesses a weak first
derivative. Then, if we define solution and test spaces as

H1
E = {u ∈ H1(Ω)|u = gD on ∂ΩD}

H1
E0

= {v ∈ H1(Ω)|v = 0 on ∂ΩD}

the weak formulation of (2.1) and (2.2) is:
Find u ∈ H1

E(Ω) such that

∫

Ω

∇u · ∇v =

∫

Ω

vf +

∫

∂ΩN

vg2 ∀ v ∈ H1
E0
.

We refer the reader to the books by Evans [42] or Adams and Fournier [1], for example, for more
detail about weak formulations of PDEs and Sobolev spaces.

Assume that V h0 ⊂ H1
E0

is an n-dimensional vector space of test functions with {φ1, ..., φn} as a
basis. In order to satisfy the Dirichlet boundary condition on ∂ΩD we extend the basis by defining
functions φn+1, . . . , φn+n∂

and coefficients Uj such that
∑n+n∂

j=n+1 Ujφj interpolates the boundary
data. We define

V hE := span{φ1, . . . , φn}+
n+n∂∑

j=n+1

Ujφj .

3

Then, if uh ∈ V hE , it is uniquely determined by u = (U1 · · ·Un)T in

uh =

n∑

j=1

Ujφj +

n+n∂∑

j=n+1

Ujφj . (2.3)

The functions in the first sum on the right hand side of (2.3) are called the trial functions. We have
therefore constructed a space V hE , of which the trial functions and the basis of the set of test functions
V h0 coincide. This is referred to as the Galerkin method. If you choose an approximation where the
trial and test spaces are different you get a Petrov-Galerkin method; we discuss an example of such
a method in Chapter 6.

Using the Galerkin approximation we can write the finite-dimensional version of the weak for-
mulation: find uh ∈ V hE such that

∫

Ω

∇uh · ∇vh =

∫

Ω

vhf +

∫

∂ΩN

vhg2 ∀ vh ∈ V h0 .

Since the φi form a basis, this is the same as finding Uj , j = 1, . . . , n such that

n∑

j=1

Uj

∫

Ω

∇φj · ∇φi =
∫

Ω

φif +

∫

∂ΩN

φig2 −
n+n∂∑

j=n+1

Uj

∫

Ω

∇φj · ∇φi ∀ vh ∈ V h0 ,

for i = 1, . . . , n, where we have taken the known coefficients Un+1, . . . , Un+n∂
to the right hand side.

This is then equivalent to solving the linear system

Ku = f̂ , (2.4)

where

K = [ki,j] ∈ R
n×n, ki,j =

∫

Ω

∇φj · ∇φi

f̂ = [fi] ∈ R
n, fi =

∫

Ω

φif +

∫

∂ΩN

φig2 −
n+n∂∑

j=n+1

Uj

∫

Ω

∇φj · ∇φi.

The matrix K is commonly referred to as the stiffness matrix. It is clear from the definition that
this is symmetric. Moreover, let v be any vector in Rn. Then

vTKv =
n∑

j=1

n∑

i=1

vj

(∫

Ω

∇φj · ∇φi
)
vi

=

∫

Ω




n∑

j=1

vj∇φj


 ·

(
n∑

i=1

vi∇φi
)

=

∫

Ω

∇vh · ∇vh

≥ 0,

for vh :=
∑n

i=1 viφi ∈ V h0 . Therefore K is at least positive semi-definite. Now suppose vTKv = 0.
Then this must mean that ∇vh = 0, i.e. vh must be a constant function. Since vh ∈ V h0 , it is zero
on ∂ΩD. Since the function is continuous up to the boundary, and as long as ∂ΩD 6= ∅, we must
have that vh = 0, and hence v = 0. Therefore if the problem has a Dirichlet boundary condition
applied to part of the boundary, the stiffness matrix K is positive definite.

In the case of a purely Neumann boundary condition, this argument will not work. In this
case, K will be only semi-definite, and will have a null-space of dimension one corresponding to the

4

constant functions. If, as is usual, our trial functions define a partition of unity – i.e. the sum of the
trial functions is identically one – then this corresponds to the constant vectors. Therefore, in order
for the purely Neumann problem to have a solution, we require that 1T f̂ = 0, where 1 = [1, . . . , 1]T .
This is equivalent to the necessary condition for the continuous solution to exist, namely

∫

Ω

f +

∫

∂Ω

g2 = 0.

Let us return to (2.4). Calculating the right hand side, f̂ , requires us to evaluate integrals of
the form

∫
fφi. In general, calculating these integrals exactly would be infeasible, so one way to do

this would be using numerical quadrature. Another way, which we will now explore, would be to
discretize the right hand side function, f , using the trial space. Then we’d have, by interpolation or
otherwise,

fh =
n∑

i=1

Fiφi.

Then we can write (2.4) in the form
Ku = Qf + d, (2.5)

where f = [F1, . . . , Fn]
T , d contains the boundary data and

Q = [qi,j] ∈ R
n×n, qi,j =

∫

Ω

φjφi.

The matrixQ is usually called themass matrix. As with the stiffness matrix, this is clearly symmetric
and for any v ∈ Rn,

vTQv =

n∑

j=1

n∑

i=1

vj

(∫

Ω

φjφi

)
vi =

∫

Ω

vhvh ≥ 0,

where vh =
∑n
j=1 viφi. It is clear that vTQv = 0 ⇐⇒ vh = 0, hence v = 0. Therefore the mass

matrix too is symmetric positive definite.
Now we just have to choose basis functions φi. If we pick functions with a small support, then

most of the entries in K and M will be zero, making these sparse matrices, hence easier to solve
computationally. It is well known that any smooth function can be approximated to arbitrary
accuracy using piecewise polynomials [39, p 20], so this is where we look for our basis.

Consider first the case where the domain Ω is square. Then we can simply divide it into smaller
squares, the corners of which are some distance h apart1. We want to define our basis elements such
that if the nodes are at positions xj , j = 1, . . . , n, then

φi(xj) = δi,j ,

where δ denotes the Kronecker delta. We can define bilinear polynomials of the form (ax+b)(cy+d),
where a, b, c, d ∈ R, that are one at each of the corners, and zero at the others. For example, for
the square [0, h]× [0, h] such functions would be

(1− x/h)(1 − y/h), x/h(1− y/h), xy/h2, (1− x/h)y/h.

Then, at each node, we simply patch together the relevant functions from the four squares the touch
that node, giving the basis function which is made out of four piecewise-bilinear functions. A regular
Q1 grid is shown in Figure 2.1.

Arbitrary quadrilaterals can be treated in essentially the same way – see e.g. [39, Section 1.3] for
details. Such elements are known as Q1 elements. The ideas above generalize to three dimensions –
here we have Q1 ‘brick’ elements.

We can get a more accurate approximation by using higher-order elements – that is, by using

1More generally we can spilt the domain into rectangles – the discussion here generalizes in the obvious way.

5

Figure 2.1: A Q1 grid.

functions that are piecewise biquadratic, for example. This would be known as a Q2 approximation.
For less convenient domains, it is usual to use a triangular mesh – known as a triangulation. We

call bases with triangles (or tetrahedra) that correspond to those defined with rectangles (or bricks)
above P1 and P2 elements. We will only use quadrilateral elements here – we refer to [39, Section
1.3] for a more detailed discussion about other possibilities.

We now turn our attention to the calculation of the stiffness matrix. This is usually done by
working out the stiffness matrix on a standard element and then assembling all the element stiffness
matrices together into a much bigger matrix. Let ne be the number of nodes on an element – for
example, in 2D ne is four if using Q1 elements – and, as above, let n be the number of nodes
corresponding to unknown coefficients in the triangulation. Let an element stiffness matrix on
element e be labelled Ke ∈ R

ne×ne . If we use a regular Q1 discretization with mesh size h, as shown
in Figure 2.1, then the element stiffness matrix is given by

Ke =
1

6




4 −1 −2 −1
−1 4 −1 −2
−2 −1 4 −1
−1 −2 −1 4


 .

Now consider the Boolean matrix Le ∈ Rne×n which maps a vector from the global nodal variables
to the (local) nodal variables on the eth element. Then, if we have N elements overall, we can write
the stiffness matrix as

K =

N∑

i=1

LTeKeLe

=
[
LT1 . . . LTN

]


K1 0

. . .

0 KN







L1

...
LN




:= LTblkdiag(Ke)L.

Note that the matrix L, which is made up of the element transfer matrices, has at most one non-zero
entry in each row.

The mass matrix is assembled in the same way - and so we can write

Q = LTblkdiag(Qe)L, (2.6)

6

where Qe is the element mass matrix on element e. For a Q1 discretization with mesh size h this is
given by

Qe =
h2

36




4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4


 .

Now that we have defined possible bases for V hE we would like to say more about the eigenvalues of
the stiffness and mass matrices than we could in the general case. First, let Th be a set of triangles or
quadrilaterals that tessellate Ω. Define h := min∆k∈Th

hk and h := max∆k∈Th
hk, where hk denotes

the longest edge of the triangle. Then a sequence of such grids {Th} is said to be quasi-uniform if
there exists a constant ρ > 0 such that h ≥ ρh for every grid in the sequence. Also, {Th} is said
to be shape-regular if there exists a minimum angle θ∗ 6= 0 such that every element in Th has it’s
smallest angle greater than or equal to θ∗.

We are now in a poisition to state the following two theorems, which are proved in [39].

Theorem 2.1.1. [39, Theorem 1.32] For Qm or Pm approximation on a shape regular, quasi-
uniform subdivision of R2, the Galerkin matrix K in (2.5) satisfies

cmh
2 ≤ vTKv

vTv
≤ Cm ∀ v ∈ R

n,

where h is the length of the longest edge in the grid, and cm and Cm are positive constants independent
of h, but depending on m.

In three dimensions, under the same assumptions, the corresponding bound is

cmh
3 ≤ vTKv

vTv
≤ Cmh ∀ v ∈ R

n.

Theorem 2.1.2. [39, Theorem 1.29] For Qm or Pm approximation on a shape regular, quasi-
uniform subdivision of R2, the mass matrix Q in (2.5) approximates the scaled identity matrix in
the sense that

cmh
2 ≤ vTQv

vTv
≤ Cmh

2 ∀ v ∈ R
n,

where h is the length of the longest edge in the grid, and cm and Cm are positive constants independent
of h, but depending on m.

In three dimensions, under the same assumptions, the corresponding bound is

cmh
3 ≤ vTQv

vTv
≤ Cmh

3 ∀ v ∈ R
n.

We briefly mention the accuracy of finite element methods as presented here. Any error analysis
is dependent on the norm in which one would like to measure convergence. Deriving error bounds
for the Dirichlet problem where g1 6= 0 – the inhomogeneous problem – requires a non-conforming
analysis since the boundary condition is interpolated, and is technical – see, for example, Brenner
and Scott for details [24]. In the homogeneous case, where g1 = 0, it can be shown, for example,
that

‖u− uh‖H1(Ω) ≤ ch‖f‖2. (2.7)

See [19, Theorem 7.5] for a proof. If we know more about the regularity of u this can be strengthened.
For example, if f ∈ L2(Ω), so u ∈ H2(Ω), then

‖u− uh‖2 ≤ Ch2‖u‖2. (2.8)

This is Corollary 7.7 in Braess [19].
The discussion in this section broadly follows the approach presented in [39, Chapter 1]. For

more details – including more results on the accuracy of such methods – we refer the reader to, for

7

example, the books by Braess [19], Brenner and Scott [24] or Ciarlet [28].

2.2 Distributed control

Recall from Chapter 1 that we are interested in solving problems of the form

min
y,u

1

2
||y − ŷ||22 +

β

2
||u||22

s.t. Ly = u in Ω

y = f1 on ∂ΩD,
∂y

∂n
= f2 on ∂ΩN .

We will introduce the theory for a specific application of the problem, namely where L = −∇2,
∂ΩD = ∂Ω and f1 = 0. We look for a control u ∈ L2(Ω) and y ∈ H1

0(Ω). This problem is given
explicitly as

min
y,u

1

2
||y − ŷ||22 +

β

2
||u||22 (2.9)

s.t. −∇2y = u in Ω (2.10)

y = 0 on ∂Ω. (2.11)

If we want to solve such a problem numerically, it is clear that we will have to discretize the
quantities involved at some point. Here there are two schools of thought – do you derive the opti-
mality conditions first, and then discretize from there (optimize-then-discretize) or do you discretize
the cost functional and the PDE first and then optimize that (discretize-then-optimize)? This can be
an important choice, e.g. Collis and Heinkenschloss in [29] show that you can get different answers
depending on which method you choose. As we shall see, both approaches are equivalent when look-
ing at the problem just introduced, but this will not always be the case – for example, see Chapter
6.

2.2.1 Discretize-then-optimize

First, let’s consider the discretize-then-optimize method. Here we discretize the PDE using the finite
element method. Let {φi} be some set of basis functions such that span{φ1, . . . , φn} = Y h0 ⊂ H1

0.
Then we look for a finite dimensional approximation to y, yh =

∑n
i=1 Yiφi ∈ Y h0 . We call the vector

of unknown coefficients y := (Y1, . . . , Yn).
We also need to discretize the control, u. Let {ψi} be some basis – generally, but not necessarily,

different from the φi – such that ψi ∈ L2(Ω). Then we can define Uh := span{ψ1, . . . , ψm}. The
discretized control uh is therefore uniquely determined by the vector of coefficients u = (U1, . . . , Um).

The discrete analogue of the minimization problem (2.9)-(2.11) is therefore

min
yh,uh

1

2
||yh − ŷ||22 +

β

2
||uh||22 (2.12)

s.t.

∫

Ω

∇yh · ∇vh =

∫

Ω

uhvh ∀ vh ∈ Y h0 . (2.13)

As we saw in the previous section, (2.13) can be written as

Ky = Q̂u,

8

where K is the stiffness matrix, and here

Q̂ = [q̂i,j] ∈ R
n×m, q̂i,j =

∫

Ω

φiψj .

Also, we have:

||yh − ŷ||22 =

∫

Ω

(yh − ŷ)2

=
∑

i

∑

j

YiYj

∫

Ω

φiφj − 2
∑

j

Yj

∫

Ω

φj ŷ +

∫

Ω

ŷ2

= yTQyy − 2yTb+ C

where

Qy =
[
qyi,j
]
∈ R

n×n, qyi,j =

∫

Ω

φiφj ,

b = [bi] ∈ R
n, bi =

∫

Ω

ŷφi,

and C is a constant. We call Qy the state mass matrix. Similarly,

||uh||22 = uTQuu

where

Qu =
[
qui,j
]
∈ R

m×m, qui,j =

∫

Ω

ψiψj ,

which we call the control mass matrix.
Solving the discretized equations (2.12)-(2.13) is therefore equivalent to solving

min
y,u

1

2
yTQyy − yTb+

β

2
uTQuu (2.14)

s.t. Ky = Q̂u. (2.15)

We will sometimes refer to this cost function as J(y,u) := 1
2y

TQyy − yTb + β
2u

TQuu. Theorem

2.1.1 tells us that K is invertible, and so y = K−1Q̂u. Therefore we can think of y as a function of
u, and so J(y,u) =: F (u), and our problem can be re-phrased as

min
u
F (u).

It is well known – see, e.g. [89, Theorem 12.2], [68, Theorem 1.93] – that if u∗ is optimal for problems
such as this, then u∗ must satisfy the variational inequality

∇(F (u∗)) · (u− u∗) ≥ 0 ∀ u ∈ R
m,

which tells us that ∇(F (u∗)) = 0.
For the cost functional defined above, we have

∇(F (u)) = Q̂TK−T (QyK
−1Q̂u− b) + βQuu = Q̂TK−T (Qyy − b) + βQuu. (2.16)

If we introduce a new variable p := −K−T (Qyy − b), then the optimality condition becomes

(βQuu− Q̂Tp) = 0. (2.17)

9

We call the vector p the adjoint state, since it satisfies

KTp = b−Qyy. (2.18)

The system that needs to be solved to find the minimum is therefore given by equations (2.15,2.18,2.17),
and can be written as 


βQu 0 −Q̂T
0 Qy KT

−Q̂ K 0






u

y

p


 =




0

b

0


 . (2.19)

Notice that the cost function is convex by construction, so the critical point found by solving this
system will always be a minimum.

Since Qu and Qy are symmetric, this matrix is itself symmetric. Also, in the case where the
control is Poisson’s equation, as long as we use a Galerkin finite element method – i.e. the trial and
test spaces are the same - K is symmetric, so KT = K. In the case where we discretize the control
and the state using the same bases, then the equation will simplify to



βQ 0 −Q
0 Q K

−Q K 0






u

y

p


 =




0

b

0


 , (2.20)

so Q := Qu = Qp = Q̂. Note in particular that, in this case, the generally rectangular matrix Q̂ will
be square, and invertible.

The matrices above have what is called a saddle point structure, that is they are of the form

[
A BT

B 0

]
,

where, in the general case, A =

[
βQu 0
0 Qy

]
and B = [−Q̂ K]. We shall discuss the properties of

such matrices in Chapter 4.
Returning to the general case we give another way to derive the optimality system (2.19). Recall

that we have to find y and u satisfying (2.14,2.15):

min
y,u

1

2
yTQyy − yTb+

β

2
uTQuu

s.t. Ky = Q̂u.

Another way to do this is by introducing the Lagrangian function

L (u,y,p) :=
1

2
yTQyy − yTb+

β

2
uTQuu+ pT (Ky − Q̂u),

where here p denotes a vector of Lagrange multipliers. Then it is well known that a stationary point
(and hence, by convexity, the minimum) is given by finding u, y and p such that

∇uL (u,y,p) = βQuu− Q̂Tp = 0

∇yL (u,y,p) = Qyy − b+KTp = 0

∇pL (u,y,p) = Ky− Q̂u = 0.

This is just the optimality system (2.19) derived above. Therefore the adjoint variable we introduced
earlier can be thought of as a Lagrange multiplier.

10

2.2.2 Optimize-then-discretize

Now we consider the other alternative – to find an optimality system for the continuous problem, and
discretize these equations. To do this, we need to have a definition of the derivative of a functional.

Let u0 ∈ U , an open set, and take t > 0 sufficiently small so that u + th ∈ U for some h. We
define the directional derivative of f at u0 in the direction h as

δf(u0, h) := lim
t→0

1

t
(f(u0 + th)− f(u0)).

If the directional derivative exists for each h ∈ U , then the map

δf(u, ·) : U −→ V

h 7−→ δf(u0, h)

is called the first variation of f at u. If this is a bounded linear operator, then this is the Gâteaux
derivative of f at u0.

In addition, f is Fréchet differentiable at u0 if and only if there exists a bounded linear operator
D : U −→ V such that if h 6= 0,

‖h‖U → 0 ⇒ ‖f(u0 + h)− f(u0)−Dh‖V
‖h‖U

→ 0.

We say that f is Gâteaux (resp. Fréchet) differentiable on U if and only if f is Gâteaux (resp.
Fréchet) differentiable for each u0 ∈ U .

Let us consider the continuous problem (2.9–2.31):

min
y,u

1

2
||y − ŷ||22 +

β

2
||u||22

s.t. −∇2y = u in Ω

y = 0 on ∂Ω.

We will find the optimality system using the Lagrangian technique, as described above for the
discrete case. It has been shown (see, e.g. [83, 118]) that this is a rigorous way to derive the
optimality system. A treatment from first principles can get very technical, so we just consider the
Lagrangian technique here, and refer the interested reader to, for example, [79].

Introduce two Lagrange multipliers, p1 and p2, which we assume to have the appropriate smooth-
ness, and formally consider the Lagrangian

L =
1

2
‖y − ŷ‖22 +

β

2
‖u‖22 −

∫

Ω

(−∇2y − u)p1 dx −
∫

∂Ω

yp2 ds. (2.21)

Consider the Fréchet derivative with respect to y in the direction h:

DyL(y, u, p1, p2)h =

∫

Ω

(ȳ − ŷ)h dx−
∫

Ω

−∇2h p1 dx−
∫

∂Ω

p2h ds

=

∫

Ω

(ȳ − ŷ)h dx+

∫

Ω

h∇2p1 dx−
∫

∂Ω

∂h

∂n
p1 ds

+

∫

∂Ω

h
∂p1
∂n

ds−
∫

∂Ω

p2h ds.

There are no restrictions on the state, so for a minimum we must have that the optimal control and
state, denoted by ū and ȳ respectively, must satisfy

DyL(ȳ, ū, p1, p2)h = 0 ∀h ∈ H1(Ω). (2.22)

11

In particular, we must have DyL(ȳ, ū, p1, p2)h = 0 for all h ∈ C∞
0 (Ω). In this case h|∂Ω = 0 =

∂h
∂n |∂Ω, and so the expression above reduces to

∫

Ω

(ȳ − ŷ +∇2p1)h dx ∀ h ∈ C∞
0 (Ω),

and so, applying the fundamental lemma of the Calculus of Variations, we get that

−∇2p1 = y − ŷ in Ω.

Now consider h ∈ H1
0 (Ω), so that h|∂Ω = 0. Then we get

∫

∂Ω

∂h

∂n
p1 ds = 0 ∀h ∈ H1

0 (Ω)

so we have
p1 = 0 on ∂Ω.

The remaining equations give us the link between p1 and p2, namely

p2 =
∂p1
∂n

on ∂Ω.

If we label p1 = p, then we can write the adjoint equation as

−∇2p = y − ŷ in Ω (2.23)

p = 0 on ∂Ω, (2.24)

which is the continuous analogue of the discrete adjoint equation obtained above.
Now consider optimality with respect to the control, u. The optimal control and state satisfy

DuL(ȳ, ū, p1, p2)h = 0 ∀h ∈ L2(Ω).

This gives us that ∫

Ω

(βū + p)h dx = 0 ∀h ∈ L2(Ω),

and hence, almost everywhere,
βū + p = 0. (2.25)

Now consider the case where β = 0. Equation (2.25) gives us that p = 0 a.e., and substituting
this into the adjoint equation (2.23) tells us that ȳ = ŷ a.e. Therefore there exists an optimal control
for the continuous problem if and only if ŷ is a solution to the differential equation (2.10–2.11). In
particular, if ŷ ∈ L2(Ω)\H1

0 (Ω), then there does not exist an optimal control.
In order to get around this difficulty we pick a regularization parameter β > 0. In this case, we

get the optimal control ū and optimal state ȳ satisfy the optimality system given by

−∇2ȳ = ū in Ω
ȳ = 0 on ∂Ω

−∇2p = ȳ − ŷ in Ω
p = 0 on ∂Ω

βū+ p = 0 in Ω.

To solve the optimality system numerically, we need to discretize these using, say, finite elements.
Note that here we have three separate – yet coupled – equations.

The first two of these are just partial differential equations, so we can discretize them using the
finite element method. Note that here it is possible to discretize the three equations independently
of the other – e.g. using a different finite element space to discretize the state in the state equation as
in the adjoint equation. However, we will consider only the case where we use the same discretization
of the state, control and adjoint variables for all three equations.

12

Suppose, as in Section 2.1, there are spaces {φi}, {ψi} and {χi} such that

y =

n∑

i=1

Yiφi, u =

m∑

i=1

Uiψi and p =

k∑

i=1

Piχi.

First, let us consider the state equation, −∇2y = u, with homogeneous Dirichlet boundary
conditions. As shown in Section 2.1, if we use a Galerkin finite element method we get

Kyy = Quyu,

where Ky = {
∫
Ω∇φi · ∇φj}i,j ∈ Rm×m and Quy = {

∫
Ω φiψj}i,j ∈ Rn×m.

Now consider the adjoint equation, −∇2p = ŷ − ȳ, again with homogeneous Dirichlet boundary
conditions. Discretizing with a Galerkin finite element method here gives

Kpp = −Qypy + b,

where Kp = {
∫
Ω
∇χi · ∇χj}i,j ∈ Rk×k, Qyp = {

∫
Ω
ψiχj}i,j ∈ Rm×k and b = {

∫
Ω
ŷχj}j . Note that if

we discretize u and p using the same elements then, in the notation of Section 2.2.1, Quy = Q̂ and

Qyp = Q̂T .
We now turn our attention to the relation βu+ p = 0. Using our approximations for u and p we

get

β

m∑

i=1

Uiψi −
k∑

i=1

Piχi = 0.

To get a weak formulation of this we clearly have a choice of trial space. If we pick span{ψi}, then
we get the finite dimensional equation

βQuu−Qpup = 0,

where Qu = {
∫
Ω ψiψj}i,j ∈ Rm×m and Qpu = {

∫
Ω χiψj}i,j ∈ Rk×m.

Putting these three equations together, we see that when we optimize first we get to an equation
of the form 


βQu 0 −Qpu
0 Qyp Kp

−Quy Ky 0






u

y

p


 =




0

b

0


 . (2.26)

It is easy to see that if we choose the same finite element basis to discretize the variables y and p
(so k = n and χi = φi for all i = 1, . . . , n), then we get (2.19) – i.e. this is the same as when we
did the discretization first. This will not be true in general – it holds here because the Laplacian is
self-adjoint, so the discretization of the analytic adjoint and the discrete adjoint coincide. This will
be the case whenever we employ an adjoint-consistent discretization. We consider a case where the
two methods do not coincide in Chapter 6.

We briefly mention how error estimates are obtained for these problems. Let us explicitly in-
troduce the solution map S : L2(Ω) → L2(Ω), S(u) = y and the discrete solution map Sh(u) = yh
Sh : L2(Ω) → L2(Ω), Sh(u) = yh. Then from the FEM error estimate (2.8) we get ‖Su − Shu‖2 ≤
Ch2‖u‖2, which can be thought of as a bound on the operator norm

‖S − Sh‖2 ≤ Ch2.

We can write the discretized problem (2.12) as

min
u

1

2
‖Shu− ŷ‖22 +

β

2
‖u‖22,

which, by the theory above, has a unique optimal control ūh and state ȳh almost. Then, analogously
to (2.16), the necessary optimality conditions for both the discrete control and the continuous control

13

respectively are

S∗(Sū− ŷ) + βū = 0

S∗
h(Shūh − ŷ) + βūh = 0.

If we take inner products with ū− ūh and subtract, we get

〈S∗(Sū− ŷ)− S∗
h(Shūh − ŷ) + β(ū − ūh), ū− ūh〉 = 0.

Rearranging, we get

‖Sh(ū − ūh)‖22 + β‖ū− ūh‖22 ≤ | 〈ŷ, (S − Sh)(ū− ūh〉 |
≤ ‖ŷ‖2Ch2‖ū− ūh‖2.

Finally, we have that the error satisfies

‖ū− ūh‖2 ≤ C
h2

β
‖ŷ‖2, (2.27)

where C is a constant independent of h and β. We see that the accuracy is dependent on the
size of h, as we would expect, but also is inversely proportional to the regularization parameter β.
In particular, if β is less than h2 then the difference between the discrete and continuous optimal
controls may be considerable.

2.2.3 Bound constraints

Most practical applications also require bound constraints to be satisfied on the control and/or the
state, and we will briefly show how these can be handled. We only consider here the case where we
have simple bound constraints, which we append to our standard problem:

min
y,u

1

2
||y − ŷ||22 +

β

2
||u||22 (2.28)

s.t. −∇2y = u in Ω, (2.29)

y = 0 on ∂Ω, (2.30)

ua ≤ u ≤ ub a.e. in Ω, (2.31)

ya ≤ y ≤ yb a.e. in Ω, (2.32)

where ua, ub, ya, yb are constants. Consider first the case with just constraints on the control, i.e.
ya = −∞ and yb = ∞. We outline the theory for the optimize-then-discretize technique only2.

Define the space of all admissible controls as

Uad := {u ∈ L2(Ω) | ua ≤ u ≤ ub}.

We now want to find a critical point of the Lagrangian (2.21) subject to the constraint that u ∈ Uad.
Minimizing this with respect to the state will give, as before, the adjoint equation (2.23). Since we
have box constraints on the control, u, the optimal control and state will, as in e.g. [68, Theorem
1.93], satisfy

DuL(ȳ, ū, p1, p2)(u− ū) ≥ 0 ∀u ∈ Uad.

This gives us the variational inequality

∫

Ω

(βū + p)(u− ū) dx ≥ 0 ∀u ∈ Uad. (2.33)

2The discretize-then-optimize case is more straightforward – see, e.g. [97].

14

This problem can be efficiently solved numerically using a primal-dual active set method, as
introduced in this context by Bergounioux, Ito and Kunisch [10]. We first need to discretize the
problem. As previously, let {ψi} be some basis – generally, but not necessarily, different from the
φi – such that ψi ∈ L2(Ω). Then we can define Uhad := span{ψ1, . . . , ψm} ∩ Uad. Then if uh ∈ Uhad,
uh =

∑m
i=1 Uiψi. The function uh is therefore uniquely determined by the vector of coefficients

u = (U1, . . . , Um). Let us further define Sh := {u | ∑m
i=1 Uiψi ∈ Uhad}. Then the variational

inequality (2.33) can be discretized as

(βQuu
∗ − Q̂Tp) · (u− u∗) ≥ 0 ∀ u ∈ Sh, (2.34)

where we use the same notation as in the previous section. Suppose that we can consider the box
constraints pointwise, so there exist vectors ua and ub such that

Sh = {u ∈ R
m : ua ≤ u ≤ ub}.

Note that if the control is discretized using piecewise constant elements then a pointwise description
is reasonable, as everything will be local to the elements. If we use higher order elements, then we
may be committing a variational crime [112, Chapter 4], and have to consider the resulting reduction
in the accuracy of the solution. We will not consider these issues any further here, but refer the
interested reader to, e.g. [117].

We can rewrite the discretized variational inequality (2.34) as

(βQuu
∗ − Q̂Tp) · u∗ ≤ (βQuu

∗ − Q̂Tp) · u ∀ u ∈ Sh,

and hence

min
u∈Sh

(βQuu
∗ − Q̂Tp) · u = min

u∈Sh

m∑

i=1

(βQuu
∗ − Q̂Tp)iui.

Since the components, ui are independent, this means that

(βQuu
∗ − Q̂Tp)iu

∗
i = min

ua
i ≤ui≤ub

i

(βQuu
∗ − Q̂Tp)iui.

Hence, we must have that either βQuu
∗ − Q̂Tp = 0 (as before), or

u∗
i =

{
ubi if (βQuu

∗ − Q̂Tp)i < 0

uai if (βQuu
∗ − Q̂Tp)i > 0

.

This characterization is not immediately helpful in practice, as it requires knowledge of the optimal
control u∗. It can be reformulated by defining

µ = Q̂Tp− (βQu)u.

Then, for i = 1, . . . ,m, since Qu is positive definite and β > 0,

ui =





uai if ui + µi < uai
µi if ui + µi ∈ [uai ,u

b
i]

ubi if ui + µi > ubi

.

This formulation leads to an active set strategy. For some starting vectors u(0) and µ(0), define at
the nth step

Aa
n = {i ∈ {1, . . . ,m} : u

(n−1)
i + µ

(n−1)
i < uai }

Ab
n = {i ∈ {1, . . . ,m} : u

(n−1)
i + µ

(n−1)
i > ubi}

In = {1, . . . ,m}\(Aa
n ∪ Ab

n).

15

Then an active set method based on the active (and inactive) sets defined above will converge in
finitely many steps when applied to the discrete problem[118]. It can be shown [41, 111] that this
strategy is equivalent to solving the system



βQIn

u 0 −(Q̂In)T

0 Qy KT

−Q̂In K 0






u
(n)
In

y(n)

p(n)


 =




a(n)

b

d(n)


 , (2.35)

for appropriate (known) right hand side vectors a(n) and d(n) and where QI
u = Qu(In, In) and

Q̂I = Q̂(:, In). For more information, see Engel and Greibel [41] or Stoll and Wathen [111].
Note that this system, which needs to be solved at each step, is also a saddle point matrix. The

efficient solution of such a system is one of the main bottlenecks in current algorithms for problems
of this type [57, 41].

The issue of constraints on the state is much more difficult. Consider a case which has only bound
constraints on the state – i.e. ua = −∞ and ub = ∞ in (2.31). Then the Lagrange multipliers3

which are associated with the state constraint will now be measures. In can be shown – e.g. [68,
Section 1.7.3.5] that the optimality conditions for the continuous problem in this case are given by

−∇2ȳ = ū in Ω
ȳ = 0 on ∂Ω

−∇2p = ȳ − ŷ + µa − µb in Ω
p = 0 on ∂Ω

∫
Ω̄
(ȳ − yb) dµb =

∫
Ω̄
(ȳ − ya) dµa = 0 βū+ p = 0 in Ω,

where µa and µb – the Lagrange multipliers for the state constraints – are nonnegative Borel mea-
sures. See [118] for examples illustrating this.

The presence of measures in the optimality conditions presents significant difficulties, and this
is the topic of much recent research. We mention here two methods of getting around this problem
currently available in the literature. The first involves Laurentiev-type regularization, where the
state constraints are turned into more manageable control constraints – see, e.g. Meyer, Rösch
and Tröltzsch [86]. The second method – Moreau-Yosida relaxation – works by dropping the state
constraint and adding a penalty term to the cost functional – see, e.g. Hintermüller and Kunisch
[66, 67].

Although the analysis is more involved in the case of bound constraints of both type, from a
linear algebra view the matrices we need to solve are essentially the same as the matrix (2.26), and
algorithms for the solution of that system will also be applicable here. Hence we will only consider
the problem without bound constraints in the remainder of this thesis.

Proving error estimates for bound constrained problems is the topic of much current research –
see Trölzsch [117] and the references therein for an overview of the state-of-the-art.

2.2.4 Different boundary conditions

The above analysis was done only for the case of a state equation with homogeneous Dirichlet
boundary conditions. Below we will consider some other boundary conditions. We only consider the
equations without bound constraints here; if such constraints are necessary, we can use the obvious
extensions of the methods described above.

First, one can extend the results to inhomogeneous boundary conditions. The extension is trivial
using the Lagrange multiplier technique, but a bit more technical to derive from first principles. In
this case, if the discrete state equation is

Ku = Q̂y + d,

3We implicitly assumed that such Lagrange multipliers exist and are well-behaved functions in the analysis of the
control contrained case above.

16

then the optimality system analogous to (2.19) is



βQu 0 −Q̂T
0 Qy K

−Q̂ K 0






u

y

p


 =




0
b

d


 , (2.36)

where the only change is the addition of the vector containing the boundary data on the right
hand side. This is the same system whether we optimize-then-discretize or discretize-then-optimize
(providing we discretize y and p the same way).

We can also replace the Dirichlet boundary condition with a Neumann boundary condition,
giving the problem

min
y,u

1

2
||y − ŷ||22 +

β

2
||u||22

s.t. −∇2y = u in Ω

∂y

∂n
= g on ∂Ω.

This, if we optimize-then-discretize using the method described above, will give the optimality system

−∇2ȳ = ū in Ω
∂ȳ
∂n = g on ∂Ω

−∇2p = ŷ − ȳ in Ω
∂p
∂n = 0 on ∂Ω

βū+ p = 0 in Ω. (2.37)

When discretized, this system will also be of the form (2.36), where K now denotes a discrete
Neumann Laplacian matrix, and the ‘mass’ matrices have been enlarged to include the boundary.
It is interesting to note that here K is singular – there is a one dimension kernel corresponding to
the constant vectors – but the optimal control problem still has a unique solution, since the saddle
point system is invertible (see Chapter 4 for conditions for invertibility of a saddle point system). It
is trivial to see that the discretize-then-optimize technique gives the same system here.

The results above can be extended in the obvious way to give the optimality system for a problem
where we have different boundary conditions on different parts of the boundary, or Robin boundary
conditions.

2.3 Boundary control

We now consider a problem where the control only acts on the boundary, not distributed throughout
the domain, so that the control u ∈ L2(∂Ω). First of all, consider a Neumann boundary control
problem

min
y,u

1

2

∫

Ω

(y − ŷ)2 dx +
β

2

∫

∂Ω

u2 ds

s.t. −∇2y = g in Ω

∂y

∂n
= u on ∂Ω.

Firstly, let us consider the discretize-then-optimize technique. The weak formulation of the PDE
constraint is: find y ∈ H1(Ω) such that

∫

Ω

∇y · ∇v dx −
∫

∂Ω

uγ(v) ds =

∫

Ω

gv dx ∀v ∈ H1(Ω),

where γ is the trace operator, which restricts a function to the boundary ∂Ω.
Let {φi}1≤i≤m be a set of finite element basis functions defined on some triangulation of Ω.

Suppose this mesh has n nodes on ∂Ω, and define another finite element space with basis {ψi}1≤i≤n

17

at these nodes. Then, as in the Dirichlet control case, we can define approximations to the state
and control by

yh =
∑m

i=1 Yiφi, uh =
∑n
i=1 Uiψi.

The discretized constraint can therefore be written in matrix form as

Ky = Q̂u+ g,

where

K = [ki,j] ∈ R
m×m, ki,j =

∫
∇φi · ∇φj

Q̂ = [q̂i,j] ∈ R
m×n, q̂i,j =

∫
φiψj

g = [gi] ∈ R
n, gi =

∫
gφi.

Now, by introducing a vector of Lagrange multipliers p and following the same arguments as in the
previous section it is easy to see that the discrete optimality system is



βQu 0 −Q̂T
0 Qy K

−Q̂ K 0






u

y

p


 =




0
b

g


 , (2.38)

where

Qu =
[
qui,j
]
∈ R

n×n, qui,j =

∫
φiφj

Qy =
[
qyi,j
]
∈ R

m×m, qyi,j =

∫
ψiψj

b = [bi] ∈ R
n, bi =

∫
ŷφi.

Now consider the optimize-then-discretize approach. Define the Lagrangian

L =
1

2

∫

Ω

(y − ŷ)2 dx +
β

2

∫

∂Ω

u2 ds +

∫

Ω

(−∇2y − g)p1 dx +

∫

∂Ω

(
∂y

∂n
− u)p2 ds.

As in the previous section, consider the Fréchet derivative with respect to y in the direction h:

DyL(y, u, p1, p2)h =

∫

Ω

(ȳ − ŷ)h dx−
∫

Ω

h∇2p1 dx +

∫

∂Ω

∂h

∂n
p1 ds

−
∫

∂Ω

h
∂p1
∂n

ds +

∫

∂Ω

∂h

∂n
p2 ds.

For a minimum we must have that the optimal control and state, dentoted by ū and ȳ respectively,
must satisfy

DyL(ȳ, ū, p1, p2)h = 0 ∀h ∈ H1(Ω). (2.39)

In particular, we must have DyL(ȳ, ū, p1, p2)h = 0 when h|∂Ω = 0 = ∂h
∂n |∂Ω, and so applying the

fundamental lemma of the Calculus of Variations we get that

−∇2p1 = ŷ − ȳ in Ω.

Now consider h so that ∂h
∂n |∂Ω = 0. Then we get

∫

∂Ω

h
∂p1
∂n

ds = 0 ∀h ∈ H1
0(Ω)

18

so we have
∂p1
∂n

= 0 on ∂Ω.

The remaining equations give us the link between p1 and p2, namely

p1 + p2 = 0 on ∂Ω.

If we label p1 = p, then we can write the adjoint equation as

−∇2p = ŷ − ȳ in Ω (2.40)

∂p

∂n
= 0 on ∂Ω, (2.41)

which is again the continuous analogue of the discrete adjoint equation obtained above.
Since there are no box constraints on the control, u, the optimal control and state satisfy

DuL(ȳ, ū, p1, p2)h = 0 ∀ h ∈ L2(∂Ω).

This gives us that ∫

Ω

(βū− p)h dx = 0 ∀ h ∈ H1(Ω) (2.42)

and hence,
βū − p = 0. (2.43)

On discretization, the usual choice of bases will again give us the discrete optimality system



βQu 0 −Q̂T
0 Qy K

−Q̂ K 0






u

y

p


 =




0
b

g


 ,

which was the same as was obtained by the discretize-then-optimize method.
Now consider the Dirichlet boundary control problem

min
y,u

1

2

∫

Ω

(y − ŷ)2 dx +
β

2

∫

∂Ω

u2 ds

s.t. −∇2y = g in Ω

y = u on ∂Ω.

Getting first order optimality conditions for this problem is somewhat harder, since it does not have
a variational formulation [124]. However, by following the optimize-then-discretize method we can
see what the discrete optimality system must look like. A more rigorous approach, which leads to
the same optimality system, can be found in Neittaanmaki et al. [88, Example 3.2.3] or Lions [79,
Chapter II.5].

Again, consider the Lagrangian

L =
1

2

∫

Ω

(y − ŷ)2 dx +
β

2

∫

∂Ω

u2 ds +

∫

Ω

(−∇2y − g)p1 dx +

∫

∂Ω

(u− y)p2 ds.

The Fréchet derivative with respect to y in the direction h is given by

DyL(y, u, p1, p2)h =

∫

Ω

(ȳ − ŷ)h dx+

∫

Ω

h∇2p1 dx−
∫

∂Ω

∂h

∂n
p1 ds

+

∫

∂Ω

h
∂p1
∂n

ds−
∫

∂Ω

p2h ds,

19

and so an argument as above tells us that p1 and p2 satisfy

−∇2p1 = y − ŷ in Ω

p1 = 0 on ∂Ω

p2 =
∂p1
∂n

on ∂Ω.

The Fréchet derivative with respect to u in the direction h is given by

DuL(y, u, p1, p2)h = β

∫

∂Ω

ūh ds−
∫

∂Ω

p2h ds,

and so, since this must vanish for all h ∈ L2(∂Ω), we have

βu = p2 on ∂Ω.

Therefore, if we eliminate p2 and relabel p1 as p, the optimality system here is given by

−∇2ȳ = g in Ω
y = ū on ∂Ω

−∇2p = ŷ − ȳ in Ω
p = 0 on ∂Ω

βū− ∂p
∂n = 0 on ∂Ω. (2.44)

We include this example for completeness, and will only consider the Neumann boundary control
problem in the remainder of this thesis.

20

Chapter 3

The Numerical Solution of Linear

Systems of Equations

The discretization techniques presented in Chapter 2 find an approximation to the optimal control
for a partial differential equation by solving a linear system of equations, which is in general of very
large dimension. The main goal of this thesis is to develop efficient algorithms to solve systems such
as (2.19). When looking at algorithms for solving linear systems of equations there are two main
philosophies – one can either solve the system directly, or by some iterative procedure.

Direct methods are based on factorizing the system into a product of matrices, each posessing a
structure which is easier to solve. Most direct methods are, at the simplest level, based on some kind
of LU-factorization. MATLAB’s backslash command is a ‘black box’ direct solver which chooses a
different algorithm depending on the properties of the matrix one would like to solve. As we will see
from the results in later chapters, backslash performs extremely well for small- to medium-sized
two dimensional problems, but for large problems, and especially in three dimensions, it starts to
struggle.

The usual Gaussian elimination algorithm for a dense n×n matrix takes 2
3n

3+O(n2) flops [115,
Lecture 20]. For a sparse matrix there are sparse direct algorithms that can reduce this work. See,
for example, Duff, Erisman and Reid [35] for more details.

Iterative methods work by giving successively better approximations to the solution of the system.
In exact arithmetic, provided the matrix is non-singular, direct methods always give you the exact
solution, whereas iterative methods will generally never quite give you this. However, in floating
point arithmetic the situation is less clear. The forward error in the solution with a direct method
not only depends on the accuracy of the machine, εmachine, but also the condition number of the
matrix – see, for example Higham [65, Chapter 9]. Iterative methods, however, do not suffer from
such a limitation – although they take more iterations to converge for an ill-conditioned problem, you
can get accuracy of the order of εmachine; this is the principle behind iterative refinement methods
[65, Chapter 12].

Even for well conditioned systems, if you know that your discretization is such that the solution
of your linear system and the solution of the infinite-dimensional problem that you are interested
in only agree to, say, three decimal places, then knowing the solution of the linear system to fifteen
decimal places is considerable overkill. With iterative methods you can stop once you have reached
the desired accuracy, which has the promise to save significant computing time.

Also, if n is large the work to solve a linear system by a direct method may be prohibitive. By
exploiting the structure of the problem it is often possible to find an optimal iterative method – i.e.
an iterative method that takes O(1) steps and O(n) work per step to solve an n× n system. This
means that, in practice, the iterative method takes a fixed number of iterations, independent of the
problem size, to converge to a fixed tolerance and the time to solve the system will scale linearly
with the problem size. Figure 3.1 shows a schematic diagram which illustrates this difference. Of
course, the constants involved in the work estimate mean it is usually the case that a direct method
is faster for smaller matrices, but as n gets larger an optimal iterative method will be more efficient.

21

O(εmachine)

O(1)

Work →

lo
g(
‖b

−A
x
‖) Iterative

Direct

Figure 3.1: Schematic illustration of convergence of a direct and an optimal iterative method. (after
Trefethen and Bau [115, Figure 32.1])

The remainder of this thesis is dedicated to developing optimal iterative methods for systems of
the type we introduced in Chapter 2. In the sections below we discuss some iterative methods for
solving general linear systems of equations.

3.1 General Iterative Methods

3.1.1 Simple Iteration

Suppose we want to solve the equation
Ax = b (3.1)

by an iterative method. One of the simplest ways is to use a splitting A = M −N to give you the
simple iteration: given x(0)

Mx(k) = Nx(k−1) + b. (3.2)

Here the choice of matrix, M , is free, and depending on the splitting used we will get different
iterative methods. We have to solve with M at each iteration, so it should be a matrix such that
this is inexpensive. Many of the obvious choices ofM have names, for example, M = diag(A) would
be Jacobi iteration, M being the lower triangular part of A would be Gauss-Seidel, etc. It is clear
that if x(m) = x for some m, then x(m+1) = x – i.e. if we have found the exact solution, doing
further iterations will not take us away from it. This leads us to ask what conditions do we require
of M so that we can be sure the iteration converges?

Note that we can write the iteration (3.2) as

x(k) =M−1Nx(k−1) +M−1b,

or, alternatively,
x(k) = (I −M−1A)x(k−1) +M−1b, (3.3)

since N =M−A. We call the matrix I−M−1A the iteration matrix. Recall that the exact solution,
x, also satisfies

x = (I −M−1A)x+M−1b. (3.4)

If we subtract (3.3) from (3.4) we get

e(k) = (I −M−1A)e(k−1) = · · · = (I −M−1A)ke(0), (3.5)

22

where e(k) := x− x(k) denotes the error at the kth iteration. Let ‖ · ‖ denote any vector norm, and
we define the matrix norm induced by this by

‖A‖ = sup
‖x‖=1

‖Ax‖.

We have that the error at the kth iteration satisfies

‖e(k)‖ ≤ ‖(I −M−1A)k‖‖e(0)‖.

It can be shown [53, Lemma 2.1.1] that the norm of the error in (3.2) will approach zero for
every initial error e(0) if and only if

lim
k→∞

‖(I −M−1A)k‖ = 0.

This gives us a necessary and sufficient condition for convergence, but it is not very practical.
First, in general it is hard to get information about the norm of a matrix such as the iteration
matrix. Second, it is norm-dependent – ideally we’d like a condition that gives us convergence in
any norm.

The spectral radius of a matrix C, denoted ρ(C), is defined as

ρ(C) = max {|λ| : λ is an eigenvalue of C} .

The spectral radius of a matrix is related to the norm of powers of a matrix by Gelfand’s formula
[53, Corollary 1.3.1],

ρ(C) = lim
k→∞

‖Ck‖1/k,

from which we can see that the simple iteration will converge in any norm, for every starting vector
x(0), if and only if ρ(I −M−1A) < 1.

Although we now have a condition which tells us that our splitting will be convergent, it does
not give us any information regarding how long we’ll have to wait for a reasonable approximation
to our solution. Let us first consider normal matrices1, that is, matrices C where CCT = CTC, or,
equivalently, matrices whose eigenvectors form an orthonormal basis. In this case, if we look at the
2-norm, it is well known (see, e.g. [53, p. 28]) that

‖C‖2 = ρ(C).

Therefore if the iteration matrix I − M−1A is normal the necessary and sufficient condition for
convergence, ρ(I −M−1A) < 1, also tells us that convergence (in the 2-norm) would be monotonic,
as for every k,

‖e(k)‖2 ≤ ρ(I −M−1A)‖e(k−1)‖2.
We can generalize the concept of normality slightly. Given a matrix C and a positive-definite

matrix H, we can define an inner product 〈x,y〉H := xTHy. Then

〈Cx,y〉H = xTCTHy = xTH(H−1CTH)y =
〈
x, C†y

〉
H ,

where C† := H−1CTH, the H−adjoint. Then we say that C is H−normal if and only if

C†C = CC†.

Note that C is self adjoint in the H−inner product if and only if HC = CTH, and in this case C is
clearly H−normal.

We can now apply these ideas to the simple iteration. If our iteration matrix is H−normal, then

1For simplicity we only consider the case where C has real entries, since this is the situation with the matrices
coming from optimization problems of the type we are considering; the complex case can be treated analogously, with
the transpose replaced by the conjugate transpose.

23

using a standard result from the theory of linear operators (see, e.g. [113, Theorem 6.2-E]) we have
that

‖I −M−1A‖H = ρ(I −M−1A),

where ‖ · ‖H denotes the matrix norm induced by the vector norm ‖ · ‖H = 〈·, ·〉1/2H . Hence
H−normality ensures monotonic convergence in the H-norm.

If the iteration matrix is nonnormal, however, it is often true that ‖I − M−1A‖ > 1, even
if ρ(I − M−1A) < 1. In this case, although the method is guaranteed to converge eventually,
there may be a significant transient period where the error may increase or stagnate. One way to
understand this effect is using the concept of pseudospectra to quantify nonnormality, as described
by Trefethen and Embree in [116].

Let C ∈ Rn×n and ε > 0. Then the ε-pseudospectrum, σε(C), is defined by

σε(C) :=
{
z ∈ C : ‖(z − C)−1‖ > 1/ε

}
.

We further define the ε−pseudospectral radius of C by

ρε(C) := sup{|z| : z ∈ σε(C)}.

The matrix (z − C)−1 is called the resolvent of C, and, following the convention used in [116], we
assume ‖(z−C)−1‖ = ∞ for z ∈ σ(C). Note that for a normal matrix the ε-pseudospectrum is just
the union of open ε-balls around the points of the spectrum.

We know that, if we plot convergence on a log-scale, the initial slope is simply going to be
log(‖I −M−1A‖), and also that the asymptotic convergence rate will be ρ(I −M−1A). We would
like to know what happens between these two limits. To do this, we want to have bounds (both
upper and lower) on ‖Ck‖. One such bound [116, Theorem 16.4] is that

sup
k≥0

‖Ck‖ ≥ ρε(C)− 1

ε
∀ ε > 0.

If we define the Kreiss constant of C with respect to the unit disk as

K(C) = sup
ε>0

ρε(C)− 1

ε
= sup

|z|>1

(|z| − 1)‖(z − C)−1‖,

then we can write
sup
k≥0

‖Ck‖ ≥ K(C).

A converse of this is that [116, Theorem 16.2]

‖Ck‖ ≤ ρε(C)
k+1

ε
∀ε > 0, ∀k ≥ 0.

This can be weakened to
‖Ck‖ ≤ eNK(C),

where C is a matrix of dimension N.
Note that the upper bound tells us that if the pseudospectra significantly protrude outside the

unit disk, i.e. ρε(C) > 1 + ε for some ε, then there must be some transient growth.
There are codes written for analyzing pseudospectra of particular matrices, for example EigTool

[129] by Thomas Wright, but it is in general hard to get quantifiable numerical bounds of this type
for, say, a given class of matrices. Nevertheless, looking at the pseudospectra does give a good
insight into what is happening with regards to convergence of a nonnormal matrix.

24

3.1.2 Richardson Iteration

Suppose we want to speed up convergence of a simple iteration, as defined in the preceding section.
Note that we can write (3.3) in the form

x(k+1) = x(k) +M−1r(k),

where r(k) denotes the residual, b−Ax(k). One way to adapt this method would be to introduce a
parameter, α, and consider the iteration

x(k+1) = x(k) + αM−1r(k).

Note that this is itself a simple iteration, with splitting matrix M̂ = 1
αM . Let us first consider the

case where M = I, so we get
x(k+1) = x(k) + αr(k). (3.6)

This is called the Richardson iteration. The error will satisfy

e(k+1) = e(k) − αAe(k),

where we have used the fact that r(k) = Ae(k). We can pick an optimal value of α, which will
depend on the quantity we would like minimized. For example, if we want to minimize the error in
the 2-norm, we have that

‖e(k+1)‖2 ≤ ‖I − αA‖2‖e(k)‖2.
Now suppose that A is positive definite. Then ‖I −αA‖2 = maxi |λi(I −αA)|, so the optimal value
of α is the value for which the smallest and the largest eigenvalues of I−αA are the same in absolute
value, i.e. α satisfies

αλmax − 1 = 1− αλmin,

so α = 2/(λmin + λmax), (3.7)

where λmax and λmin are the largest and smallest eigenvalues of A respectively. For this optimal
value of α,

‖I − αA‖2 = 1− 2

λmin + λmin
λmin =

κ− 1

κ+ 1
,

where κ := λmax/λmin is the condition number of A. Hence we have shown that the Richardson
iteration with a parameter chosen to minimize the 2-norm of the error satisfies

‖e(k+1)‖2 ≤
(
κ− 1

κ+ 1

)
‖e(k)‖2.

We therefore have that

‖e(k)‖2 ≤
(
κ− 1

κ+ 1

)k
‖e(0)‖2. (3.8)

However, we highlight that this bound is when we use the optimal value of α, which requires you to
know some information about the eigenvalues of A. Calculating these will be expensive in itself for
a general matrix.

So far we have only considered a simple Richardson iteration - i.e., the case where M = I. Of
course, the system

Ax = b

is equivalent to the system
M−1Ax =M−1b,

and if we chooseM such thatM−1A has a smaller condition number than the original matrix, A, then
we should expect convergence to be faster. The bound above, however, relies on the matrix being

25

positive definite. If our matrix M is positive definite, then we can write its Cholesky decomposition,
M = HHT , and thus formally solve the equivalent system

Âx̂ = b̂,

where Â = H−1AH−T , x̂ = HTx and b̂ = H−1b. This guarantees that the matrix Â is positive
definite. We do this formally, as in practice we need not know the Cholesky decomposition of A,
and all that is needed is the matrix M . The algorithm is given in Algorithm 1. Because M is often
chosen to reduce the condition number of the system, we call M a preconditioner.

Algorithm 1 Preconditioned Richardson iteration to solve Ax = b with preconditioner M

Choose x(0)

α = (λmin + λmax)/2
r(0) = b−Ax(0)

Solve Mz(0) = r(0)

for k = 0, 1, . . . until convergence do
x(k+1) = x(k) + αz(k)

r(k+1) = r(k) − αAz(k)

Solve Mz(k+1) = r(k+1)

end for

Consider the special case whereM = D = diag(A). Recall that if we take α = 1 in the Richardson
iteration this is called the Jacobi iteration. By taking a different value of the parameter α we get
the relaxed Jacobi iteration. The optimal value of α can be chosen as above, provided we have
knowledge of the maximum and minimum eigenvalues of D−1A. It is easily seen that this scheme is
equivalent (in exact arithmetic) to taking a weighted average of two successive Jacobi iterations, i.e.

Dx̂(k+1) = −(L+ U)x(k) + b

x(k+1) = αx̂(k+1) + (1− α)x(k),

where L and U are matrices formed from the strictly lower and upper triangular parts of A respec-
tively.

Similar ideas can be applied to the Gauss-Seidel iteration, where M = L+D and N = U . Here,
we generally relax by making the iteration

(D + αL)x(k+1) = −(αU − (1− α)D)x(k) + αb,

which we call the Successive Over Relaxation (SOR) method. Note that the iteration matrix here
is not symmetric positive definite, so the error bounds derived above will not hold. We can adapt
the method to preserve symmetry by doing the following variation of the above iteration:

(D + αL)x(k+ 1
2) = −(αU + (1− α)D)x(k) + αb

(D + αU)x(k+1) = −(αL+ (1 − α)D)x(k+ 1
2) + αb.

This is called the Symmetric Successive Over Relaxation (SSOR) method.
For more information about these methods, see, for example, Varga [123] or Meurant [84, Sections

5.5 & 5.6].

3.1.3 Steepest Descent

In the previous section we picked a fixed parameter α, the value of which was dependent on the
eigenvalues of the iteration matrix. If we were to allow the parameter α to change at each step we
could possibly improve upon this method. Again, first consider the case where M = I, then the

26

iteration will become the generalized Richarson iteration,

x(k+1) = x(k) + αkr
(k). (3.9)

We would like to find some way to choose the parameter αk. Suppose that A is symmetric positive
definite. Then a quantity that we might want to minimize is the error in the Am−norm at each

step, i.e. ‖e(k)‖Am =
〈
e(k), Ame(k)

〉1/2
, where m is an integer to be determined. From (3.9) we get

e(k+1) = e(k) − αkr
(k). (3.10)

Now,

〈
e(k+1), e(k+1)

〉
Am

=
〈
e(k), e(k)

〉
Am

− 2αk

〈
e(k), r(k)

〉
Am

+ α2
k

〈
r(k), r(k)

〉
Am

,

and it is easy to see that the minimum of this is when

αk =

〈
e(k), r(k)

〉
Am〈

r(k), r(k)
〉
Am

.

We want to choose m such that this parameter is easy to calculate. We don’t know what e(k) is,
but Ae(k) = r(k), so

αk =

〈
r(k), r(k)

〉
Am−1〈

r(k), r(k)
〉
Am

.

We therefore see that the simplest value we can take is m = 1, which will give

αk =

〈
r(k), r(k)

〉
〈
r(k), r(k)

〉
A

.

This choice of αk minimizes the error in the A−norm at each step.
Note that solving Ax = b is equivalent to minimizing the quadratic functional

φ(x) =
1

2
xTAx− xTb, (3.11)

and the gradient of φ at x = x(k) is the negative of the residual, −r(k). The value αk is then the
optimal step length in this direction. For this reason this method – which is given as Algorithm 2 –
is known as the method of steepest descent.

Algorithm 2 Method of steepest descent to solve Ax = b

Choose x(0)

r(0) = b−Ax(0)

for k = 0, 1, . . . until convergence do
αk =

〈
r(k), r(k)

〉
/
〈
Ar(k), r(k)

〉

x(k+1) = x(k) + αkr
(k)

r(k+1) = r(k) − αkAr
(k)

end for

Note that r(k) = Ae(k), so we can write (3.10) as

e(k+1) = (I − αkA)e
(k).

27

Therefore we can look at the error in the A−norm at the kth step:

‖e(k)‖2A =‖(I − αk−1A)e
(k−1)‖2A

=
〈
(I − αk−1A)e

(k−1), (I − αk−1A)e
(k−1)

〉
A

=
〈
e(k−1), e(k−1)

〉
A
− 2αk−1

〈
Ae(k−1), e(k−1)

〉
A
+ α2

k−1

〈
Ae(k−1), Ae(k−1)

〉
A

=
〈
e(k−1), e(k−1)

〉
A
− 2

〈
r(k), r(k)

〉
〈
Ar(k−1), r(k−1)

〉
〈
Ae(k−1), e(k−1)

〉
A

+

(〈
r(k), r(k)

〉
〈
Ar(k−1), r(k−1)

〉
)2 〈

Ae(k−1), Ae(k−1)
〉
A

=
〈
e(k−1), e(k−1)

〉
A
− 2

〈
r(k), r(k)

〉2
〈
Ar(k−1), r(k−1)

〉 +
〈
r(k), r(k)

〉2
〈
Ar(k−1), r(k−1)

〉

=

(
1−

〈
r(k), r(k)

〉2
〈
Ar(k−1), r(k−1)

〉 〈
e(k−1), e(k−1)

〉
A

)
‖e(k−1)‖2A

=

(
1−

〈
r(k), r(k)

〉2
〈
Ar(k−1), r(k−1)

〉 〈
A−1r(k−1), r(k−1)

〉
)
‖e(k−1)‖2A.

Now, we apply the Kantorovich inequality [100, Lemma 5.1], which states

〈v,v〉2
〈Av,v〉 〈A−1v,v〉 ≥ 4λminλmax

(λmin + λmax)2
,

where λmin and λmax are the smallest and largest eigenvalues of A respectively, to get

‖e(k)‖2A ≤
(
1− 4λminλmax

(λmin + λmax)2

)
‖e(k−1)‖2A

=

(
κ− 1

κ+ 1

)2

‖e(k−1)‖2A,

where, again, κ denotes the condition number of A, λmax/λmin. We can therefore say that

‖e(k)‖A ≤
(
κ− 1

κ+ 1

)k
‖e(0)‖A. (3.12)

Compare this with the error bound for Richardson iteration in (3.8) – the upper bound is identi-
cal when you measure the error in the norm in which you are minimizing. However, whereas the
Richardson iteration requires you to have some knowledge of the eigenvalues of the system before-
hand, steepest descent requires no such information. The algorithm generates the optimal value of
the parameter at each step.

Steepest descent can do this as it is a non-linear algorithm in the following sense. Suppose we
want to find x1 and x2 satisfying

Ax1 = b1 and Ax2 = b2.

If we use steepest descent2 then, for i = 1, 2, r
(0)
i = bi and

x
(1)
i =

〈bi,bi〉
〈Abi,bi〉

bi.

2for simplicity we take 0 as the starting vector in both cases

28

Now, consider the equation
Ax̂ = b1 + b2,

then clearly x̂ = x1 + x2. Here r̂(0) = b1 + b2, and

x̂(1) =
〈b1 + b2,b1 + b2〉

〈A(b1 + b2),b1 + b2〉
(b1 + b2)

=
〈b1 + b2,b1 + b2〉

〈A(b1 + b2),b1 + b2〉
b1 +

〈b1 + b2,b1 + b2〉
〈A(b1 + b2),b1 + b2〉

b2

6= x
(1)
1 + x

(1)
2 in general.

The same is also clearly true for the higher iterations. In this sense, steepest descent is a non-linear
method – i.e., there is no matrix Si such that x(i) = Sib. In contrast, for the Richardson iteration
we have a fixed α, and so such a corresponding matrix Ri does exist in the case where x(0) = 0,
which is given explicitly by

Ri = (I − (I − αA)i)A−1.

Of course we can combine steepest descent with a preconditioner, as we did with the Richardson
iteration; this will give us Algorithm 3. Again, the preconditioner M must be symmetric positive-
definite.

Algorithm 3 Preconditioned steepest descent to solve Ax = b with preconditioner M .

Choose x(0)

r(0) = b−Ax(0)

Solve Mz(0) = r(0)

for k = 0, 1, . . . until convergence do
αk =

〈
z(k), r(k)

〉
/
〈
Az(k), z(k)

〉

x(k+1) = x(k) + αkz
(k)

r(k+1) = r(k) − αkAz
(k)

Solve Mz(k+1) = r(k+1)

end for

3.1.4 Chebyshev Semi-iteration

Consider again the simple iteration in the form (3.3),

x(k+1) = (I −M−1A)x(k) +M−1b.

When using this we keep only the last iterate, i.e. at the kth step we only consider x(k). We might
be able to improve on the methods above by taking some linear combination of the previous iterates,

y(k) =

k∑

j=0

β
(k)
j x(j). (3.13)

What properties must the coefficients β
(k)
j have so that this converges quickly?

We can write a simple iteration (3.3) in the form

x(k) = Tx(k−1) + c, (3.14)

where T = I −M−1A and c = M−1b. If the initial guess was the exact solution, x, then since we
can write the error at the kth iteration as

x− x(k) = T k(x− x(0)), (3.15)

29

we have that x(k) = x for all k. Furthermore, it’s reasonable to expect that y(k) should also be the
exact solution for all k. By the definition of y(k) (3.13) this corresponds to the constraint that

n∑

j=0

β
(n)
j = 1. (3.16)

With this constraint in mind, we look at the error at the kth step:

x− y(k) = x−
n∑

j=0

β
(k)
j x(j)

=

k∑

j=0

β
(k)
j x−

k∑

j=0

β
(k)
j x(j) [using(3.16)]

=
k∑

j=0

β
(k)
j (x− x(j))

=

k∑

j=0

β
(k)
j T j(x− x(0)) [using(3.15)],

⇒ x− y(k) = pk(T)(x− x(0)) (3.17)

where pk(z) =
∑k

j=0 β
(k)
j zj, a polynomial of degree k.

As in Section 3.1.1, consider the case where the iteration matrix is normal, i.e. there exists a
basis of eigenvectors {vi} such that Tvi = λivi. Then we can write x− x(0) =

∑
αivi and so

‖x− y(k)‖2 ≤ ‖
∑

αipk(T)vi‖2
= ‖

∑
αipk(λi)vi‖2.

The polynomial pk is uniquely defined by the coefficients in (3.13). If we pick a polynomial which is
small on the eigenvalues, then the error at the kth step should also be small.

In the case where T is symmetric, we can make this more precise. A symmetric matrix is
orthogonally diagonalizable, which means we can write T = QΛQT , where Q is orthogonal – its
columns are eigenvectors – and Λ is diagonal – its entries are eigenvalues. Then T k = QΛkQT for
all k, and so

p(T) = Qp(Λ)QT

for any polynomial p, where p(Λ) = diag(p(λ1), p(λ2), . . . , p(λn)). Thus

‖x− y(k)‖2 = ‖pk(T)(x− x(0))‖2
≤ ‖pk(T)‖2‖x− x(0)‖2
= ‖Qpk(Λ)QT ‖2‖x− x(0)‖2
= ‖pk(Λ)‖2‖x− x(0)‖2 [Q orthogonal]

≤ max
i

|pk(λi)|‖x− x(0)‖2.

So if we have a pk that is small on the eigenvalues, and such that pk(1) = 1 (from condition (3.16)
), then we should have fast convergence.

If we have explicit knowledge of the eigenvalues of T then finding such a polynomial would be
easy, but what about the general case, where such information is not at hand?

The Chebyshev polynomials are defined for t ∈ [−1, 1] by T0(t) = 1 and

Tk(t) = cos(k cos−1 t).

30

This does, in fact, define a polynomial - using the identity

cos(k + 1)θ + cos(k − 1)θ = 2 cos θ cos kθ

and setting θ = cos−1 t we get the recurrence relation

Tk+1(t) = 2tTk(t)− Tk−1(t), k = 1, 2, 3, . . . , t ∈ [−1, 1]. (3.18)

Applying this gives T1 = t, T2 = 2t2 − 1, T3 = 4t3 − 3t etc. Figure 3.2 shows plots of these
polynomials Ti for various i. The Chebyshev polynomials can also be defined for |t| > 1 using the
hyperbolic cosine. These polynomials define an orthonormal set with respect to the inner product

〈p, q〉 :=
∫ 1

−1
p(x) q(x)√

1−x2
dx. For more information about Chebyshev polynomials see, for example,

Mason and Handscomb [82].

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

Figure 3.2: Plots of Ti, where i = 1, 2, 3, 4, 5, 20

The Chebyshev polynomials have many nice properties, but the property that makes them in-
teresting in this context is that the polynomial which minimizes

min
p∈Πk,p(1)=1

(
max

t∈[−1,1]
|p(t)|

)

is precisely the Chebyshev polynomial defined above.
It’s unlikely that our iteration matrix T will have λ (T) ∈ [−1, 1] precisely. However, suppose we

know that λ(T) ∈ [a, b], where 1 is not contained in [a, b]. Then the optimal polynomial in this case

31

will simply be the shifted and scaled Chebyshev polynomial, namely

T̂k(s) :=
Tk

(
2s−a−b
a−b

)

Tk

(
2−a−b
a−b

) . (3.19)

Then if we take pk = T̂k, then, without knowing anything more about the spectrum of T , this is the
best we can do. Note that this polynomial tends to infinity very quickly outside [a, b], so we must
have good knowledge of the extremal values for the method to be useful. This choice of polynomial
gives us the Chebyshev semi-iteration [51]. For more information, see Golub and van Loan [49,
Section 10.1.5], Varga [123, Chapter 5] or [84, Section 5.8].

We now turn our attention to the error. Recall that if T is symmetric,

‖x− y(k)‖2 ≤ max
i

|pk(λi)|‖x− x(0)‖2

≤ max
s∈[a,b]

|T̂k(s)|‖x− x(0)‖2, [if λi ∈ [a, b] ∀ i]

and, further, maxs∈[a,b] |T̂k(s)| = |T̂k(a)| = |T̂k(b)| =
∣∣∣∣

Tk(1)

Tk(2−a−b
b−a)

∣∣∣∣ = 1

|Tk(2−a−b
b−a)| , as the maximum

error is always attained at the end points (see the plots in Figure 3.2). Therefore the convergence
of the Chebyshev semi-iteration satisfies

‖x− y(k)‖2 ≤ 1∣∣∣Tk
(

2−a−b
b−a

)∣∣∣
‖x− x(0)‖2. (3.20)

Note that this bound only holds for problems where the iteration matrix, T = I−M−1A is symmetric.
Similar behaviour will be observed if T is normal. If T is non-normal, this method is not guaranteed
to converge [80].

Since λ(T) ∈ [a, b], and T = I −M−1A, we see that λ(M−1A) ∈ [1 − b, 1 − a]. If we write

â = 1− b and b̂ = 1− a, then we can write (3.20) as

‖x− y(k)‖2 ≤ 1∣∣∣Tk
(
â+b̂

b̂−â

)∣∣∣
‖x− x(0)‖2. (3.21)

It is well known – see e.g. [82, Section 1.4.2] – that we can write the kth Chebyshev polynomial as

Tk(z) =
1

2

[
(z +

√
z2 − 1)k + (z −

√
z2 − 1)k

]
,

and so, if we write κ := κ(M−1A) = b̂/â, the condition number of M−1A, we get

Tk

(
b̂+ â

b̂− â

)
= Tk

(
κ+ 1

κ− 1

)

=
1

2

[(√
κ− 1√
κ+ 1

)k
+

(√
κ+ 1√
κ− 1

)k]

≥ 1

2

(√
κ+ 1√
κ− 1

)k
.

We have therefore shown that the bound (3.20) can be written in terms of the condition number of
M−1A as

‖x− y(k)‖2 ≤ 2

(√
κ− 1√
κ+ 1

)k
‖x− x(0)‖2. (3.22)

32

We can now estimate how fast this method converges, and (3.19) gives a way to compute the

coefficients β
(k)
j from the Chebyshev polynomial of the required degree. However, we can use the

recurrence relation for Chebyshev polynomials (3.18) to give a more efficient algorithm. Suppose
first that the eigenvalues of the iteration matrix lie in an interval which is symmetric about the
origin, so λi ∈ [−ρ, ρ] for some ρ. Substituting (3.19) into (3.18) gives

Tk+1

(
1

ρ

)
pk+1(s) =

2s

ρ
Tk

(
1

ρ

)
pk(s)− Tk−1

(
1

ρ

)
pk−1(s).

Multiplying this on the right by the initial error, e(0), gives

Tk+1

(
1

ρ

)
η(k+1) =

(
2

ρ

)
Tk

(
1

ρ

)
Tη(k) − Tk−1

(
1

ρ

)
η(k−1),

where η(k) = x− y(k). We can simplify this to obtain

y(k+1) =
2Tk

(
1
ρ

)

ρTk+1

(
1
ρ

)(Ty(k) + c) −
Tk−1

(
1
ρ

)

Tk+1

(
1
ρ

)y(k−1),

where we have used the fact that

2Tk

(
1
ρ

)

ρTk+1

(
1
ρ

)x =
Tk−1

(
1
ρ

)

Tk+1

(
1
ρ

)x+ x. (3.23)

This shows us that we can use the Chebyshev semi-iteration without having to calculate the iterates
x(k) of the underlying iterative method. This can be further simplified by noting that

y(k+1) =
2Tk

(
1
ρ

)

ρTk+1

(
1
ρ

) (Ty(k) + c− y(k−1))−




2Tk

(
1
ρ

)

ρTk+1

(
1
ρ

) −
Tk−1

(
1
ρ

)

Tk+1

(
1
ρ

)


y(k−1),

and so, again using (3.23), we get

y(k+1) = wk+1(Ty
(k) + c− y(k−1)) + y(k−1),

where wk+1 =
2Tk

(

1
ρ

)

ρTk+1

(

1
ρ

) and w1 = 1.

Note also that

wk+1 =
2Tk

(
1
ρ

)

2Tk

(
1
ρ

)
− ρTk−1

(
1
ρ

) =
1

1− ρ2wk

4

,

so we do not even need to compute the Chebyshev polynomials to apply this method. Algorithm 4
gives this procedure.

Algorithm 4 Chebyshev semi-iteration to solve Ax = b, where λ(T) ∈ [−ρ, ρ]
Choose y(0), w0 = 0, (y(−1) = 0)
for k = 0, 1, . . . until convergence do
wk+1 = 1

1− ρ2wk
4

Mz(k) = b−Ay(k)

y(k+1) = wk+1(z
(k) + y(k) − y(k−1)) + y(k−1)

end for

33

Of course, the above algorithm is only for the case where the largest and smallest eigenvalues
of the iteration matrix are symmetric about the origin; in general, if λ(T) ∈ [a, b], then the above
argument can be modified to give Algorithm 5, which is the algorithm as presented in [84].

Algorithm 5 Chebyshev semi-iteration to solve Ax = b, where λ(T) ∈ [a, b]

Choose y(0), (y(−1) = 0)

w0 = 0, w = 2−(a+b)
b−a

for k = 0, 1, . . . until convergence do
if k = 1 then

wk+1 = 1/(1− 1
2w2)

else

wk+1 = 1/(1− w2
k

4w2)
end if

Mz(k) = b−Ay(k)

y(k+1) = wk+1(
2

2−(a+b)z
(k) + y(k) − y(k−1)) + y(k−1)

end for

The main drawback of the Chebyshev semi-iteration is, of course, that you need to know explicit
information about the spectrum of the iteration matrix. Because of the oscillatory nature of the
Chebyshev polynomials, even if we have an estimate of the largest and smallest eigenvalues, that
may not be enough to guarantee us fast convergence. Nevertheless, as we shall see in Section 5.2,
for example, there are situations in which the Chebyshev semi-iteration is well suited.

So far we have considered the Chebyshev semi-iteration applied to a symmetric matrix, which
has real eigenvalues. Manteuffel [80, 81] showed that the Chebyshev semi-iteration can be applied
to a non-symmetric matrix, as long as the ellipse that contains the eigenvalues (or in general the
field of values) is known. He also proposed an adaptive method to determine such an ellipse from a
given non-symmetric matrix, which was later implemented by Ashby [4].

Note that as the scaled and shifted Chebyshev polynomials only depend on the extremal eigen-
values of the matrix this method is – unlike Steepest Descent – a linear method, in the same sense
as described in Section 3.1.2.

3.1.5 Conjugate Gradients

We saw in the previous section that the Chebyshev semi-iteration, as given in Algorithm 5, is a
method that finds iterates which satisfy

x(k+1) = wk+1(αz
(k) + x(k) − x(k−1)) + x(k−1),

where Mz(k+1) = b−Ax(k+1) and for a specific choice of wk+1 and α. In much the same way that
we generalized the Richardson iteration to obtain the steepest descent algorithm in Section 3.1.3,
we could allow the constant α above to vary at each step gives us

x(k+1) = wk+1(αkz
(k) + x(k) − x(k−1)) + x(k−1),

where z(k) is defined as before. Is there some choice of wk+1 and αk we can choose so that we get
good convergence properties here?

As we have done in the previous sections, let us first consider the case where we have no precon-
ditioner, i.e. M = I. The iteration now becomes

x(k+1) = wk+1(αkr
(k) + x(k) − x(k−1)) + x(k−1),

where, as usual, r(k) is the residual. One thing we could try to look for is a method that makes the

34

residual vectors all mutually orthogonal, i.e.

〈
r(i), r(j)

〉
= 0 if i 6= j. (3.24)

It can be shown [84, Theorem 6.4] that if A is symmetric positive definite, the choice of parameters

αk =

〈
r(k), r(k)

〉
〈
Ar(k), r(k)

〉 , wk+1 = 1/

(
1 + αk

〈
Ar(k−1), r(k)

〉
〈
r(k−1), r(k−1)

〉
)
,

generates a sequence of iterates with the required orthogonality properties. As shown in [84, Section
6.1], for example, this can be made more efficient for computation by taking the equivalent definition

wk+1 = 1/

(
1− αk

〈
r(k−1), r(k)

〉

wkαk−1

〈
r(k−1), r(k−1)

〉
)
.

The resulting algorithm is called the Conjugate Gradient algorithm, and was first developed by
Hestenes and Steifel in 1952 [64]. We give the method as Algorithm 6.

Algorithm 6 Conjugate Gradients (version 1) to solve Ax = b

Choose x(0), (x(−1) = 0)
w1 = 1
r(0) = b−Ax(0)

for k = 0, 1, . . . until convergence do
αk =

〈
r(k), r(k)

〉
/
〈
Ar(k), r(k)

〉

wk+1 = 1/

(
1− αk〈r(k−1),r(k)〉

wkαk−1〈r(k−1),r(k−1)〉

)

x(k+1) = wk+1(αkr
(k) + x(k) − x(k−1)) + x(k−1)

r(k+1) = b−Ax(k+1)

end for

Conjugate gradients is therefore a generalization of acceleration techniques, such as the Cheby-
shev semi-iteration, in much the same way that the steepest descent algorithm is a generalization of
the Richardson iteration.

The above formulation of conjugate gradients was shown by Concus, Golub and O’Leary [30].
However, as was the case with the steepest descent algorithm, the conjugate gradient algorithm can
also thought of as a method that finds the minimum of a quadratic functional, and that’s the context
in which Hestenes and Steifel first considered the algorithm in 1952 [64]. This second derivation
gives rise to the version of the algorithm that is generally used in practice.

As we noted in (3.11), if A is symmetric positive definite, finding the solution of Ax = b is
equivalent to finding the minimum of the quadratic functional

φ(x) =
1

2
xTAx− bTx.

The method of steepest descent can be derived by taking the residual r(k) as the search direction
at each step. For conjugate gradients we look for alternative search directions, p(k), in the hope of
getting faster convergence. We therefore find the iterate at the kth step by x(k+1) = x(k) + αkp

(k),
where αk is the optimal step-length in the direction p(k). When we think of solving the linear system
as a minimization problem, the optimal αk is found by solving the one-dimensional minimization
problem

αk = min
α∈R

φ(x(k) + αp(k)).

35

Simple calculus shows that solution of this, for any search direction p(k), is given by

αk =

〈
p(k), r(k)

〉
〈
Ap(k),p(k)

〉 .

We now turn our attention to finding a good choice of search direction, p(k). For steepest descent, we
took p(k) = r(k), and this made

〈
e(k+1), r(k)

〉
A
= 0 for all k. However, e(k+1) is not A−orthogonal

to the previous search direction, r(k−1). If we instead take p(k) to be

p(k) = r(k) −
〈
Ar(k),p(k−1)

〉
〈
Ap(k−1),p(k−1)

〉p(k−1)

then this choice of p(k) has the property that the error at the (k+1)th step is A−orthogonal to the
previous two search directions, i.e.

〈
e(k+1),p(k)

〉
A
=
〈
e(k+1),p(k−1)

〉
A
= 0.

This choice of search direction therefore minimizes ‖e(k)‖A over the two-dimensional affine space
e(k) + span{r(k),p(k−1)}. Moreover, since we have assumed that A is positive definite it can be
shown [53, Theorem 2.3.2] that ‖e(k)‖A is actually minimized over the much larger space e(0) +
span{p(0),p(1), . . . ,p(k)}. We can replace the intuitive formula above by the equivalent

αk =

〈
p(k), r(k)

〉
〈
Ap(k),p(k)

〉 =

〈
r(k), r(k)

〉
〈
Ap(k),p(k)

〉 ,
〈
Ar(k+1),p(k)

〉
〈
Ap(k),p(k)

〉 = −
〈
Ar(k+1),p(k)

〉
〈
Ap(k),p(k)

〉 := −βk,

then we get the conjugate gradient algorithm in a more computationally efficient from, Algorithm
7.

Algorithm 7 Conjugate Gradients to solve Ax = b

Choose x(0)

Compute r(0) = b−Ax(0)

Set p(0) = r(0)

for k = 0, 1, 2...until convergence do
αk =

〈
r(k), r(k)

〉
/
〈
Ap(k),p(k)

〉

x(k+1) = x(k) + αkp
(k)

r(k+1) = r(k) − αkAp
(k)

TEST FOR CONVERGENCE
βk =

〈
r(k+1), r(k+1)

〉
/
〈
r(k), r(k)

〉

p(k+1) = r(k+1) + βkp
(k)

end for

One can show [53, Theorem 2.3.2] that the method described in Algorithm 7 satisfies

〈
Ae(k+1),p(j)

〉
=
〈
Ap(k+1),p(j)

〉
=
〈
r(k+1), r(j)

〉
= 0 ∀j ≤ k.

Note that the last of these is the same as (3.24), which was the property we required to derive the
iterates in Algorithm 6. In fact, it can be shown that the two methods are indeed equivalent [84,
Theorem 6.8]. Also we can see that span{p(0),p(1), . . . ,p(k)} = span{r(0), Ar(0), . . . , Ak−1r(0)}. We
call spaces of this type Krylov subspaces, and introduce the notation

Kk(A, z) = span{z, Az, . . . , Ak−1z}.

Therefore, at the kth step, Algorithm 7 finds the unique vector x(k) that minimizes ‖e(k)‖A over all

36

vectors in the affine space x(0) + Kk(A, r(0)). For this reason, the conjugate gradient method (or
CG) is referred to as a Krylov subspace method.

The conjugate gradient method implicitly defines a sequence of polynomials qj ∈ Πj – where Πm
denotes the set of polynomials of degree at most m – such that the iterates

x(k) = x(0) + qk−1(A)r
(0)

are successively closer to x = A−1b. We can write the error at the kth step as

e(k) = e(0) − qk−1(A)r
(0) = (I −Aqk−1(A))e

(0).

We can therefore write the error as
e(k) = pk(A)e

(0),

where pk(z) is a polynomial of degree k with constant term 1. Recall that we have defined the next
iterate of the conjugate gradient method as that which minimizes the error in the A norm, so we
have

‖e(k)‖A = min
pk∈Πk,pk(0)=1

‖pk(A)e(0)‖A,

and so if we expand e(0) in terms of a basis consisting of eigenvectors of A then we get e(0) =∑n
j=1 aivj (where Avj = λjvj). Now,

‖e(k)‖A = min
pk∈Πk,pk(0)=1

∥∥∥∥∥∥

n∑

j=1

aipk(λj)vj

∥∥∥∥∥∥
A

≤ min
pk∈Πk,pk(0)=1

∥∥∥∥∥∥
max
j

|pk(λj)|
n∑

j=1

aivj

∥∥∥∥∥∥
A

= min
pk∈Πk,pk(0)=1

max
j

|pk(λj)| ‖e(0)‖A. (3.25)

Thus we can say that
‖e(k)‖A
‖e(0)‖A

= min
pk∈Πk,pk(0)=1

max
j

|pk(λj)|. (3.26)

To get an error bound, suppose that the eigenvalues are such that λi ∈ [a, b], and the interval is
tight (i.e. a = λmin(A) and b = λmax(A)). Then we must have

‖e(k)‖A
‖e(0)‖A

≤ min
pk∈Πk,pk(0)=1

max
z∈[a,b]

|pk(z)|,

and, as in Section 3.1.4, the polynomial that achieves this minimum is the scaled and shifted Cheby-
shev polynomial, this time given by

pk(z) = Tk

(
b+ a− 2z

b− a

)/
Tk

(
b+ a

b− a

)
.

As argued with the Chebyshev semi-iteration

max
z∈[a,b]

Tk

(
b+ a− 2t

b− a

)/
Tk

(
b+ a

b− a

)
= 1

/
Tk

(
b+ a

b− a

)
.

This is the same form as (3.21), and we can use the same argument here to say

1/Tk

(
b+ a

b− a

)
≤ 2

(√
κ− 1√
κ+ 1

)k
,

37

where κ = κ(A), the condition number of A. Therefore we have shown that the error for the CG
iterates satisfies

‖e(k)‖A
‖e(0)‖A

≤ 2

(√
κ− 1√
κ+ 1

)k
, (3.27)

which is the same estimation of convergence as the Chebyshev semi-iteration (3.22) – although we
measured that convergence in the 2-norm. Note again how this parallels the convergence of steepest
descent compared with Richardson iteration.

As with steepest descent, we need no spectral information for CG to work, however, which was
the case with the Chebyshev semi-iteration. Also, CG is a non-linear method in the same sense as
steepest descent was, whereas the Chebyshev semi-iteration is a linear iteration.

Note also that the bound (3.27) almost always underestimates the speed of convergence; only in
the case where the eigenvalues of A are uniformly spaced in an interval will we see this convergence
in practice. For example, if we have a system of size n with only two eigenvalues, λ and µ, say (hence
having arbitrary condition number), then we can construct a polynomial of degree two, p2(z), such
that p2(0) = 1 and p2(λ) = p2(µ) = 0. Thus, by (3.26), the error in the conjugate gradient algorithm
will be zero after just two iterations, regardless of the condition number of the matrix – we will revisit
this idea in our preconditioning strategies in Chapter 5.

The power of CG lies in the fact that the algorithm automatically picks the optimal polynomial
without any prior information about the spectrum, as opposed to polynomial iterative methods
like the Chebyshev semi-iteration, where you have to manually choose an appropriate polynomial.
Because of this it is characteristic to see superlinear convergence with CG. In the cases where CG
does converge linearly, the convergence of the Chebyshev semi-iteration, when measured in the
appropriate norm for the method, will be exactly the same.

Of course, as was the case with the methods above, the concept of preconditioning can be applied
to CG to give the preconditioned conjugate gradient algorithm, which we shall abbreviate as PCG.
Here, as was the case with the Richardson iteration in Section 3.1.2, we want to preserve symmetry,
so we must use a symmetric positive definite preconditioner and, formally, solve

H−1AH−Ty = H−1b,y = HTx

where the preconditioner M has been decomposed as M = HHT . As was the case previously,
however, all that is needed in practice is to solve a system with M . The preconditioned conjugate
gradient algorithm is given in Algorithm 8.

Algorithm 8 Preconditioned Conjugate Gradients to solve Ax = b with preconditioner M

Choose x(0)

r(0) = b−Ax(0)

Mz(0) = r(0)

Set p(0) = z(0)

for k = 0, 1, 2...until convergence do
αk =

〈
z(k), r(k)

〉
/
〈
Ap(k),p(k)

〉

x(k+1) = x(k) + αkp
(k)

r(k+1) = r(k) − αkAp
(k)

TEST FOR CONVERGENCE
Solve Mz(k+1) = r(k+1)

βk =
〈
z(k+1), r(k+1)

〉
/
〈
z(k), r(k)

〉

p(k+1) = z(k+1) + βkp
(k)

end for

Note that at each iteration of Algorithm 8 we have to solve Mz(k+1) = r(k+1), so the ability to
efficiently solve systems with M is a prerequisite for M to be an effective preconditioner. Note that
this is the only additional work needed in the preconditioned version compared to Algorithm 7. As
discussed in the section on convergence above, the aim for a good preconditioner is thatM should be

38

a good approximation to A in the sense that the eigenvalues λ of the generalized eigenvalue problem
Av = λMv are well clustered. In this case the minimum polynomial, which CG implicitly finds, will
be small when evaluated at the eigenvalues after a small number of iterations, and so Algorithm 8
will converge in far fewer iterations than Algorithm 7. The art of preconditioning is trying to balance
these two competing requirements. There are a number of strategies that have been developed that
meet these criteria – the most effective usually depend on exploiting the structure of the matrix A,
and so are problem-specific. We shall discuss some of these methods in Section 3.2 and Chapters 5
to 7. For more preconditioning techniques see, for example, the books by Meurant [84, Chapter 8]
or Greenbaum [53, Section II].

3.1.6 CG with a non-standard inner product

Our description of the conjugate gradient algorithm above relied heavily on the matrix A being
symmetric positive definite. In fact, we can weaken this criterion slightly; all that is required is that
the matrix A is self-adjoint in the inner product that is used in the algorithm. In the discussion above
we have only considered the Euclidean inner product, in which case self-adjointness and symmetry
are equivalent. However, there’s no reason why we shouldn’t use any other inner product. Let us
consider inner products of the form

〈x,y〉H = 〈Hx,y〉 ,
for some symmetric positive definite matrix H. Then the condition for self-adjointness is

〈Ax,y〉H = 〈x, Ay〉H ⇔ HA = ATH.

Also, if we are to use CG we need HA to be positive definite. If these conditions on H are satisfied,
then conjugate gradients will work with a non-standard inner product of this form. The method is
given as Algorithm 9.

Algorithm 9 Conjugate Gradients with a H inner product to solve Ax = b

Choose x(0)

Compute r(0) = b−Ax(0)

Set p(0) = r(0)

for k = 0, 1, 2...until convergence do
αk =

〈
r(k), r(k)

〉
H /
〈
Ap(k),p(k)

〉
H

x(k+1) = x(k) + αkp
(k)

r(k+1) = r(k) − αkAp
(k)

TEST FOR CONVERGENCE
βk =

〈
r(k+1), r(k+1)

〉
H /
〈
r(k), r(k)

〉
H

p(k+1) = r(k+1) + βkp
(k)

end for

It can be shown [48, Corollary 5.2], [27] that for any square matrix A with real entries, there
exists a real symmetric matrix H such that HA = ATH. Of course, constructing a matrix H which
satisfies the required properties is not trivial. There are only a handful of examples in the literature
– the most famous being the Bramble-Pasciack method for solving the Stokes equations [20], which
appears to be where this concept was introduced. We will return to this application in Chapter 7.

Of course, we can again use this method with a preconditioner. It is no longer necessary to
maintain symmetry, but rather self-adjointness, so consider left preconditioning, i.e. solving the
system

M−1Ax =M−1b.

Then if we label Â =M−1A, then the condition for Â to be H-symmetric is that HÂ = ÂTH. The
preconditioned CG method with a non-standard inner product is given in Algorithm 10.

39

Algorithm 10 Preconditioned Conjugate Gradients with a H inner product to solve Ax = b with
preconditioner M

Choose x(0)

r(0) = b−Ax(0)

Mz(0) = r(0)

Set p(0) = z(0)

for k = 0, 1, 2...until convergence do
αk =

〈
z(k), r(k)

〉
H /
〈
Ap(k),p(k)

〉
H

x(k+1) = x(k) + αkp
(k)

r(k+1) = r(k) − αkAp
(k)

TEST FOR CONVERGENCE
Solve Mz(k+1) = r(k+1)

βk =
〈
z(k+1), r(k+1)

〉
H /
〈
z(k), r(k)

〉
H

p(k+1) = z(k+1) + βkp
(k)

end for

3.1.7 MINRES

We saw in the previous section that the conjugate gradient algorithm chooses the vector x(k) from
the Krylov subspace x(0) + Kk(A, r(0)) that minimizes the error in the A-norm over this space. It
can be shown (e.g. [84, Section 6.5]) that CG is just a re-scaling of the Lanczos algorithm. This is
a method, which was developed by Cornelius Lanczos in 1950 [77], for finding an orthogonal basis
for Kk(A, r(0)) based on the recurrence

γk+1v
(k+1) = Av(k) − δkv

(k) − γk−1v
(k−1), (3.28)

where δj =
〈
Av(j),v(j)

〉
and γj+1 is chosen to normalize v(j+1).

If we define V := [v(1), . . . ,v(k)] and Tk := tridiag(γk, δk, γk+1), then an alternative statement
of (3.28) is

AVk = VkTk + γk+1[0, . . . ,0,v
(k+1)] = Vk+1T̂k. (3.29)

Here T̂k =

[
Tk

γk+1ek

]
∈ Rk+1×k, where ei denotes the unit vector where the ith entry is the only

non-zero.
We saw in the previous section that CG can only be applied to symmetric positive definite

matrices; can we use the Lanczos process above to derive a method that allows us to relax the
positive definite requirement?

Suppose that instead of minimizing ‖e(k)‖A over the Krylov subspace we pick x(k) ∈ x(0) +
Kk(A, r(0)) such that ‖r(k)‖2 is a minimum. Note that we can write x(k) as

x(k) = x(0) + Vkz
(k),

for some vector of coefficients z(k). Now,

‖r(k)‖2 = ‖b−Ax(k)‖2
= ‖b−A(x(0) + Vkz

(k))‖2
= ‖r(0) −AVkz

(k)‖2
= ‖r(0) − Vk+1T̂kz

(k)‖2.

40

Note that v(1) = r(0)/‖r(0)‖2, so we have

‖r(k)‖2 = ‖v(1)‖r(0)‖2 − Vk+1T̂kz
(k)‖2

= ‖Vk+1(‖r(0)‖2e1 − T̂kz
(k))‖2

= ‖‖r(0)‖2e1 − T̂kz
(k)‖2,

where the last equality comes from the fact that Vk+1 has orthogonal columns. Therefore we have
that

min ‖r(k)‖2 = min ‖‖r(0)‖2e1 − T̂kz
(k)‖2.

Finding z(k), and hence r(k) is therefore just solving a linear least squares problem; this can be
done with a QR factorization, achieved with just one Givens rotation at each iteration [43, p. 179].
The resulting algorithm is the Minimal Residual (MINRES) method of Paige and Saunders [91],
and is a robust Krylov subspace method for solving systems of the form (3.1) where the matrix
A is symmetric. Algorithm 11 is an implementation of MINRES as described above – the version
presented here can be found in the book by Elman, Silvester and Wathen [39, Algorithm 2.4].
Notice by comparing Algorithm 11 with Algorithm 7 that MINRES is only slightly more work than
conjugate gradients.

Algorithm 11 MINRES

v(0) = 0, w(0) = 0, w(1) = 0

Choose x(0), compute v(1) = b−Ax(0), set γ1 = ||v(1)||
Set η = γ1, ,s0 = s1 = 0, c0 = c1 = 1
for j = 1, 2...until convergence do
v(j) = v(j)/γj
δj =

〈
Av(j),v(j)

〉

v(j+1) = Av(j) − δjv
(j) − γjv

(j−1)

γj+1 = ||v(j+1)||
α0 = cjδj − cj−1sjγj

α1 =
√
α2
0 + γ2j+1

α2 = sjδj + cj−1cjγj
α3 = sj−1γj
cj+1 = α0/α1; sj+1 = γj+1/α1

w(j+1) = (v(j) − α3w
(j−1) − α2w

(j))/α1

x(j) = x(j−1) + cj+1ηw
(j+1)

η = −sj+1η
TEST FOR CONVERGENCE

end for

The property that characterizes this Krylov subspace method is that

‖rk‖2 ≤ ‖s‖2 ∀ s ∈ r0 + span{Ar0, ..., Akr0}

and, using this, if we follow a convergence analysis such as in Section 3.1.5 we get the following
convergence bound in terms of the eigenvalue interval λj ∈ [a, b]:

‖rk‖2 ≤ min
pk∈Πk,pk(0)=1

max
z∈[a,b]

|pk(z)| ‖r0‖2. (3.30)

Thus, the comments about the possible preconditioning strategies made in Section 3.1.5 are equally
relevant here. In fact, the bound (3.30) generalizes the CG theory, as this remains valid in the case
where 0 ∈ [a, b], and in the positive definite case the MINRES and the CG bounds differ only in the
definition of the norm. With MINRES, however, because the matrix may have both positive and
negative eigenvalues, the polynomial pk must be equal to unity at zero and be small at points on

41

either side. Thus, having a set of eigenvalues [a, b] is not, in general, useful until it can be split into
an inclusion interval [−α,−β] ∪ [γ, δ], for α, β, γ, δ > 0.

Just as we did in the conjugate gradients case, we can write a preconditioned version of MINRES,
Algorithm 12. Here, again, at each iteration we need to solve for the preconditioner P , so we must
be able to do this cheaply.

Algorithm 12 Preconditioned MINRES

v(0) = 0, w(0) = 0, w(1) = 0

Choose x(0), compute v(1) = b−Ax(0)

Solve Pz(1) = v(1), set γ1 =
√〈

z(1),v(1)
〉

Set η = γ1, ,s0 = s1 = 0, c0 = c1 = 1
for j = 1, 2...until convergence do
z(j) = z(j)/γj
δj =

〈
Az(j), z(j)

〉

v(j+1) = Av(j) − (δj/γj)v
(j) − (γj/γj−1)v

(j−1)

Solve Pz(j+1) = v(j+1)

γj+1 =
√〈

z(j+1),v(j+1)
〉

α0 = cjδj − cj−1sjγj

α1 =
√
α2
0 + γ2j+1

α2 = sjδj + cj−1cjγj
α3 = sj−1γj
cj+1 = α0/α1; sj+1 = γj+1/α1

w(j+1) = (z(j) − α3w
(j−1) − α2w

(j))/α1

x(j) = x(j−1) + cj+1ηw
(j+1)

η = −sj+1η
TEST FOR CONVERGENCE

end for

P must be symmetric and positive definite in this case in order to preserve symmetry in the
preconditioned system. With the preconditioned method it can be shown (see [39, Section 6.1]) that
it is ||rk||P−1 that is minimized, and the corresponding convergence estimate becomes

||rk||P−1 ≤ min
pk∈Πk,pk(0)=1

max
λ

|pk(z)| ||r0||P−1 .

where the maximum is over the eigenvalues λ of P−1A. Note that a positive definite preconditioner
is required in order for ‖ · ‖P−1 to define a norm. As the reduction of the residual in this case is in a
norm dependent on the preconditioner, we must be careful not to chose a preconditioner that simply
distorts this norm. The aim of preconditioning is again to cluster the eigenvalues, although in this
case they can lie either side of the origin. Ideally we would like to get the solution in a number of
iterations that is independent of the size of the system.

For a more comprehensive discussion on the properties of MINRES see, for example, Saad [100]
or van der Vorst [121].

3.1.8 GMRES

The two Krylov subspace methods we have considered so far are only applicable if we have a sym-
metric matrix. If we would like to solve a non-symmetric matrix, one alternative could be to consider
the normal equations,

ATAx = ATb.

This could be solved using, say, conjugate gradients. However, the squaring of the condition number
– and consequent slower convergence – that will result here means that this is generally inadvisable
unless you use a good preconditioner.

42

The analogue of the Lanczos process for non-symmetric matrices is the Arnoldi method, which
is obtained by carrying out a Gram-Schmidt orthogonalization on the Krylov subspace Kk(A, r(0)).
It can be written in matrix form [49, Section 10.4.4] as

AVk = VkHk + hk+1,k[0, . . . ,0,v
(k+1)],

where here Hk is a upper Hessenberg matrix and Vk is as defined in the previous section. Note that
the only difference between this and (3.29) is the analogue of Hk in the latter, symmetric, case is a
tridiagonal matrix.

If we want to minimize ‖r(k)‖2 then, as in the previous section, this is equivalent to finding a
vector that is the solution of the linear least squares problem

min ‖‖r(0)‖2e1 − Ĥkz
(k)‖2.

As was the case with MINRES, we can solve this system with a QR factorization which requires just
one Givens rotation at each iteration. The resulting method is known as the Generalized Minimal
Residual method (GMRES), and was first described by Saad and Schultz in 1986 [101]. Algorithm
13 gives the algorithm as described above. As usual, this can be combined with a preconditioner in
the standard way.

Algorithm 13 GMRES

Choose x(0), compute r(0) = b−Ax(0), set β0 = ‖r(0)‖, v(1) = r(0)/β0
for j = 1, 2...until convergence do

w
(k+1)
0 = Av(k)

for l = 1 to l do
hl,k =

〈
w(k+1),v(l)

〉

w
(k+1)
l+1 = w

(k+1)
l − hl,kv

(l)

end for

hk+1,k = ‖w(k+1)
k+1 ‖

v(k+1) = ‖w(k+1)
k+1 ‖/hk+1,k

Compute y(k) such that βk = ‖β0e1 − Ĥky
(k)‖ → min!

TEST FOR CONVERGENCE
end for

x(k) = x(0) + Vky
(k)

The drawback with GMRES compared to MINRES or CG is that it relies on a Hessenberg matrix.
To generate v(k+1) we must use – and hence store – every subsequent vector v(j), j = 1, . . . , k. This
can be prohibitively expensive if many iterations are required3. For this reason the method is often
restarted after m iterations in practice, where m is a fixed number. The last iteration x(m) then
becomes x(0) for the next cycle, and the process continues until convergence. Such a scheme is
known as GMRES(m), or restarted GMRES.

A convergence analysis for GMRES is more difficult than in the case of CG and MINRES –
mainly due to the presence of complex eigenvalues. It can be shown [39, Theorem 4.1] that if A is
a diagonalizable matrix, the residual satisfies the following ‘minimax’ bound

‖r(k)‖
‖r(0)‖ ≤ κ(V) min

pk∈Πk,pk(0)=1
max
λj

|pk(λ)|, (3.31)

where A = V ΛV −1 is the eigendecomposition of A, λj are the eigenvalues and κ(V) is the condi-
tion number of the eigenvector matrix, V . The presence of the term κ(V) in (3.31) tells us that
convergence of GMRES is not just dependent on the eigenvalues of the matrix, as was the case with

3Recall CG and MINRES are both based on three-term recurrences, so only the last two vectors need to be stored
to generate the next one.

43

CG and MINRES. In fact, Greenbaum, Pták and Strakoš [54] showed that for any non-increasing
convergence curve, and any desired set of eigenvalues, there exists a matrix with these eigenvalues
and an associated right hand side vector such that the convergence of GMRES when applied to this
system is described by the given curve.

For more discussion on the convergence of GMRES see, for example, Greenbaum [53, Section
3.2] or Embree [40] and the references therein. It is worth noting that for many matrices which
arise in applications, and which are not constructed to be pathological examples, good convergence
is achieved if the matrix has eigenvalues clustered away from the origin.

3.2 Multigrid

In the preceding sections we have described general methods for solving linear systems of equations.
We now want to consider a case where the matrix has some structure we can exploit – namely the
situation where the system we have to solve comes from a partial differential equation. In particular,
we will consider solving Laplace’s equation with Dirichlet boundary conditions, namely

−∇2u = f in Ω, u = g on ∂Ω,

where Ω = [0, 1]d, d = 2, 3, and for appropriate functions f and g. As described in Section 2.1, the
finite element method gives us a way to obtain an approximate solution to this equation. Suppose
that we discretize the system using Q1 finite elements with a uniform mesh size h. Then the finite
element approximation is obtained by solving

Ku = f , (3.32)

where K ∈ Rm×m is the stiffness matrix and f ∈ Rm is an appropriate vector. Here, assuming we
apply the boundary conditions after solving the system, m = (N − 1)d × (N − 1)d, where N = 1/h.

The main difficulty with solving a system of the form (3.32) is the size of the system. In Section
2.1 we saw that the smaller we choose the mesh size, h, the more accurate the solution is. If you
half the mesh size, the dimension of the matrix K essentially increases by a factor of 2d, and so the
system can get very large.

We will briefly discuss how direct methods cope with such systems. MATLAB’s backslash is
such a command. In this case, since we have a banded sparse matrix, backslash will call a Gaussian
elimination routine with partial pivoting – namely LAPACK commands DGBTRF, which performs an
LU factorization, followed by DGBTRS, which solves it. See doc mldivide in MATLAB for more
details.

Table 3.1 shows the time taken to solve (3.32) using backslash for different values of h in both
two and three dimensions. Table 3.1(a) shows that in two dimensions the direct method performs
rather well – although it doesn’t quite scale linearly. However, it is clear from Table 3.1(b) that in
three dimensions the direct solver starts to struggle.

This behaviour is seen because of the significant fill-in of zero entries with non-zeros during the
Gaussian Elimination. This leads to a large growth in storage requirements, and hence the computer
runs out of memory. Iterative methods do not suffer from this problem, so we would therefore like
to find iterative methods with which to solve equation (3.32). Problems of this form clearly have
lots of structure, and it is this structure that is exploited to give us a fast solution method.

First let us consider what happens if we apply a simple iteration. Consider the Jacobi iteration:

Dx(k+1) = (L+ U)x(k) + b,

where D = diag(K), and L,U are the strictly lower and upper triangular parts of K respectively.
We get the rate of convergence by looking at the spectral radius of I −D−1K. If K is discretized
using Q1 elements, then it can be shown ([39, Chapter 2]) that the eigenvalues satisfy

λ(r,s) =
1

4

(
cos

rπ

N
+ cos

sπ

N

)
+

1

2
cos

rπ

N
cos

sπ

N
, r, s = 1, . . . , N − 1.

44

Table 3.1: CPU times to solve (3.32) using backslash for different mesh sizes, along with the ratio
between current and previous time

(a) Two dimensions

h 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10

time (s) 0.0001 0.0002 0.0006 0.0031 0.016 0.083 0.48 2.8 17.6
tn/tn−1 — 1.43 3.76 4.76 5.32 5.13 5.82 5.75 6.28

(b) Three dimensions

h 2−2 2−3 2−4 2−5 2−6

time (s) 0.0005 0.0026 0.1124 11.6929 —a

tn/tn−1 — 5.20 42.5 104.0 —a

a Ran out of memory

It is clear that |λ(r,s)| < 1, so this converges, but how quickly? Recall from (3.5) that the error at
the kth iteration satisfies

e(k) = (I −M−1K)ke(0).

If we relabel the λ(r,s) as λi, i = 1, . . . ,m and write the corresponding eigenvector as vi, then we
can expand the initial error in terms of the eigenvectors

e(0) =
∑

i

civi,

and hence
e(k) =

∑

i

ciλ
k
i vi.

This tells us that the eigenvector components of the initial error corresponding to eigenvalues near
to zero are reduced very rapidly by Jacobi iteration. On the other hand, the components of the
eigenvectors corresponding to the larger eigenvalues (i.e. r and s both close to zero) will take many
iterations to be reduced.

Another way to look at this is that the high frequency components of the error will get small
very quickly, whereas the low frequency, or smooth, components will take a lot longer to converge.
What we will be left with after a few steps is an error that is not necessarily close to zero in norm,
but which will look much smoother. This observation leads us to the idea of multigrid.

Since a small number of steps of a suitable simple iteration have the effect of ‘smoothing’ the
vector they are applied to, we might consider this smoothed problem on a coarser grid. Thus if we
take every other mesh point, say, and define some operator to interpolate between the two grids,
then solving on the new, coarser, grid will be easier, since we have significantly reduced the problem
size. If we apply this method recursively and stop when we get to a system small enough that it can
be easily dealt with by a direct method, then we have the multigrid algorithm.

Multigrid has been developed from its beginnings – some theoretical results in the mid 60s – to
the first practical results by Brandt [22] and the independent discovery and subsequent development
of the mathematical foundations by Hackbusch in the mid seventies (see [59] and the references
therein). Today it is widely used as a fast solution technique for many different problems.

We would like to make the description above more formal – first, we consider a ‘two-grid’ algo-
rithm. Our description follows [39, Section 2.5]. Suppose K is discretized with respect to a basis Sh,
which we call the fine grid space. For Q1 approximation this is the set of bi- or tri-linear functions
defined on some grid of squares or bricks, each point being a distance h from its nearest neighbour.
Then consider the equivalent coarse grid space S2h of a grid of width 2h (see Figure 3.3). We
want to write the grid function, which lives in Sh, in terms of this coarser basis S2h and the fine
grid correction space, Bh, which is the span of the nodes that are not nodes of the coarse grid (so
Sh = S2h +Bh). Figure 3.4 illustrates this in one dimension.

45

Figure 3.3: Sequence of grids used by the two-grid algorithm.

Figure 3.4: 1D representation of the coarse grid space, S2h, basis (dashed line) and the fine grid
correction basis, Bh

The first things we need for our algorithm are a mapping from the coarse grid space to the fine
grid space, which we call a prolongation operator, and a restriction operator, which maps from S2h

to Sh. If we call these operators I2hh and Ih2h respectively, then we have

I2hh : Sh → S2h, Ih2h : S2h → Sh.

Let us first consider the prolongation operator. Let φ2hi be an element in the coarse grid space,
S2h := span

{
φ2h1 , . . . , φ2hn2h

}
, and let Sh := span

{
φh1 , . . . , φ

h
nh

}
. As S2h ⊂ Sh,

φ2hi =

nh∑

j=1

pi,jφ
h
j ,

for some coefficients pi,j . Now if x2h ∈ S2h, we can write

x2h =

n2h∑

i=1

x2h
i φ

2h
i =

n2h∑

i=1

x2h
i

nh∑

j=1

pi,jφ
h
j =

nh∑

j=1

[Px2h]jφ
h
j .

We can therefore write the prolongation operator in terms of an nh×n2h matrix P , which is defined
by the coefficients of this linear combination. That is, if the vector x2h represents the function
x2h in S2h, then xh = Px2h is the vector that represents x2h in Sh. This is called projection by
interpolation.

Now we have a mapping that takes us from the coarse grid to the fine grid, but we still need
the reverse map. Whereas there was an obvious choice of projection operator, there are a number
of possible options for a restriction operator. Two of the most intuitive are injection, where you
ignore the components of the basis functions at the points you discard, or full weighting, where you

46

take an average of the neighbouring points. These two options are demonstrated in one dimension
in Figure 3.5. As we see from the diagrams, if the vector is at all oscillatory, information is lost
by taking injection as the restriction method (Figure 3.5(a)), whereas restriction by full weighting
(Figure 3.5(b)) includes data from all nodes.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Fine Grid

Coarse Grid − rest. by injection

(a) Restriction by injection

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Fine Grid

Coarse Grid − rest. by full weighting

(b) Restriction by full weighting

Figure 3.5: Schematic diagram of two methods of restriction in 1D

Let xh =
∑nh

i=1 x
h
i φ

h
i ∈ Sh. Then, as above, we want to find the matrix R such that x2h = Rxh,

where
∑n2h

j=1 x
2h
j φ

2h
j = x2h = I2hh (xh). In this case, if we use restriction by full weighting this matrix

R is given in terms of the prolongation matrix P described above by the simple relation

R = PT .

The central idea of multigrid is that we want to use our simple iteration – which is usually called
a smoother in the multigrid literature – to reduce the fine grid component of the error. For example,
if we take the initial error e(0) = u − u(0), then we can use the fact that Sh = S2h + Bh to write
this as

e(0) = Pe
(0)

S2h + e
(0)

Bh ,

where eS2h and eBh are the vectors of coefficients with respect to the bases of S2h andBh respectively.
If we then apply, say, k steps of relaxed Jacobi as our smoother, then the error will satisfy

e(k) = (I −M−1K)ke(0) = Pe
(k)

S2h + e
(k)

Bh .

Since the application of the simple iteration rapidly reduces the high frequency component of a
vector, we should have that

e
(k)

Bh ≈ 0,

and so the fine grid error vector can be restricted to the coarse grid with minimal loss of information.
The smoothing, although explained above in terms of the error, is actually done on the residual.

Note that
r(k) = Ke(k) = K(I −M−1K)ke(0) = (I −KM−1)kr(0),

and so we can restrict the smoothed residual, giving

r̄ := Rr(k) = PT (I −KM−1)kr(0).

Now,
r̄ = PT r(k) = PTKe(k).

If the smoothing has been effective, we have that e(k) ≈ P ē, where ē is the error on the coarse grid.

47

Therefore, if we solve the system
PTKP ē = r̄,

we will have an estimate for the error in the basis of the coarse grid. Note that the matrix PTKP
is much smaller – about 2d times smaller in d dimensions – than the original matrix, and so is
correspondingly easier to solve. The vector ē is called the coarse grid correction. Prolonging ē back
into the fine grid and updating gives a better approximation to the solution

u(1) = u(0) + P ē.

We can do further iterations like this until convergence, using the previous u(k) as the next starting
vector. This gives us a simple version of the two-grid algorithm. Putting the components described
above together, we get a basic two-grid algorithm, given as Algorithm 14.

We call K̄ := PTKP a coarse grid operator. Consider an entry of the stiffness matrix on the
grid of size 2h, k̄i,j . Then,

k̄i,j =

∫

Ω

∇φ2hi · ∇φ2hj =

∫

Ω

(∑

l

pi,l∇φhi

)
·
(∑

m

pj,m∇φhj

)

=
∑

l

pi,l
∑

m

pj,m

∫

Ω

∇φhi · ∇φhj ,

which shows us that for the restriction and projection operators as defined above, the stiffness matrix
on the coarse grid is precisely our coarse grid operator, PTKP . In other words, PTKhP = K2h,
where the superscript denotes the size of the grid on which the matrix is discretized. This is not
always the case – we call the operator K̄ the Galerkin coarse grid operator. In other situations4 it
may be better to use the coarse grid discretization, K2h, as our coarse grid operator.

To analyze convergence, we look at the error in this method. It is straightforward to show that
the error in Algorithm 14 satisfies

e(i+1) = (K−1 − PK̄−1PT)K(I −M−1K)ke(i). (3.33)

It can be shown (see Hackbusch [58] for details) that the two-grid algorithm applied to Laplace’s
equation in 2D reduces the error by a factor independent of h if it satisfies two conditions; the
smoothing property,

‖K(I −M−1K)ky‖ ≤ η(k)‖y‖K with η(k) → 0 as k → ∞,

and the approximation property,

‖(K−1 − PK̄−1PT)y‖K ≤ C‖y‖,

for all vectors y, where η and C are independent of the grid size, h. Similar conditions, which split
the convergence into the quality of the smoother and the quality of our coarse grid operator and
grid transfer operations, can be shown for other problems.

Of course, as we have alluded to above, we don’t have to stop at a two-grid method. When
Algorithm 14 calls for a solve on the coarse grid (K̄ē = r̄), we can simply recursively call the
algorithm again, stopping when we get to a coarse grid matrix small enough that a direct method,
say, can safely solve the system.

We still have to pick the way in which we go from grid to grid. Two of the most common methods
are the V-cycle and the W-cycle – schematic diagrams illustrating these two cycling methods are
given in Figure 3.6. In the diagram a square represents an exact solve and a circle represents grid
transfer (and smoothing). A W-cycle is clearly more expensive than a V-cycle, but it is subsequently
easier to prove convergence properties. Algorithm 15 gives the pseudocode for a single V-cycle.

To solve the system using multigrid we just repeat the V- or W-cycle until the required tolerance

4for example, when solving the advection-diffusion equation – see Chapter 6.

48

Algorithm 14 2-Grid algorithm to solve Ku = f , for some splitting K =M−N , with m smoothing
steps

Choose u(0)

for i = 1 until convergence do
for k = 1...m do

u(i) = (I −M−1K)u(i) +M−1f

end for

r̄ = PT (f −Ku(i))
K̄ē = r̄

u(i+1) = u(i) + P ē
end for

(a) V-cycle (b) W-cycle

Figure 3.6: Multigrid V-cycle and W-cycle

Algorithm 15 Multigrid V-Cycle to solve Ku = f with a smoothing splitting K =M −N

function u = VCycle(K, f ,u, level)
for k = 1...m do

u = (I −M−1K)u+M−1f

end for

if coarsest level then
solve Ku = f

else

r̄ = PT (f −Ku)
ē = VCycle(K̄, r̄, ē, level + 1)
u = u+ P ē

end if

49

is achieved. As long as the smoothing and approximation properties hold the number of cycles
required for convergence to a fixed tolerance is independent of h. Therefore, in the sense described
in the start of the chapter, multigrid is an optimal solver.

Table 3.2 shows the time taken to solve the system (3.32) using Algorithm 15 to a relative residual
of 10−6, where we’ve used two steps of relaxed Jacobi as a smoother. Comparing the results here
with those in Table 3.1 we see that backslash is more efficient for the smaller problems, but as h
decreases, multigrid gets to be the faster method. In three dimensions the situtation even is more
clear – multigrid performs a lot better than backslash here.

Table 3.2: CPU times to solve (3.32) using Multigrid for different mesh sizes, along with the ratio
between current and previous time

(a) Two dimensions

h 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10

time (s) 0.0019 0.0019 0.0035 0.010 0.037 0.14 0.65 2.84 11.5
iterations 4 5 5 6 6 6 6 6 6
tn/tn−1 — 1.01 1.84 3.07 3.45 3.95 4.51 4.32 4.03

(b) Three dimensions

h 2−2 2−3 2−4 2−5 2−6

time (s) 0.0053 0.0054 0.0402 0.5545 5.1720
iterations 3 4 4 5 5
tn/tn−1 — 1.02 7.45 13.7 9.32

For a more detailed discussion about multigrid techniques, see for example Briggs, Henson and
McCormick [26], Wesseling [128], or Trottenberg, Oosterlee and Schüller [119].

The description in this section has been of ‘geometric’ multigrid, but there is also the possibility
of ‘algebraic’ multigrid (AMG). This uses algebraic connections in the matrix to define coarse grid
operators, and so requires no knowledge of the geometric information of the problem. AMG can
therefore be treated as more of a ‘black box’ algorithm. The latest HSL release includes an AMG
code – MI20, for which an interface with MATLAB has been written by Dollar [15]. For a discussion
of algebraic multigrid, see e.g. Brandt, McCormick and Ruge [23].

Notice that the equation for the error in the two-grid algorithm, (3.33), has the same form as the
error in a simple iteration (3.5). This is because multigrid as described above is actually a simple
iteration, with splitting matrix MMG given by

M−1
MG = K−1 − (K−1 + PK̄−1PT)K(I −M−1K)kK−1.

It can be shown [84, Chapter 9] that this is indeed positive definite. All the results relating to the
simple iteration in Section 3.1.1 are therefore true here; in particular, a fixed number of multigrid
cycles is a linear operator. This leads us to ask whether we can improve the convergence of CG or
MINRES by using multigrid as a preconditioner?

If we use the algorithm as given in Algorithm 15, then the answer is no – for a linear operator to
be used as a preconditioner for these two methods, it must be symmetric, and it is easy to see that
this is not the case here. However, this problem can be easily circumvented with the addition of post-
smoothing – i.e. after the correction step we run some further iterations with another smoother. It is
easy to see that if the (pre-)smoothing step consisted of k steps with the iteration matrix I−M−1K,
then if we apply a further k steps of post-smoothing with the iteration matrix I −M−TK – where
we take the transpose of the original splitting matrix – will lead to a symmetric method with the
splitting matrix

M−1
MG = K−1 − (I −M−TK)k(K−1 + PK̄−1PT)K(I −M−1K)kK−1.

This version, which is suitable as a preconditioner, is given as Algorithm 16.

50

Algorithm 16 Multigrid V-Cycle suitable as a preconditioner for Ku = f

function u = VCycle(K, f ,u, level)
for k = 1...m do

u = (I −M−1K)u+M−1f

end for

if coarsest level then
solve Ku = f

else

r̄ = PT (f −Ku)
ē = VCycle(K̄, r̄, ē, level + 1)
u = u+ P ē

end if

for k = 1...m do

u = (I −M−TK)u+M−T f
end for

Applying just one V-cycle of multigrid is in many instances a very good preconditioner, and
allows us to tap into the non-linear qualities of CG to get very rapid convergence.

We can make this statement more precise. From the approximation and smoothing properties
above, it was shown by Braess and Hackbusch [17] that there exists a constant ρ independent of h
such that

‖u− u(i+1)‖K ≤ ρ‖u− u(i)‖K . (3.34)

Since multigrid is a simple iteration, we can write

u(i+1) = (I − K̃−1K)u(i) + K̃−1f ,

where K̃ is the same as MMG in the notation above. We can therefore write (3.34) as

〈
K(I − K̃−1K)e(i), (I − K̃−1K)e(i)

〉
≤ ρ2

〈
Ke(i), e(i)

〉
,

where, as usual, e(i) = u − u(i). This must hold regardless of the vector u(i), so we can write
v = K

1
2 e(i) (since K is symmetric positive definite) to get

〈
(I −K

1
2 K̃−1K

1
2)v, (I −K

1
2 K̃−1K

1
2)v
〉
≤ ρ2

〈
Ke(i), e(i)

〉
∀ v.

Therefore
−ρ 〈v,v〉 ≤

〈
(I −K

1
2 K̃−1K

1
2)v,v

〉
≤ ρ 〈v,v〉 ∀ v,

and hence we have

1− ρ ≤ vTKv

vT K̃v
≤ 1 + ρ ∀ v 6= 0, (3.35)

which is Lemma 6.2 in [39]. This results tells us that the eigenvalues of K̃−1K satisfy

λ(K̃−1K) ∈ [1− ρ, 1 + ρ],

and so κ(K̃−1K) = 1+ρ
1−ρ . A typical contraction rate per V-cycle applied to the Dirichlet problem

would be ρ ≈ 0.15. This would give κ ≈ 1.35, and so the error bound (3.27) to solve the system
with CG and 1 V-cycle as a preconditioner would be

‖e(k)CG‖K
‖e(0)CG‖K

≤ 2

(√
κ− 1√
κ+ 1

)k
= 2(0.075)k,

51

so a conjugate gradient acceleration significantly speeds up convergence.
Table 3.3 gives results in two and three dimensions for the solution of equation (3.32) with

preconditioned conjugate gradients, with one V-cycle with two pre- and two post-smoothing steps
of relaxed Jacobi as a preconditioner. We also, for ease of comparison, reproduce the results given
in Tables 3.1 and 3.2 here.

Table 3.3: CPU times to solve (3.32) using PCG preconditioned using one V-cycle for different mesh
sizes, along with the ratio between current and previous time. Also included are the equivalent
results for solution with backslash and Multigrid

(a) Two dimensions

PCG backslash Multigrid
h time (s) iter. tn/tn−1 time tn/tn−1 time iter. tn/tn−1

2−2 0.002 5 — 0.0001 — 0.002 4 —
2−3 0.002 6 1.04 0.0002 1.43 0.002 5 1.01
2−4 0.003 5 1.46 0.0006 3.76 0.003 5 1.84
2−5 0.008 5 2.65 0.003 4.76 0.010 6 3.07
2−6 0.030 5 3.52 0.016 5.32 0.037 6 3.45
2−7 0.12 5 4.06 0.083 5.13 0.14 6 3.95
2−8 0.55 5 4.4 0.48 5.82 0.65 6 4.51
2−9 2.32 5 4.20 2.81 5.75 2.84 6 4.32
2−10 9.57 5 4.12 17.6 6.28 11.5 6 4.03

(b) Three dimensions

PCG backslash Multigrid
h time (s) iter. tn/tn−1 time tn/tn−1 time iter. tn/tn−1

2−2 0.0095 2 — 0.0005 — 0.0053 3 —
2−3 0.0136 3 1.43 0.0026 5.20 0.0054 4 1.02
2−4 0.0405 4 2.96 0.1124 42.5 0.0402 4 7.45
2−5 0.4460 4 11.02 11.6929 104.0 0.5545 5 13.7
2−6 4.1829 4 9.37 —a —a 5.1720 5 9.32
a Ran out of memory

3.3 Comments

In this chapter we have presented a variety of methods for solving linear systems of equations. The
methods we have presented can be split into two groups – linear and non-linear methods.

The basic linear method is the simple iteration. This method encompasses both fairly näıve ap-
proaches – Jacobi and Gauss-Seidel iterations, for example – and also very sophisticated approaches,
such as multigrid. We have discussed two ways to accelerate convergence of the simple iteration – by
relaxation and by the Chebyshev semi-iteration. Both of these methods (to varying degrees) require
knowledge of the extremal eigenvalues.

The non-linear methods, on the other hand, require no spectral information to be effective. We
have seen that these are not much more expensive than the corresponding simple iteration, yet
the algorithms automatically pick the optimal parameters at each iteration. For this reason these
methods often display superlinear convergence.

The most effective non-linear methods we considered were the Krylov subspace methods con-
jugate gradients, MINRES and GMRES. These need to be coupled with a preconditioner – which
is equivalent to the splitting matrix in the simple iterations – to be effective. A preconditioner is
a matrix – or more generally, a linear operation that implicitly defines a matrix – that accelerates
convergence by clustering the eigenvalues. As we need to solve with the preconditioner at each it-
eration this should be chosen such that this is computationally inexpensive. Preconditioned Krylov

52

subspace methods are generally considered to be the iterative methods of choice.
The non-linear nature of the Krylov subspace methods means that you cannot use CG as a

preconditioner for MINRES, for example. However, it is often advantageous to use one of the linear
methods as a preconditioner. An example of this was when we preconditioned CG with multigrid,
and we’ll use this technique in a different situation in Section 5.2.

If we did want to apply a non-linear method as a preconditioner, then we would essentially be
applying a different preconditioner at each step. ‘Flexible’ methods have been developed that can
deal with this – for example, FGMRES [102]. For more information on such methods, see, for
example, Simoncini and Szyld [107] and the references therein. The theoretical understanding of the
convergence of such methods is less complete than that of CG or MINRES, so we will not consider
them here.

We have focused on Krylov subspace methods that satisfy a minimality property, although there
are many other variants available. For example, an alternative to MINRES for symmetric linear
systems is SYMMLQ [91], and for non-symmetric systems one could use QMR [45], BI-CGSTAB
[120], or CGS [108], to name but a few. For an overview of these methods, see e.g. Barret et al. [7,
Chapter 2] or Meurant [84].

53

54

Chapter 4

The Numerical Solution of Saddle

Point Systems

As we saw in Chapter 2, the system we are interested in solving has the form

[
A BT

B 0

] [
u

p

]
=

[
f

g

]
, (4.1)

where is A ∈ Rn×n and B ∈ Rm×n, m < n. We will sometimes write this equation in the shortened
form

Ax = b. (4.2)

Matrices of this type are called saddle point systems, since the problem of finding first-order opti-
mality conditions of an equality constrained quadratic programming problem is of this form. Note
that – provided A is non-singular – we can decompose A into

[
A BT

B 0

]
=

[
I 0

BA−1 I

] [
A 0
0 −BA−1BT

] [
I A−1BT

0 I

]
.

If we assume that A is positive definite, then BA−1BT is also positive definite, so the matrix A will
be indefinite. In this case it is clear that A is invertible if and only if BT has full column rank. In
the case of A being indefinite, the saddle point system will be invertible if A is positive definite on
ker(B) – see, for example, [9, Theorem 3.2] for a proof.

In this chapter we look at some of the methods introduced in Chapter 3, and see how we can
apply them to matrices with this specific structure. For a more comprehensive overview, see the
survey article by Benzi, Golub and Liesen [9].

4.1 Simple iterations and Inexact Uzawa

Suppose we try to solve (4.1) using a simple iteration, as in Section 3.1.1. Then we have to find a
splitting matrix M such that ρ(I −M−1A) < 1, and such that M is easy to invert. We assume in
the following that the (1,1) block A is symmetric positive definite. Since the matrix A has a block
structure, it makes sense for the matrix M to also have a block structure. The easiest block matrix
to invert is a block diagonal matrix. Suppose we look for a splitting matrix of the form

M =

[
A 0
0 S

]
,

i.e. we leave the (1,1) block unchanged, and have a matrix to be determined in the (2,2) block. It is
well known (see, for example, [87]) that if we take the (2,2) block to be the Schur complement, i.e.

55

S = BA−1BT , then the eigenvalues of the generalized eigenvalue problem

[
A BT

B 0

]
= λ

[
A 0
0 BA−1BT

]

are λ = 1 and λ = 1±
√
5

2 [87]. Therefore, this choice of M will not give us ρ(I −M−1K) < 1, but it
does give us something to work with. Suppose, in a similar manner to Section 3.1.2, we introduce a
parameter σ, so

M =

[
A 0
0 σS

]
,

where S = BA−1BT . Can we find the value of σ that makes the spectral radius as small as possible?
Consider the generalized eigenvalue problem

Au+BTp = λAu (4.3)

Bu = σλSp. (4.4)

If Bu = 0, then p = 0 (since σ 6= 0) and hence we have repeated eigenvalues at λ = 1. If this is not
the case, then λ 6= 1, so from (4.3) we can write

(1− λ)Au+BTp = 0,

and rearranging this and multiplying on the left by B we get

Bu =
1

λ− 1
Sp.

Subsituting this into (4.4),
1

λ− 1
Sp = σλSp,

so we must have (
1

λ− 1
− σλ

)
Sp = 0.

As Sp 6= 0 (since S is invertible, and p 6= 0), we have

1

λ− 1
− σλ = 0,

hence

λ2 − λ− 1

σ
= 0.

Therefore the remaining two eigenvalues are given by

λ =
1±

√
1 + 4/σ

2
.

The eigenvalues of the iteration matrix I −M−1K are

0,
1 +

√
1 + 4/σ

2
, and

1−
√
1 + 4/σ

2
.

The choice of σ that minimizes the spectral radius is therefore clearly given by σ = −4, in which
case ρ(I −M−1A) = 1

2 , and hence the iteration will be convergent.
Suppose we want to do better than the block-diagonal iteration matrix. We could try a block-

triangular matrix, for example

M =

[
A 0
B τS

]
,

56

where again τ is a constant to be determined. Note that this only requires one matrix-vector multiply
(with B) per iteration more to invert than the block diagonal iteration matrix, so it is not much
more expensive to apply.

This time we have to consider the generalized eigenvalue problem

[
A BT

B 0

]
= λ

[
A 0
B τS

]
,

which we can write as

Au+BTp = λAu (4.5)

(1− λ)Bu = λτSp. (4.6)

As in the block diagonal case, if Bu = 0, then we must have that λ = 1. Suppose Bu 6= 0. Then,
as above, from (4.5) we get

Bu =
1

λ− 1
Sp,

and substituting this into (4.6) we get
λ = −1/τ.

The eigenvalues of I − M−1A therefore satisfy λ = 0, λ = 1 + 1/τ, and so the optimal value of
τ is therefore τ = −1, with which we will get the exact solution after two iterations. This is not
surprising, as if we have an exact solve with S, we can easily recover the solution to the whole system
(since S is one block of a block-Gaussian elimination of the matrix (4.1)).

We therefore need to approximate S in some way to have a usable iterative method. The simplest
approximation would be to take the identity, so that

M =

[
A 0
B τI

]
.

In this case, the eigenvalue analysis works as above, and gives us that λ = 1 or

λp = − 1

τ
Sp ⇒ λ = − 1

τ
· p

TSp

pTp

Now suppose that the eigenvalues of S satisfy

λ(S) ∈ [φ,Φ],

then the non-zero eigenvalues µ of I −M−1A satisfy

1 +
φ

τ
≤ µ ≤ 1 +

Φ

τ
.

As always, the optimal value of τ is when 1+ φ
τ = −(1+ Φ

τ), so the optimal value of τ is −(φ+Φ)/2.
This method is called the Uzawa algorithm [3, 44]. It is usually given in the form of Algorithm

17.

Algorithm 17 Uzawa algorithm for solving (4.1)

for k = 0 until convergence, do
Solve Au(k+1) = f −BTp(k)

p(k+1) = p(k) + 1
τ (Bu(k+1) − g)

end for

In the Uzawa algorithm, we took the identity as an approximation of the Schur complement, S.

57

Suppose we have some positive definite matrix S0 which is inexpensive to solve and approximates S
in the sense that there exist constants φ, Φ such that

φ ≤ xTSx

xTS0x
≤ Φ ∀x. (4.7)

Then we can generalize the method above by taking the splitting matrix as

M =

[
A 0
B τS0

]
.

We again have the optimal value τ = −(φ + Φ)/2, although here φ and Φ are the smallest and
largest eigenvalues of S−1

0 S. This is called the preconditioned Uzawa method, with S0 being the
preconditioner. Algorithm 18 gives the method as it is usually implemented.

Algorithm 18 Preconditioned Uzawa algorithm for solving (4.1) with preconditioner S0

for k = 0 until convergence, do
Au(k+1) = f −BTp(k)

p(k+1) = p(k) + (τS0)
−1(Bu(k+1) − g)

end for

All of the methods so far require an exact solve with the (1,1) block, A, at each step. In many
practical cases such a solve would be expensive. We would therefore ideally look for some positive
definite approximation A0 to A, such that

δ ≤ xTAx

xTA0x
≤ ∆ ∀x. (4.8)

Our splitting matrix would then be

M =

[
A0 0
B τS0

]
,

and this defines a practical method, known as the inexact Uzawa method [38, 21, 130].
Given our experience with the two cases above it is reasonable to assume that the (2,2) block

should be negative definite. We will therefore absorb the constant −τ into our approximation S0,
and look for bounds on the eigenvalues λ given by the generalized eigenvalue problem

[
A BT

B 0

] [
x

y

]
= λ

[
A0 0
B −S0

] [
x

y

]
. (4.9)

Note that since the matrix Â :=

[
A0 0
B −S0

]−1 [
A BT

B 0

]
is not generally symmetric, these

eigenvalues could be complex. However, we also know that Â is self-adjoint in the inner product
defined by 〈u,v〉H := uTHv, where

H =

[
A−A0 0

0 S0

]
,

provided that this defines an inner product – i.e. provided A−A0 and S0 are positive definite [20].
We will consider this case first.

If A−A0 is positive definite, then

xAxT > xA0x
T ,

58

and so our assumption (4.8) becomes

1 < δ ≤ xAxT

xA0xT
≤ ∆. (4.10)

Equation (4.7) tells us that

φ ≤ xTBA−1BTx

xTS0x
≤ Φ ∀x. (4.11)

Note that if S0 and A are invertible,

BA−1BTx = λS0x ⇒ A−1BTS−1
0 BA−1BTx = λA−1BTx ∀x (4.12)

⇒ A−1BTS−1
0 By = λy ∀y = A−1BTx, (4.13)

and hence (4.11) can also be written as

φ ≤ yTBTS−1
0 By

yTAy
≤ Φ, (4.14)

where y ∈ Rn is such that y = A−1BTx for some x ∈ Rm. This can be characterized by taking
y ∈ {v ∈ Rn : vTAu = 0 ifu ∈ null(B)}.

Equation (4.9) can be written as

Ax+BTy = λA0x (4.15)

(1− λ)Bx = −λS0y. (4.16)

First, note that if we multiply (4.15) on the left by (1− λ)xT and subtract (4.16) multiplied on the
right by yT , we get

(1− λ)xTAx = (1− λ)λxTA0x+ λyTS0y (4.17)

< (1− λ)λxTAx+ λyTS0y, (4.18)

the second line being a consequence of (4.10). Rearranging, we get that

(1− λ)2xTAx < λyTS0y.

Clearly (1− λ)2 ≥ 0, and as A and S0 are positive definite matrices we must have that λ ≥ 0.
Now, suppose Bx = 0. Then, from (4.16), −λS0y = 0 ⇒ y = 0, since S0 is positive definite.

Therefore, substituting this into (4.15) we get

Ax = λA0x.

This tells us that

δ ≤ λ =
xTAx

xTA0x
≤ ∆. (4.19)

Now suppose that Bx 6= 0. Note that we can rearrange (4.16) to give

y =
λ− 1

λ
S−1
0 Bx,

and, substituting this into (4.15) and rearranging, we get

λxTAx+ (λ − 1)xTBTS−1
0 Bx = λ2xTA0x.

59

We know that A is positive definite, so xTAx > 0, and hence we can write

λ = λ2
xTA0x

xTAx
+ (1− λ)

xTBTS−1
0 Bx

xTAx
. (4.20)

Suppose that λ < 1, so 1− λ > 0. Then, using (4.10) and (4.14) we get that

λ ≥ λ2

∆
+ (1− λ)φ.

We can rearrange this to give
λ2 − (1 + φ)∆λ + φ∆ ≤ 0.

This quadratic in λ is zero at

λ =
(1 + φ)∆±

√
(1 + φ)2∆2 − 4φ∆

2
,

and hence we must have that

(1 + φ)∆ −
√
(1 + φ)2∆2 − 4φ∆

2
≤ λ ≤ (1 + φ)∆ +

√
(1 + φ)2∆2 − 4φ∆

2

Note, however, that we assumed λ < 1 to get these bounds, so we want to check if the upper
bound is useful. First note that ∆ > 1, so 1−∆ < 0. Therefore

(1 + φ)∆ +
√
(1 + φ)2∆2 − 4φ∆

2
≥ (1 + φ)∆ +

√
(1 + φ)2∆2 − 4φ∆+ 4(1−∆)

2

=
(1 + φ)∆ +

√
((1 + φ)∆− 2)2

2

=
(1 + φ)∆ + |(1 + φ)∆ − 2|

2
.

Therefore the upper bound satisfies

(1 + φ)∆ +
√
(1 + φ)2∆2 − 4φ∆

2
≥ (1 + φ)∆ + |(1 + φ)∆− 2|

2

=

{
1 if 2 ≥ (1 + φ)∆
(1 + φ)∆− 1 if 2 < (1 + φ)δ

≥ 1,

and hence it is of no use.
Now let’s go back to (4.20). Instead of taking an upper bound, we can use the same argument

to find a lower bound (again, while λ < 1.) This gives us

λ ≤ λ2

δ
+ (1− λ)Φ,

which can be rearranged to give
λ2 − (1 − Φ)δ +Φδ ≥ 0.

Consideration of the roots of this polynomial gives

λ ≤ (1 + Φ)δ −
√
(1 + Φ)2δ2 − 4Φδ

2

λ ≥ (1 + Φ)δ +
√
(1 + Φ)2δ2 − 4Φδ

2
.

60

As above, we can complete the square under the root to give

(1 + Φ)δ +
√
(1 + Φ)2δ2 − 4Φδ

2
≥ (1 + Φ)δ − |(1 + Φ)δ − 2|

2

≥ (1 + Φ)δ + |(1 + Φ)δ − 2|
2

= (1 + Φ)δ − 1

≥ 1,

since, in this case, δ ≥ 1 and Φ ≥ 1. Therefore the second bound here is of no use.
To summarize our findings so far, we have shown that if λ < 1, then

(1 + φ)∆−
√
(1 + φ)2∆2 − 4φ∆

2
≤ λ ≤ (1 + Φ)δ −

√
(1 + Φ)2δ2 − 4Φδ

2
. (4.21)

Now let us return again to (4.20):

λ = λ2
xTA0x

xTAx
+ (1− λ)

xTBTS−1
0 Bx

xTAx
.

So far we have just considered λ < 1 – now, what if λ > 1 and so 1 − λ < 0? We can do the same
analysis as above. First, we get the inequality

λ ≤ λ2

δ
+ (1− λ)φ,

which tells us that

λ ≤ (1 + φ)δ −
√
(1 + φ)2δ2 − 4φδ

2

λ ≥ (1 + φ)δ +
√
(1 + φ)2δ2 − 4φδ

2
.

The lower bound satisfies

(1 + φ)δ −
√
(1 + φ)2δ2 − 4φδ

2
≤ (1 + φ)δ − |(1 + φ)δ − 2|

2

=

{
1 if 2 ≤ (1 + φ)δ
(1 + φ)δ − 1 if 2 > (1 + φ)δ

≤ 1.

Therefore, this bound is also of no use, due to our assumption that λ > 1.
Going back to (4.20), we also obtain

λ ≥ λ2

∆
+ (1− λ)Φ,

which gives us that

(1 + Φ)∆−
√
(1 + Φ)2∆2 − 4Φ∆

2
≤ λ ≤ (1 + Φ)∆+

√
(1 + Φ)2∆2 − 4Φ∆

2
.

61

Note that, in this case,

(1 + Φ)∆−
√
(1 + Φ)2∆2 − 4Φ∆

2
≤ (1 + Φ)∆− |(1 + Φ)∆− 2|

2
= 1,

since Φ,∆ > 0. Hence the lower bound is of no use, and we have shown that

(1 + φ)δ +
√
(1 + φ)2δ2 − 4φδ

2
≤ λ ≤ (1 + Φ)∆ +

√
(1 + Φ)2∆2 − 4Φ∆

2
. (4.22)

We have just proved Theorem 4.1.1:

Theorem 4.1.1. Let λ be an eigenvalue of the generalized eigenvalue problem

[
A BT

B 0

] [
x

y

]
= λ

[
A0 0
B −S0

] [
x

y

]
,

where A, S0, A0 and A−A0 are positive definite. Then λ is real and positive, and moreover satisfies

(1 + φ)∆−
√
(1 + φ)2∆2 − 4φ∆

2
≤λ ≤ (1 + Φ)δ −

√
(1 + Φ)2δ2 − 4Φδ

2
δ ≤λ ≤ ∆ or

(1 + φ)δ +
√
(1 + φ)2δ2 − 4φδ

2
≤λ ≤ (1 + Φ)∆ +

√
(1 + Φ)2∆2 − 4Φ∆

2
,

where φ, Φ, δ and ∆ are measures of the effectiveness of the approximation of A0 to A and S0 to
BA−1BT , as defined by (4.10) and (4.7).

From this it is trivial to find the spectral radius of I −M−1A:

Corollary 4.1.1. Suppose that the eigenvalues of (4.9) are as described in Theorem 4.1.1, and
A−A0 > 0. Define

ξ := max

{
1− δ, 1− (1 + φ)∆ −

√
(1 + φ)2∆2 − 4φ∆

2
,

∆− 1,
(1 + Φ)∆ +

√
(1 + Φ)2∆2 − 4Φ∆

2
− 1

}
.

Then a simple iteration based on the splitting matrix

M =

[
A0 0
B −S0

]

will converge if ξ < 1, with the asymptotic convergence rate being ξ.

An alternative derivation of this result has been given by Zulehner [130]. Zulehner’s method is
based on factorizing the iteration matrix I −M−1A = PNQ, where P and Q are block diagonal,
and N is symmetric. Since A − A0 > 0 there exists a matrix E such that the eigenvalues of the
iteration matrix are the same as those of the generalized eigenvalue problem

Nx = λEx. (4.23)

Corollary 4.1.1 agrees with Theorem 4.1 in Zulehner [130].
If we explicitly include our parameter τ again here, note that finding the optimal value for a give

approximation S0 is no longer trivial. However, it is reasonable to assume that the value obtained
for the exact case A = A0 is a good value here also – this is the approach used in, for example, [38].

62

In the case where A−A0 is indefinite the situation is more complicated, as now the eigenvalues
will in general be complex. Recall the generalized eigenvalue problem:

[
A BT

B 0

] [
x

y

]
= λ

[
A0 0
B −S0

] [
x

y

]
.

We still assume that A, A0 and S0 are positive definite. Again, if Bx = 0, we still have that

λ = xTAx
xTA0x

, and hence these eigenvalues must be real, with

δ ≤ λ ≤ ∆.

All that changes here is now δ < 1.
Suppose Bx 6= 0. Equation (4.20) still holds, namely:

λ = λ2
xTA0x

xTAx
+ (1− λ)

xTBTS−1
0 Bx

xTAx
.

If we define

κ := κ(x) =
xTAx

xTA0x
, σ := σ(x) =

xTBTS−1
0 Bx

xTAx
,

then we can write this as
λ2/κ+ (1 − λ)σ − λ = 0,

or, alternatively,
λ2 − (σ + 1)κλ+ σκ = 0.

Therefore the eigenvalues satisfy

λ =
(σ + 1)κ±

√
(σ + 1)2κ2 − 4σκ

2
.

We know from above that if κ = xTAx
xTA0x

≥ 1, then all the eigenvalues are real. Note that

(σ + 1)2κ2 − 4σκ = 0 ⇒ κ = 0 or κ =
4σ

(1 + σ)2
≤ 1,

the last inequality being since 4σ
(1+σ)2 has a maximum value of 1 which occurs when σ = 1. This

tells us that for κ ∈ [0, 4σ
(1+σ)2], λ ∈ C.

In this case,

λ =
(σ + 1)κ± i

√
4σκ− (σ + 1)2κ2

2

⇒ |λ|2 =
(σ + 1)2κ2 + 4σκ− (σ + 1)2κ2

4
= σκ.

Therefore the complex eigenvalues satisfy

√
δφ ≤ |λ| ≤

√
Φ. (4.24)

63

Moreover, Re(λ) = (σ+1)κ
2 > 0, so all the complex eigenvalues live in the right-hand plane. Also,

|Im(λ)|
Re(λ)

=

√
4σκ− (σ + 1)2κ2

2
· 2

(σ + 1)κ

=

√
4σκ− (σ + 1)2κ2

(σ + 1)κ
.

If we define

F (σ, κ) :=

√
4σκ− (σ + 1)2κ2

(σ + 1)κ
,

then
∂F

∂σ
=

2(σ − 1)

(σ + 1)2
√
(4− 2κ)κσ − κ2(σ2 + 1)

,

so
∂F

∂σ
= 0 ⇒ σ = 1.

This critical point is clearly a maximum. This means that, for any fixed κ, F (σ, κ) has it’s maximum
at σ = 1. Therefore

|Im(λ)|
Re(λ)

= F (σ, κ) ≤
√
κ− κ2

κ
=

√
1

κ
− 1 ≤

√
1

δ
− 1.

Therefore, putting this together with (4.24) above, the complex eigenvalues satisfy

λ ∈
{
z = reiθ ∈ C :

√
δφ ≤ r ≤

√
Φ, − tan−1(

√
δ−1 − 1) ≤ θ ≤ tan−1(

√
δ−1 − 1)

}
. (4.25)

For κ > 1, the results proved for A − A0 positive definite still hold, and we have λ ∈ R which
satisfy

(φ+ 1)∆−
√
(φ+ 1)2∆2 − 4φ∆

2
≤ λ ≤ (Φ + 1)∆ +

√
(Φ + 1)2∆2 − 4Φ∆

2
.

What about κ ∈
[

4σ
(1+σ)2 , 1

]
? In this case, too, the bounds in Theorem 4.1.1 hold, since in the

derivation of these bounds we required no information about δ – all we assumed was that λ ∈ R.
Verifying the inner bounds required that δ > 1, so these do not carry over, but there is no such
problem with the outer bounds.

We have proved the following theorem:

Theorem 4.1.2. Let λ be an eigenvalue associated with the generalized eigenvalue problem

[
A BT

B 0

] [
x

y

]
= λ

[
A0 0
B −S0

] [
x

y

]
,

where A, A0 and S0 are positive definite. If λ ∈ R, then it satisfies

(1 + φ)∆ −
√
(1 + φ)2∆2 − 4φ∆

2
≤λ ≤ (1 + Φ)∆ +

√
(1 + Φ)2∆2 − 4Φ∆

2
or δ ≤λ ≤ ∆,

and if λ ∈ C, then λ = reiθ, where r and θ satisfy

√
δφ ≤ r ≤

√
Φ, − tan−1(

√
δ−1 − 1) ≤ θ ≤ tan−1(

√
δ−1 − 1).

Here φ, Φ, δ and ∆ are measures of the effectiveness of the approximation of A0 to A and S0 to
BA−1BT , as defined by (4.8) and (4.7).

64

To get bounds for ρ(I − P−1
BLTA) we have to be more careful because of the presence of the

complex eigenvalues. Figure 4.1 shows a diagram of the situation here. All the complex eigenvalues
will be contained in the unit circle if d < 1. By the cosine rule:

d2 = 1 + Φ− 2
√
Φcos θ,

where tan θ =
√
δ−1 − 1. Therefore all the complex eigenvalues are in the unit circle if

√
Φ

2
< cos θ.

Note that, using the same argument as above, the distance from the origin to the point where the
circle of radius

√
φδ, centre -1, touches the ray that makes an angle θ with the x-axis is

√
1 + φδ − 2

√
φδ cos θ.

√
Φ

1

d

θ

Figure 4.1: Diagram of the geometry containing the complex eigenvalues.
θ =

√
δ−1 − 1 and d is the unknown length.

.

65

We have just proved the following:

Corollary 4.1.2. Suppose that the eigenvalues of (4.9) are as described in Theorem 4.1.2. Define

ξ := max

{
1− δ,∆− 1, 1− (1 + φ)∆−

√
(1 + φ)2∆2 − 4φ∆

2
,

(1 + Φ)∆ +
√
(1 + Φ)2∆2 − 4Φ∆

2
− 1,

√
1 + Φ− 2

√
Φcos θ,

√
1 + φδ − 2

√
φδ cos θ

}
.

Then a simple iteration with splitting matrix

M =

[
A0 0
B −S0

]

will converge if ξ < 1, with the asymptotic convergence rate being ξ.

Zulehner also derived an approximation to the convergence factor [130, Theorem 4.3]. Note that
Corollary 4.1.2 differs slightly from the result in Zulehner – this is because neither the result given
here nor in [130] are sharp with regards to the complex eigenvalues. The two results are obtained in
very different ways – in this case, Zulehner defines the matrix E in (4.23) via an arbitrary function
of a matrix, then picks a specific instance to derive bounds – so neither can be said to be a better
approximation than the other one. We compare the bounds in the specific case of a discretization
of the Stokes equations in Chapter 7.

As pointed out by Jiránek and Rozlozńık [72], there are at least three different ways of writing
the inexact Uzawa algorithm described above in the literature. While all are equivalent in exact
arithmetic, the version they show to give the maximum attainable accuracy is given in Algorithm 19.
We observed that if you treat the Uzawa algorithm as a splitting of a simple iteration, as described
above, then the accuracy of that method is the same as Algorithm 19.

Algorithm 19 Preconditioned inexact Uzawa algorithm for solving (4.1)

for k = 0 until convergence, do
u(k+1) = u(k) +A−1

0 (f −Au(k) −BTp(k))
p(k+1) = p(k) + S−1

0 (Bu(k+1) − g)
end for

4.2 Block diagonal preconditioners for MINRES

Suppose, instead of a simple iteration, we want to take advantage of the superlinear convergence
properties of a Krylov-subspace method to solve the system (4.1). Since the matrix is typically
symmetric, but indefinite, we cannot use the standard Conjugate Gradient method, Algorithm 8, so
instead the method of choice is MINRES, Algorithm 11.

In order for MINRES to be effective we need a good preconditioner, P . Recall from Section
3.1.7 that a preconditioner for MINRES must be symmetric positive definite. Drawing from our
experience in Section 4.1, a good choice would seem to be

P =

[
A 0
0 S

]
,

where S = BA−1BT , the Schur complement. Murphy, Golub and Wathen [87] showed that, with

66

this choice of preconditioner, as long as A is nonsingular, then the preconditioned system is diago-
nalizable, with the eigenvalues of the generalized eigenvalue problem Ax = λPx satisfying

λ = 1, or λ =
1±

√
5

2
.

Therefore if P was used as our preconditioner the theory in Section 3.1.7 tells us that we should get
convergence in at most three iterations.

Recall that we have to solve a system with our preconditioner at each MINRES iteration. We
run into the same difficulty that we had in Section 4.1 – an exact solve with S is basically solving
the system, and in many cases a solve with A is computationally expensive. We therefore would like
to replace S and A in our ‘ideal’ preconditioner above by some positive definite approximations S0

and A0 such that again they satisfy (4.7) and (4.8), i.e.

φ ≤ xTSx

xTS0x
≤ Φ and δ ≤ xTAx

xTA0x
≤ ∆ ∀x.

Our practical preconditioner would therefore become

P =

[
A0 0
0 S0

]
.

Of course, the choice of approximation S0 and A0 is, as in the inexact Uzawa case, highly problem
dependent. We will discuss good choices of approximation for the problems we would like to solve
in the following chapters.

We now show how these approximations change the clustering of the eigenvalues. We are inter-
ested in the eigenvalues of the generalized eigenvalue problem

Au+BTp = λA0u (4.26)

Bu = λS0p. (4.27)

First note that all the eigenvalues are real, as we have a symmetric matrix A and a symmetric
positive definite matrix P . As we saw in Section 4.1, if Bu = 0, then p = 0 and so

δ ≤ λ ≤ ∆.

Suppose Bu 6= 0.
Using (4.27) to eliminate p from (4.26) we get

λuTA0u− uTAu =
1

λ
uTBTS−1

0 Bu,

and since A0 is positive definite we get

λ =
uTAu

uTA0u
+

1

λ
· u

TBTS−1
0 Bu

uTA0u
=

uTAu

uTA0u
+

1

λ
· u

TBTS−1
0 Bu

uTAu
· uTAu

uTA0u
. (4.28)

Now, suppose that λ > 0, then applying (4.8) and (4.14) we get the relation

δ +
φδ

λ
≤ λ ≤ ∆+

Φ∆

λ
. (4.29)

Consider the right hand inequality in (4.29) first; rearranging, we get

λ2 − λ∆− Φ∆ ≤ 0.

67

This tells us that λ must lie between the roots of the quadratic equation, i.e.

∆−
√
∆2 + 4∆Φ

2
≤ λ ≤ ∆+

√
∆2 + 4∆Φ

2
.

Since we’ve assumed that λ > 0, only the upper bound is meaningful here. Now consider the left
hand side of (4.29). This gives us

λ2 − λδ − φδ ≥ 0,

and hence λ satisfies

λ ≤ δ −
√
δ2 + 4φδ

2
or λ ≥ δ +

√
δ2 + 4φδ

2
.

Again, λ > 0 tells us only to consider the lower bound.
Suppose that λ < 0. Then the application of (4.8) and (4.14) to (4.28) gives us

δ +
Φ∆

λ
≤ λ ≤ ∆+

φδ

λ
, (4.30)

which in turn, noting that the negative λ changes the sign of the inequality, leads to

δ −
√
δ2 + 4∆Φ

2
≤ λ ≤ δ +

√
δ2 + 4∆Φ

2
,

and

λ ≤ ∆−
√
∆2 + 4φδ

2
or λ ≥ ∆+

√
∆2 + 4φδ

2
.

Again, we have assumed that λ > 0, so only the negative values of the square roots are useful.
Therefore we have that

δ −
√
δ2 + 4∆Φ

2
≤ λ ≤ ∆−

√
∆2 + 4φδ

2
,

and we have proved the following:

Theorem 4.2.1. Let λ be an eigenvalue associated with the generalized eigenvalue problem

[
A BT

B 0

] [
u

p

]
= λ

[
A0 0
0 S0

] [
u

p

]
,

where A, A0 and S0 are positive definite. Then λ ∈ R, and satisfies

δ −
√
δ2 + 4∆Φ

2
≤ λ ≤ ∆−

√
∆2 + 4φδ

2
,

δ ≤ λ ≤ ∆,

or
δ +

√
δ2 + 4δφ

2
≤ λ ≤ ∆+

√
∆2 + 4Φ∆

2
.

Here φ, Φ, δ and ∆ are measures of the effectiveness of the approximation of A0 to A and S0 to
BA−1BT , as defined by (4.8) and (4.7).

Therefore, as long as we choose approximations A0 and S0 that are close enough (in the sense
defined above) to A and S, then we can also expect good clustering of the eigenvalues in the
generalized eigenvalue problem above, and hence good convergence of MINRES.

4.3 Bramble-Pasciak CG

Suppose we did want to use a conjugate gradient method, instead of MINRES, to solve a saddle
point problem (4.1). Since (4.1) is not positive definite, the standard conjugate gradient algorithm

68

cannot be used. However, we noted in Section 4.1 that

[
A0 0
B −S0

]−1 [
A BT

B 0

]

is self-adjoint with respect to the inner product defined by 〈u,v〉H := uTHv, where

H =

[
A−A0 0

0 S0

]
,

provided that this defines an inner product – i.e. when A−A0 and S0 are positive definite. Therefore
can we apply the conjugate gradient algorithm with this inner product, along with preconditioner

P =

[
A0 0
B −S0

]
,

as described in Section 3.1.6. This method was first described by Bramble and Pasciak in [20], and
has since generated a lot of interest – see, for example, [37, 75, 85, 103, 78, 110, 32].

As described in Section 3.1.5, the convergence of this method depends on the eigenvalue distri-
bution of the preconditioned system. We therefore need to find the eigenvalues of the generalized
eigenvalue problem [

A BT

B 0

] [
x

y

]
= λ

[
A0 0
B −S0

] [
x

y

]
. (4.31)

This is the same as (4.9), and so these eigenvalues are again given by Theorem 4.1.1. Note that
it is a requirement for the method to work that A − A0 is positive definite, so Theorem 4.1.1 will
describe all the eigenvalues – i.e. all the eigenvalues are real.

Generally our approximation to A or S will not be in the form of a matrix, but a linear process
that gives the action of the inverse of the matrix. This is the case, for example, when we use
multigrid, as described in Section 3.2. It is not obvious that we can apply this method in such
cases, since we do not explicitly have the matrix approximation A0 or S0. However, it was shown
by Bramble and Pasciak [20] that even in this case the method is applicable, since only the action
of the inverse of A0 is needed when evaluating the inner products with H. Elman [37] showed that
the same is true for the Schur-complement approximation S0.

We will demonstrate this for one of the quantities involved – full details can be found in [20, 37,
109]. We need to compute

〈
P−1Ar(k),p(k)

〉
H (see Algorithm 10). Now,

HP−1 =

[
A−A0 0

0 S0

] [
A−1

0 0
S−1
0 BA−1

0 −S−1
0

]

=

[
AA−1

0 − I 0
BA−1

0 −I

]
,

so we can compute this inner product without having to multiply with the approximation matrices
A0 or S0. The same is true throughout the algorithm – see, e.g., the thesis of M. Stoll [109] for more
details.

The preconditioner P has to be applied only once per iteration. In order to evaluate the inner
product with H no extra multiplications with blocks of the saddle point matrix are required (see
[37] for details). The extra cost of the Bramble-Pasciak method compared to MINRES with block-
diagonal preconditioning is therefore just one additional multiplication with the B block of the
matrix [37]. Hence, we can have the superior convergence properties of a conjugate gradient method
with an indefinite system.

As described in Section 3.1.6, the drawback with this method is that you need A − A0 positive
definite; this means that not just any approximation to A will do. This property usually results in
having to find the eigenvalues of A−1

0 A for a candidate A0, and then adding an appropriate scaling
parameter γ so that A > γA0. We will describe a specific situation to which this applies in Section

69

5.2.

4.4 Null space methods and Projected Conjugate Gradients

4.4.1 Null space methods

Consider again the saddle point system equation (4.1), which we write in the form

Ax+BTy = f

Bx = g.

Recall that A ∈ Rn×n and B ∈ Rm×n, m < n. In the following we will assume that ker(A)∩ker(B) =
{0}. We will now discuss a method of simplifying the solution of this system, called a null space, or
reduced Hessian, method. The discussion follows the presentation in the paper by Benzi, Golub and
Liesen [9, Section 6].

Suppose that we have a vector x̂ that satisfies Bx̂ = g. If the saddle point matrix came from an
optimization problem then this would mean that x̂ satisfies the constraints. Suppose also that we
have a matrix Z ∈ Rn×(n−m), the columns of which span the null space of B. As B has rank m there
must exist a permutation matrix P such that BP = [B1 B2], where B1 ∈ Rm×m is non-singular.
Then such a null basis Z would be given by

Z = P

[
−B−1

1 B2

I

]
.

Such a null basis is called a fundamental basis.
If x is a solution of Bx = g, then x = Zw + x̂, where w ∈ R(n−m). Substituting this into the

first equation of the saddle point problem, we get

AZw +Ax̂+BTy = f ,

and hence premultiplying by ZT and rearranging gives

ZTAZw = ZT (f −Ax̂),

where we have used the fact that ZTBT = 0. This is a much smaller problem than (4.1), and so is
correspondingly easier to solve. Once we have found w, we set x = Zw+ x̂ and we can obtain y by
solving

BBTy = B(f −Ax),

or equivalently by solving the overdetermined least squares problem

min
y

‖(f −Ax) −BTy‖2.

Note that in method the matrix A need not be invertible, which is contrary to the assumptions
we needed in the previous sections of this chapter. If (n −m) is small, then we can apply a direct
method, say, to solve the small matrix ZTAZ, and this is an attractive method. However, the
drawback with this method as presented here is that we need to find the null space matrix Z, and
this is not always trivial. For more details see Benzi, Golub and Leisen [9, Section 6] and the
references therein.

4.4.2 Projected Conjugate Gradients

It is natural to try and apply a Krylov subspace method to the reduced matrix ZTAZ. Assume that
this matrix is symmetric positive definite, which would be the case if A is symmetric and positive
definite on the null space of B. Then we can apply CG to the reduced system. Because of the form of

70

the reduced matrix natural choice of preconditioner would be a matrix M of the form M = ZTGZ,
for some symmetric matrix G such that P is positive definite.

One way of doing this, which has the advantage that it avoids the explicit use of the null space
matrix Z, is the projected conjugate gradient algorithm, developed by Gould, Hribar and Nocedal
in [52]. They modify the standard CG algorithm – which would give the vector w in the notation
above – so that it explicitly calculates the vector x. If we define the scaled projection matrix
P := Z(ZTGZ)−1ZT , which is independent of the choice of null space basis Z, then we give this
expanded form of CG as Algorithm 20.

Algorithm 20 Projected Preconditioned Conjugate Gradients in expanded form (Algorithm II in
[52])

Choose an initial point x(0) satisfying Bx(0) = f

Compute r(0) = Ax(0) − f , z(0) = Pr(0), p(0) = −z(0).
for k = 0, 1, 2...until convergence do
αk =

〈
z(k), r(k)

〉
/
〈
Ap(k),p(k)

〉

x(k+1) = x(k) + αkp
(k)

r(k+1) = r(k) + αkAp
(k)

z(k+1) = Prk+1

βk =
〈
z(k+1), r(k+1)

〉
/
〈
z(k), r(k)

〉

p(k+1) = −z(k+1) + βkp
(k)

z(k+1) = −z(k)

r(k+1) = r(k+1) −BTx(k+1)

TEST FOR CONVERGENCE
end for

In Algorithm 20, z(k) is defined by z(k) = Pr(k), so this is the preconditioned residual. This lies
in the null space of B, which implies all of the iterates xk will satisfy the constraint, Bx(k) = f , at
least in exact arithmetic.

Now we would like to perform a matrix-vector multiply with P without needing the null-space
Z. First, note [47, Section 5.4.1] that P can be written as

P = G−1(I −BT (BG−1BT)−1BG−1),

and so it can be shown that z(k) = Pr(k) can be found by solving the saddle point problem

[
G BT

B 0

] [
z(k)

v(k)

]
=

[
r(k)

0

]
(4.32)

where G is positive definite on the null space of A. Algorithm 21 gives a version of preconditioned
projected conjugate gradients which replaces the step z(k) = Pr(k) by solving (4.32) to define z(k).
The form of the system that we have to solve in (4.32), the preconditioner, is that of a constraint
preconditioner – that is, only the (1,1) block is changed, and the (2,1) and (1,2) blocks are applied
exactly. Algorithm 21 is a variant of the algorithm which incorporates this.

This method does have the drawback that it relies on the constraint Bx(k) = f being satisfied
at each step and, while this is true in exact arithmetic, roundoff errors can cause the method to
fail. Algorithm 21 incorporates a residual update strategy, suggested by Gould, Hribar and Nocedal,
which reduces the roundoff errors in the projection operation.

Of course, Algorithm 21 itself requires a solution of a saddle point system at each iteration, which
is not, in general, any cheaper than solving the system (4.1). Therefore when using this method
we have to be careful to choose constraint preconditioners that are themselves easy to invert – for
example, because of the structure of the matrix.

One tool that could be used to invert our constraint preconditioner is the Schilders factorization
[34, 33]. Suppose we split our preconditioner, or a permutation of the rows and columns if necessary,

71

Algorithm 21 Preconditioned Projected Conjugate Gradients with residual update

Choose an initial point x(0) satisfying Bx(0) = g

Solve

[
G BT

B 0

] [
z(0)

v(0)

]
=

[
r(0)

0

]

p(0) = −z(0), r(0) = r(0) −BTv(0).
for k = 0, 1, 2...until convergence do
αk =

〈
z(k), r(k)

〉
/
〈
Ap(k),p(k)

〉

x(k+1) = x(k) + αkp
(k)

r(k+1) = r(k) + αkAp
(k)

Solve

[
G BT

B 0

] [
z(k+1)

v(k+1)

]
=

[
r(k+1)

0

]

βk =
〈
z(k+1), r(k+1)

〉
/
〈
z(k), r(k)

〉

p(k+1) = −z(k+1) + βkp
(k)

z(k+1) = −z(k)

r(k+1) = r(k+1) −BTx(k+1)

TEST FOR CONVERGENCE
end for

up into a three-by-three block structure,

P =



Gii Giv BTi
Gvi Gvv BTv
Bi Bv 0


 ,

where Bi is a square non-singular matrix. Then we can factorize the matrix P as

P =



BTi 0 Li
BTv Lv E
0 0 I





Di 0 I
0 Dv 0
I 0 0





Bi Bv 0
0 LTv 0
LTi ET I


 ,

where

Di = B−T
i Gi,iB

−1
i − LTi B

−1
i −B−T

i Li

Dv = L−1
v (Gv,v −BTv DiBv − EBv −BTv E

T)L−T
v

E = Gv,iB
−1
i −BTv Di −BTv L

T
i B

−1
i .

Then each of the matrices in this factorization is a permutation of a block triangular matrix, and
therefore can be solved by inverting the pivot matrices. Note that the matrices Lv and Li are not
fixed by the factorization, so typically values of these would be chosen that make the application of
the preconditioner easier. See the thesis of Dollar [31] for a comprehensive analysis of the properties
of the factorization.

As with the standard Krylov subspace methods, the convergence of PPCG also depends on the
clustering of the eigenvalues of P−1A. The following result was proved by Keller, Gould and Wathen
[74].

Theorem 4.4.1. Let A and P be as above, where A, G ∈ Rn×n are symmetric (A 6= G) and
B ∈ Rm×n is of full rank. Assume Z is an n× (n−m) basis for the nullspace of B. Then the matrix
P−1A has

• an eigenvalue at 1 with multiplicity 2m, and

• the remaining n − m eigenvalues defined by the generalized eigenvalue problem ZTAZx =
λZTGZx.

Furthermore, if G is nonsingular then these eigenvalues interlace those of G−1A.

72

Theorem 4.4.1 tells us that as we should aim for a (1,1) block, G, in our constraint preconditioner
that is a good approximation of A, while bearing in mind that P needs to be easily inverted. We
will discuss a choice of G for our application in Section 5.6.

For a more detailed discussion above constraint preconditioners and the projected conjugate
gradient algorithm, see the thesis of H.S. Dollar [31].

73

74

Chapter 5

Preconditioners for the optimal

control of Poisson’s equation

We return to the PDE-constrained optimization problem

min
y,u

1

2
||y − ŷ||22 +

β

2
||u||22

s.t. −∇2y = u in Ω

y = f on ∂Ω.

In Chapter 2 we saw that this requires solving a saddle point system of the form



βQu 0 −Q̂T
0 Qy K

−Q̂ K 0






u

y

p


 =




0
b

d


 . (5.1)

We now want to apply the theory developed in Chapters 3 and 4 to develop fast iterative solvers for

systems of this type. The matrix here is a saddle point matrix of the form

[
A BT

B 0

]
, where

A =

[
βQu 0
0 Qy

]
, B =

[
−Q̂ K

]
.

The theory in Chapter 4 tells us that good preconditioners for saddle point systems such as this
generally rely upon good approximations for A and S = BA−1BT , the Schur complement. We
introduce some model problems in the next section. Sections 5.2 and 5.3 look at some approaches
to making the approximations to A and S respectively in these particular cases. In the remainder
of the chapter we apply these approximations to some of the techniques described in Chapter 4 for
the model problems.

5.1 Model Problems

Below we introduce some example problems which we will use in the later sections of this chapter
to test the effectiveness of our methods. The first two examples are distributed control problems
with Dirichlet boundary conditions, but different desired states, ŷ. The next two problems are also
distributed control problems with the same objective function as Example 5.1.1, but with Neumann
and mixed boundary conditions respectively. The final problem is a boundary control problem.

75

Example 5.1.1. Let Ω = [0, 1]m, where m = 2, 3, and consider the problem

min
y,u

1

2
||y − ŷ||2L2(Ω) +

β

2
||u||2L2(Ω)

s.t. −∇2y = u in Ω (5.2)

y = ŷ|∂Ω on ∂Ω (5.3)

where, in 2D,

ŷ =

{
(2x1 − 1)2(2x2 − 1)2 if x ∈ [0, 12]

2

0 otherwise

and, in 3D,

ŷ =

{
(2x1 − 1)2(2x2 − 1)2(2x3 − 1)2 if x ∈ [0, 12]

3

0 otherwise

i.e. ŷ is bi- or tri-quadratic (depending on whether m = 2 or 3) with a peak of unit height at the
origin and is zero outside [0, 12]

m.

A plot of the desired state for Example 5.1.1, together with the computed state and control for
β = 10−2 and β = 10−5 are given in Figure 5.1. Note that with a mesh size of h = 2−5, the cost
functional is 7.87× 10−4 when β = 10−2 and 2.67× 10−5 when β = 10−5.

Example 5.1.2. Let Ω = [0, 1]m, where m = 2, 3, and consider the problem

min
y,u

1

2
||y − ŷ||2L2(Ω) +

β

2
||u||2L2(Ω)

s.t. −∇2y = u in Ω (5.4)

y = ŷ|∂Ω on ∂Ω (5.5)

where, in 2D,

ŷ =

{
1 if x ∈ [0, 12]

2

0 otherwise

and, in 3D,

ŷ =

{
1 if x ∈ [0, 12]

3

0 otherwise
.

Again, we plot the desired state for Example 5.1.2 along with the computed state and control
for β = 10−2 and β = 10−5, in Figure 5.2. Here the cost functional is 2.51× 10−2 when β = 10−2

and 7.47× 10−3 when β = 10−5, both values given using a discretization of h = 2−5. Note that the
theory in section 2.2 tells us that an optimal control doesn’t exist in the case β = 0 for this problem.
This can be seen here by the fact that as β gets closer to zero a singularity develops in the control
along the lines where the desired state is discontinuous; we start to see this effect in Figure 5.2(e).

Examples 5.1.3 and 5.1.4 take the same objective function as 5.1.1, but have Neumann and mixed
boundary conditions respectively.

Example 5.1.3. Let Ω = [0, 1]2 and consider the Neumann problem

min
y,u

1

2
||y − ŷ||2L2(Ω) +

β

2
||u||2L2(Ω)

s.t. −∇2y = u in Ω (5.6)

∂y

∂n
= 0 on ∂Ω (5.7)

76

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

(a) Desired state, ŷ

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

(b) Computed state, y, for β = 10−2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−0.25

−0.2

−0.15

−0.1

−0.05

0

(c) Computed control, u, for β = 10−2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(d) Computed state, y, for β = 10−5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−8

−7

−6

−5

−4

−3

−2

−1

0

(e) Computed control, u, for β = 10−5

Figure 5.1: Desired state, state and control for Example 5.1.1 in two dimensions, β = 10−2 and
β = 10−5.

77

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

(a) Desired state, ŷ

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

(b) Computed state, y, for β = 10−2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(c) Computed control, u, for β = 10−2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(d) Computed state, y, for β = 10−5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−40

−20

0

20

40

60

80

(e) Computed control, u, for β = 10−5

Figure 5.2: Desired state, state and control for Example 5.1.2 in two dimensions, β = 10−2 and
β = 10−5.

78

where

ŷ =

{
(2x1 − 1)2(2x2 − 1)2 if x ∈ [0, 12]

2

0 otherwise
.

Example 5.1.4. Let Ω = [0, 1]2 and consider the problem

min
y,u

1

2
||y − ŷ||2L2(Ω) +

β

2
||u||2L2(Ω)

s.t. −∇2y = u in Ω (5.8)

y = ŷ|∂Ω on ∂Ω1 and
∂y

∂n
= 0 on ∂Ω2 (5.9)

where

ŷ =

{
(2x1 − 1)2(2x1 − 1)2 if x ∈ [0, 12]

2

0 otherwise

and ∂Ω1 = (0× [0, 1)) ∪ ((0, 1]× 0) and ∂Ω2 = (1 × (0, 1]) ∪ ([0, 1)× 1).

Finally, Example 5.1.5 is a boundary control problem, with a Neumann boundary condition.

Example 5.1.5. Let Ω = [0, 1]2 and consider the boundary control problem

min
y,u

1

2
||y − ŷ||2L2(Ω) +

β

2
||u||2L2(∂Ω)

s.t. −∇2y = 0 in Ω (5.10)

∂y

∂n
= u on ∂Ω (5.11)

where

ŷ =

{
(2x1 − 1)2(2x2 − 1)2 if x ∈ [0, 12]

2

0 otherwise
.

5.2 Approximating the mass matrix

First, consider A =

[
βQu 0
0 Qy

]
. Solving exactly with A is expensive, so we need to obtain good,

yet inexpensive, approximations to the action of the inverse of this matrix. Since A is block diagonal,
and composed of mass matrices, it is sufficient to look for an approximation to the action of the
inverse of a mass matrix, Q.

Consider D = diag(Q). Wathen [125] gave a method to calculate constants θ, Θ (which depend
on the type of elements used, but not the mesh size) such that

θ ≤ λ(D−1Q) ≤ Θ. (5.12)

Recall from (2.6) that we can write Q in terms of the element mass matrices as

Q = LTblkdiag(Qe)L.

We can do the same thing with the diagonal of the mass matrix, D; here

D = LTblkdiag(De)L,

where De = diag(Qe). Now, since Q and D are symmetric positive definite, consider the generalized

79

Rayleigh quotient

xTQx

xTDx
=

xTLTblkdiag(Qe)Lx

xTLTblkdiag(De)Lx
=

yT blkdiag(Qe)y

yT blkdiag(De)y
,

where y = Lx. The maximum (resp. minimum) value of the generalized Rayleigh quotient is the
same as the maximum (resp. minimum) eigenvalue of D−1

e Qe over all the elements, therefore we can
obtain the bound Θ (resp. θ) by this method. If the mesh is regular then all the element matrices
are the same, so we only need to perform the calculation once to get eigenvalue bounds. These
values are tabulated in [125] for some common elements, and we reproduce the bounds here in Table
5.1. Figure 5.3 shows the eigenvalues of D−1Q for a Q1 discretization in two dimensions, along with
the predicted bounds. Note that if we have an irregular mesh then it is just an O(N) calculation to
obtain the maximum and minimum eigenvalues for each element.

Elements θ Θ

Arbitrary linear (1D) 1/2 3/2
Arbitrary linear triangles (P1) 1/2 2
Bilinear rectangles (Q1) 1/4 9/4
Arbitrary quadratic triangles (Q2) 0.3924 2.0598
Biquadratic rectangles (Q2) 1/4 25/16
Rectangular trilinear brick (Q1) 1/8 27/8

Table 5.1: Eigenvalue bounds for D−1Q, from Table 1 in [125]

0 50 100 150 200
0

0.5

1

1.5

2

2.5

Figure 5.3: Distribution of eigenvalues in two-dimensions for a Q1 discretization with h = 2−5 (‘*’),
and the bounds predicted by Table 5.1 (‘-’).

The results above show us that simply replacing Q by diag(Q) in A would be a reasonable
approximation, at least for standard finite elements. Is it possible to do any better? The original
paper derives these bounds to show that the diagonal of the mass matrix is a good preconditioner
for conjugate gradients, so a number of steps of the conjugate gradient method would be a good
approximation to action of the inverse of Q. However, as discussed in Chapter 3, conjugate gradients
is a non-linear method, so cannot be used as part of a preconditioner for a standard – i.e. not flexible –
Krylov subspace method. Recall from Section 3.1.5 that a non-linear method like conjugate gradients
gives superlinear convergence since it automatically picks the best polynomial approximation to the
eigenvalues, and hence can take advantage of any clustering. Figure 5.3 shows that, in the case
of D−1Q, the eigenvalues are quite uniformly distributed between the two extrema, so we should
expect close to linear convergence – i.e. the convergence will be close to that described by the usually
pessimistic bound (3.27).

80

Recall that the bound (3.27) has the same constant as the bound in the Chebyshev semi-iteration
(3.22), which was the (linear) method from which we derived conjugate gradients in Chapter 3. This
suggests that the Chebyshev semi-iteration shouldn’t be too much worse than conjugate gradients
in this case. Since it is a linear method, it is also suitable for use as a preconditioner for a Krylov
subspace method.

As described in Section 3.1.4, the drawback with this method is that we require accurate bounds
for the eigenvalues of the iteration matrix for the underlying simple iteration. Suppose the underlying
method is relaxed Jacobi, as defined in Section 3.1.2. The iteration matrix is then I−ωD−1Q, where
ω is the relaxation parameter. Equation (3.7) tells us that, if the bounds in Table 5.1 are tight, the
optimal value of ω is

ω =
2

θ +Θ
.

Therefore, again using (5.12), we see that if we use this optimal value of ω the eigenvalues of the
iteration matrix satisfy

θ −Θ

θ +Θ
≤ λ(I − ωD−1Q) ≤ Θ− θ

θ +Θ
.

Hence we have good bounds for the eigenvalues of the iteration matrix, and so the Chebyshev semi-
iteration is a viable method when solving a system with a mass matrix. Figure 5.4 shows convergence
curves for the Chebyshev semi-iterative method and the preconditioned conjugate gradient method,
plotting convergence in two different norms. This supports our prediction that not much is lost by
choosing the Chebyshev semi-iteration over the conjugate gradient method.

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

10
2

Number of iterations

||
 r

k
 |
| 2

Chebyshev

CG

(a) The residuals in the 2-norm

0 5 10 15 20
10

−4

10
−2

10
0

10
2

10
4

Number of iterations

||
 r

k
 |
| A

−
1

Chebyshev

CG

(b) The residuals in the A−1-norm

Figure 5.4: Comparison of convergence of PCG and Chebyshev semi-iteration.

We now want to calculate eigenvalue bounds for the system preconditioned by the Chebyshev
semi-iteration. Suppose we want to solve the system Qx = b. If we take an initial guess x(0) = 0

in the underlying relaxed Jacobi method, equation (3.17) tells us that the Chebyshev semi-iteration
satisfies

x− y(k) = pk(S)x,

where S := I − ωD−1Q and pk(x) is the appropriate scaled and shifted Chebyshev polynomial, as
described in Section 3.1.4. On rearranging, this becomes

y(k) = (I − pk(S))x = (I − pk(S))M
−1b.

Therefore we can write the kth iterate of the Chebyshev semi-iteration as a matrix. Let us define
C−1
k := (I − pk(S))M

−1; then Ck is our approximation to the mass matrix.
In order to see how effective this approximation is we can look at the eigenvalues of C−1

k M =
I − pk(S). Since we know the polynomial pk(x) explicitly (3.19) these eigenvalues are easy to
calculate. For Q1 elements we give the upper and lower bounds on the eigenvalues for the first

81

twenty iterations in two and three dimensions in Table 5.2. The table shows that this method quickly
gives a very accurate approximation to the solution, and – as we can see from Algorithm 4 – the
Chebyshev semi-iteration is very cheap to implement. This is therefore an effective preconditioner,
and we have shown, for a given k, there exist constants δk and ∆k independent of h such that

δk ≤ xTQx

xTCkx
≤ ∆k. (5.13)

Hence, returning to the control problem, if we define A0 =

[
βCuk 0
0 Cyk

]
, where the superscripts

distinguish between the triangulations used to discretize the control and the state, then we have

min (δuk , δ
y
k) ≤

xTAx

xTA0x
≤ max (∆u

k ,∆
y
k) . (5.14)

Using Chebyshev semi-iteration as a preconditioner is an old idea – see, for example, [5, 50, 73,
90, 99]. The first person to suggest using it to precondition a solve with a mass matrix, as described
above, appears to be van Gijzen in 1995 [122]. The idea was discovered independently, and given
a more theoretical understanding, by Wathen and Rees in 2008 [126]. This idea is useful in many
contexts, not just problems in the optimal control of PDEs. For example, when using standard
preconditioners for the Stokes equation (see Chapter 7) one of the blocks in an ideal preconditioner
is a mass matrix. This method was described in this context by Wathen and Rees [126] and has
since been used by Grinevich and Olshanskii [55].

5.3 Approximating the Schur Complement

Now consider the Schur complement. For the saddle point system we’re considering here, (5.1),

BA−1BT =
1

β
Q̂Q−1

u Q̂T +KQ−1
y K.

The first difficulty in applying the inverse of this is the addition. Figure 5.5 shows the largest and
smallest eigenvalues for different values of β for Example 5.1.1, in the case where u and y are both
discretized with uniform Q1 elements. This suggests that for all but the smallest values of β the
dominant term in the sum is the KQ−1

y K term. A thorough analysis of how the condition number
of the matrix changes with β has been given by Thorne [114].

Recall equation (2.27) tells us that, for this problem, we have that the error satisfies

‖u− uh‖2 ≤ Ch2/β,

so if we take a value of β smaller than h2 we cannot guarantee the accuracy of the solution. This
suggests that the ‘larger’ values of β are the ones that are important. The value of β = 10−2

has often been used in the literature – see, e.g. [29, 56, 71]. S. Ulbrich [68, p. 6] suggests that
β ∈ [10−5, 10−3]. We therefore develop preconditioners that are effective for these ‘larger’ β.

Let us define Ŝ := KQ−1
y K.We want to make the intuition above more precise by considering the

eigenvalues of Ŝ−1S. Consider the case where both y and u are discretized using the same elements,

82

Two Dimensions Three Dimensions
k Lower bound Upper bound εk Lower bound Upper bound εk

1 0.200000000000000 1.800000000000000 0.800000000000 0.071428571428571 1.928571428571429 0.928571428571
2 0.529411764705882 1.470588235294118 0.470588235294 0.242152466367712 1.757847533632288 0.757847533632
3 0.753846153846154 1.246153846153846 0.246153846153 0.433470861268694 1.566529138731306 0.566529138731
4 0.875486381322957 1.124513618677043 0.124513618677 0.597147975231673 1.402852024768327 0.402852024768
5 0.937560975609756 1.062439024390244 0.062439024390 0.720776486124292 1.279223513875708 0.279223513875
6 0.968757627532341 1.031242372467659 0.031242372467 0.808846507572246 1.191153492427754 0.191153492427
7 0.984375953616112 1.015624046383888 0.015624046383 0.869897818711463 1.130102181288537 0.130102181288
8 0.992187619207471 1.007812380792529 0.007812380792 0.911689150016541 1.088310849983459 0.088310849983
9 0.996093764901104 1.003906235098896 0.003906235098 0.940130893927575 1.059869106072427 0.059869106072

10 0.998046876862643 1.001953123137357 0.001953123137 0.959435805298037 1.040564194701956 0.040564194701
11 0.999023437732830 1.000976562267170 0.000976562267 0.972523033141943 1.027476966858060 0.027476966858
12 0.999511718779104 1.000488281220896 0.000488281220 0.981390172808929 1.018609827191073 0.018609827191
13 0.999755859378638 1.000244140621363 0.000244140621 0.987396479797611 1.012603520202398 0.012603520202
14 0.999877929687954 1.000122070312045 0.000122070312 0.991464472578415 1.008535527421550 0.008535527421
15 0.999938964843807 1.000061035156194 0.000061035156 0.994219521276648 1.005780478723391 0.005780478723
16 0.999969482421881 1.000030517578119 0.000030517578 0.996085332018970 1.003914667981061 0.003914667981
17 0.999984741210937 1.000015258789063 0.000015258789 0.997348906791884 1.002651093208068 0.002651093208
18 0.999992370605466 1.000007629394531 0.000007629394 0.998204627482791 1.001795372516598 0.001795372517
19 0.999996185302733 1.000003814697268 0.000003814697 0.998784139008908 1.001215860991333 0.001215860991
20 0.999998092651366 1.000001907348635 0.000001907348 0.999176595616630 1.000823404383702 0.000823404383

Table 5.2: Upper and lower bounds for λ(C−1
k M), and εk s.t. |1− λk| ≤ εk, where C

−1
k is given by k steps of the Chebyshev semi-iteration (without

scaling) for square Q1 elements

8
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

β

ei
g
en
va
lu
e

1
βQ

KQ−1K

S

(a) Minimum eigenvalue

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

β

ei
g
en
va
lu
e

1
βQ

KQ−1K

S

(b) Maximum eigenvalue

Figure 5.5: Extremal eigenvalues vs β where the control and the state are both discretized using Q1

elements – h = 2−2.

so Qu = Qy = Q̂ := Q. Then S = 1
βQ+KQ−1K, and so

Sx = λŜx

(
1

β
Q+KQ−1K)x = λKQ−1Kx

(K−1QK−1Q+ βI)x = βλx

(K−1Q)2x = β(λ− 1)x.

Since K−1Q – and hence (K−1Q)2 – is positive definite, let β(λ− 1) = ν2. Then

Qx = νKx,

and so

ν =
xTQx

xTKx
=

xTQx

xTx
· xTx

xTKx
.

Assuming our triangulation satisfies the conditions for Theorem 2.1.1 and Theorem 2.1.2, appealing
to these immediately gives us that there exists constants c, C independent of the mesh size such
that

√
ch2 ≤ xTQx

xTKx
≤

√
C.

Therefore we have

ch4 ≤ β(λ− 1) ≤ C ⇒ 1

β
ch4 + 1 ≤ λ ≤ 1

β
C + 1.

We have shown that there exists constants c and C independent of the mesh size such that

1

β
ch4 + 1 ≤ xTSx

xT Ŝx
≤ 1

β
C + 1. (5.15)

Therefore, as long as β isn’t too small, these eigenvalues will be clustered, and Ŝ is a good approxi-
mation to S.

We have shown that, at least for large values of β, Ŝ is a good approximation to S. However, a
solve with Ŝ requires a matrix-vector multiply with Qy – which is relatively cheap – and two solves

with K – which is expensive. Therefore Ŝ is not itself a practical preconditioner, and so we need to
approximate this again to get an efficient approximation to the Schur complement.

84

The difficulty is that we have to solve two systems of the form

Kx = b. (5.16)

We know from Section 3.2 that multigrid, for example, is a good preconditioner for systems of this
type, so what if we replace K by K̃, where K̃ approximates K in the sense that there exist positive
constants γ ≤ 1 and Γ ≥ 1 such that

γ ≤ xTKx

xT K̃x
≤ Γ (5.17)

for all x. Then is K̃Q−1
y K̃ a good approximation for KQ−1

y K? We have that

xTKQ−1
y Kx

xT K̃Q−1
y K̃x

=
yTQ−1

y y

yTy
· x

TK2x

xT K̃2x
· zT z

zTQ−1
y z

,

where y = Kx and z = KTx. Applying Theorem 2.1.2 we have that there exist constants c∗ ≤ 1
and C∗ ≥ 1 such that

c∗ inf
x

xTK2x

xT K̃2x
≤ xTKQ−1

y Kx

xT K̃Q−1
y K̃x

≤ C∗ sup
x

xTK2x

xT K̃2x
. (5.18)

Note that we can write the first inequality of (5.17) as γxT K̃x ≤ xTKx, or equivalently:

xTPγx ≤ xTKx,

where Pγ := γK̃. We can similarly write the second inequality as

xTKx ≤ xTPΓx,

where PΓ := ΓK. Therefore, if we know that Pγ ≤ K ⇒ P 2
γ ≤ K2 (and similarly K ≤ PΓ ⇒ K2 ≤

P 2
Γ), then we would necessarily have

γ2 ≤ xTK2x

xT K̃2x
≤ Γ2,

and hence, from (5.18), we see that K̃Q−1
y K̃ is an effective preconditioner for KQ−1

y K. Note that
this is a sufficient, but not a necessary, condition.

We now have to address a further question: under what conditions does B ≤ C ⇒ B2 ≤ C2? If
B and C are positive matrices which commute, then C −B is positive, and C(C −B) is a product
of two positive matrices which commute, and is hence positive [69, p. 434]. The same is true for
(C −B)B. Therefore

B2 ≤ CB ≤ C2,

and so the relationship holds in this case. As shown by the following example by Braess and Peisker
[18], this is not true in general. Define matrices B and C by

B :=

[
1 a
a 2a2

]
, C :=

[
2 0
0 3a2

]
,

where a� 1. Then the eigenvalues of C −B are 0 and 1 + a2, so B ≤ C. However,

B2 =

[
1 + a2 a+ 2a3

a+ 2a3 a2 + 4a4

]
, C2 =

[
4 0
0 9a4

]
,

85

and so the eigenvalues of C2 −B2 are

λ =
1

2

(
5a4 − 2a2 + 3±

√
25a8 + 16a6 − 14a4 + 4a2 + 9

)
,

of which the smallest is plotted in Figure 5.6. From the figure we see that C2 −B2 is indefinite for
a ≥ 1.

Figure 5.6: Plot of smallest eigenvalue of C2 −B2, a = [1, 15]

This shows that the relation B ≤ C ⇒ B2 ≤ C2 does not hold for all matrices B,C. We know
the relationship holds if B and C commute. This is not a necessary condition, as can be seen by
considering the matrices

B =

[
2 0
0 3

]
, C =

[
10 1
1 20

]
.

Here the eigenvalues of C − B are 7.89 and 17.10, so B < C. The eigenvalues of C2 − B2 are also
positive, namely 93.98 and 395.01, so B2 < C2. Here B and C clearly do not commute. Therefore
commutivity of B and C is not the only property that determines whether B2 ≤ C2.

Let K̃−1
m denote the operation of applying to each b an approximation xm = K̃−1

m b to the
solution of (5.16) by applying m steps of a convergent (multigrid) iteration with starting value 0.
We would like to show the existence positive constants ω and Ω such that

ω ≤ xTK2x

xT K̃2
mx

≤ Ω. (5.19)

By definition of convergence, there exists a sequence {ηm} with ηm → 0 such that

‖xm − x‖
‖x‖ ≤ ηm.

This can be written as
‖K̃−1

m b−K−1b‖ ≤ ηm‖K−1b‖. (5.20)

Note that

ηm = sup
b 6=0

‖K̃−1
m b−K−1b‖
‖K−1b‖ = sup

x 6=0

‖K̃−1
m Kx− x‖

‖x‖
= ‖K̃−1

m K − I‖ = ‖(K̃−1
m K − I)T ‖

= ‖KK̃−T
m − I‖,

86

which means we also have the following equation, which involves the adjoint of K̃−1
m :

‖KK̃−T
m b− b‖ ≤ ηm‖b‖. (5.21)

From (5.21) we have that

(1 − ηm)‖b‖ ≤ ‖KK̃−T
m b‖ ≤ (1 + ηm)‖b‖,

and squaring this gives

(1− ηm)2‖b‖2 ≤ ‖KK̃−T
m b‖2 ≤ (1 + ηm)2‖b‖2.

Therefore we have that

(1− ηm)2bTb ≤ bT K̃−1
m K2K̃−T

m b ≤ (1 + ηm)2bTb,

and, finally, taking x = K̃−T
m b we get

(1− ηm)2xT K̃mK̃
T
mx ≤ xTK2x ≤ (1 + ηm)2xT K̃mK̃

T
mx.

We can therefore write

(1− ηm)2 ≤ xTK2x

xT K̃mK̃T
mx

≤ (1 + ηm)2,

and since here K̃m is symmetric, this is the same form as (5.19), with ω = (1−ηm)2 and Ω = (1+ηm)
2.

Hence, from (5.18),

c∗(1− ηm)2 ≤ xTKQ−1
y Kx

xT K̃Q−1
y K̃x

≤ C∗(1 + ηm)2. (5.22)

The argument above was first given by Braess and Peisker [18], and shows that any (linear) con-
vergent iterative procedure that converges to the solution x of Kx = y – along with the procedure
that corresponds to its transpose – can be used as a preconditioner for K2. We can take multigrid
as the iteration, and as long as the constant ηm is small enough – i.e. by taking a sufficient number
of smoothing steps or V-cycles – we will get a good preconditioner for the square of K complement.

We now return to the case of control the Poisson equation. We want to see how well K̃Q−1
y K̃

approximates S. We know

xTSx

xT K̃Q−1
y K̃x

=
xTSx

xTKQ−1
y Kx

xTKQ−1
y Kx

xT K̃Q−1
y K̃x

,

and so simply applying (5.15) and (5.22) gives us

c∗(
1

β
ch4 + 1)(1− ηm)2 ≤ xTSx

xT K̃Q−1
y K̃x

≤ C∗(
1

β
C + 1)(1 + ηm)2. (5.23)

This shows us that – provided our multigrid approximation to K is good enough – replacing a solve
with K in our idealized preconditioner by a fixed number of multigrid cycles should cluster the
eigenvalues, and hence be a reasonable approximation to the Schur complement. We shall see how
this performs in practice with some numerical examples in the next section.

5.4 Block diagonal preconditioners

Consider the system 

βQ 0 −Q
0 Q K

−Q K 0






u

y

p


 =




0
b

d


 , (5.24)

87

where, for clarity in the following discussion, we have discretized the control and the state using the
same finite element basis. Recall from Section 4.2 that one method to solve this system is to use
MINRES with a block-diagonal preconditioner of the form

PBD =



βQ0 0 0
0 Q0 0
0 0 S0


 ,

where S0 approximates the Schur complement and Q0 approximates Q. In the previous sections
we established bounds for the case where Q0 = Ck, where Ck denotes k steps of the Chebyshev
semi-iteration, and S0 = K̃Q−1K̃, where K̃−1 is a fixed number of multigrid cycles.

We saw in Section 3.1.7 that the speed of convergence of MINRES depends on the clustering of
the eigenvalues of the preconditioned system. Appealing to Theorem 4.2.1, together with (5.13) and
(5.23), we get that the eigenvalues of the preconditioned system satisfy

δk −
√
δ2k + 4∆kΦ

2
≤ λ ≤ ∆k −

√
∆2
k + 4φδk

2
,

δk ≤ λ ≤ ∆k,

or
δk +

√
δ2k + 4δkφ

2
≤ λ ≤ ∆k +

√
∆2
k + 4Φ∆k

2
,

where φ = c∗(1β ch
4 + 1)(1 − ηm)2 and Φ = C∗(1βC + 1)(1 + ηm)2. Improving the accuracy of the

approximation to Q or K will make the bounds δk and ∆k closer to unity and ηk closer to zero.
Numerical testing has shown that taking one GMG V-cycle with three pre-smoothing iterations for
the stiffness matrix along with five steps of the Chebyshev semi-iteration for the mass matrix seems
to give a good balance between having a preconditioner that is cheap to solve and yet give good
convergence – see Appendix A for more details. We also consider approximating K using an AMG
routine – HSL MI20 [15], applied via a MATLAB interface. We treat this as a ‘black box’, using the
default parameters.

Figure 5.7 shows plots of the eigenvalues of the preconditioned system, together with the predicted
bounds, for Example 5.1.1 with a mesh size of h = 2−3 and for regularization parameters β = 10−2

and β = 10−5. We give the eigenvalues in both the cases where solves with the stiffness and mass
matrices are exact, and also where they are approximated by one GMG V-cycle and five steps of
the Chebyshev semi-iteration respectively. In calculating the bounds we take the contraction rate
as η1 = 0.15 and get δ,∆ from Table 5.2. As we see from the plots, the bounds above are quite
descriptive.

We now consider the examples introduced in Section 5.1, solved with the preconditioner described
above. We stop MINRES using the preconditioned residual, ‖r(k)‖P−1

BD
, which is the quantity that

is minimized here – see Section 3.1.7. We take a fixed tolerance of 10−6; it should be noted that,
in view of the error estimates in Section 2.1, this is considerable overkill for the smaller values of h,
but our main interest here is in the effectiveness of the solution method.

Example 5.1.1 is a distributed control problem with inhomogeneous Dirichlet boundary condi-
tions. Table 5.3 shows results when solving this system with a regularization parameter β = 10−2,
using our block diagonal preconditioner with MINRES. We include the iteration numbers and time
taken – in seconds – when using both a GMG and an AMG approximation of K, plus the time taken
to solve the whole system using a direct solver. We also include the difference between the approxi-
mate solution and the objective function, ‖yh − ŷ‖2, the value of the cost functional, J(yh, uh) and
the difference between the control computed using the iterative method with a GMG approximation
to K, uG, and the control computed using backslash, uB.

We see from the results in Table 5.3 that MINRES gives mesh-size independent convergence,
and the time taken to solve the system scales linearly with the problem size, which is not true for
the direct method. Note that the AMG routine gives faster results than the GMG routine – this
is probably because the MI20 AMG is a complied code, as opposed to the interpreted MATLAB
code of the geometric multigrid we use; if both were compiled, then GMG should be more efficient.

88

20 40 60 80 100 120 140

−1

−0.5

0

0.5

1

1.5

2

(a) β = 10−2, exact solves

20 40 60 80 100 120 140

−1

−0.5

0

0.5

1

1.5

2

(b) β = 10−2, approx solves

20 40 60 80 100 120 140

−20

−15

−10

−5

0

5

10

15

20

(c) β = 10−5, exact solves

20 40 60 80 100 120 140

−20

−15

−10

−5

0

5

10

15

20

(d) β = 10−5, approx solves

Figure 5.7: Eigenvalues (’*’) and predicted bounds (’-’) for the block diagonal preconditioner where
β = 10−2, 10−5, with exact and approximated K and Q solves.

89

Table 5.3: Comparison of solution methods for solving Example 5.1.1 using MINRES
h GMG AMG backslash ‖yGh − ŷ‖2 J(yGh , u

G
h) ‖uG − uB‖2

time its time its time
2−2 0.305 11 0.016 11 0.000 1.412e-03 8.103e-04 5.233e-07
2−3 0.301 12 0.010 12 0.001 1.404e-03 7.962e-04 2.051e-06
2−4 0.329 15 0.023 15 0.006 1.396e-03 7.891e-04 2.522e-06
2−5 0.442 17 0.070 16 0.034 1.394e-03 7.871e-04 9.031e-06
2−6 0.806 15 0.271 15 0.196 1.393e-03 7.866e-04 4.281e-05
2−7 2.563 15 1.238 15 1.194 1.393e-03 7.865e-04 4.156e-05
2−8 9.760 14 5.304 14 7.229 1.393e-03 7.864e-04 1.466e-04
2−9 36.698 13 22.596 15 61.416 1.393e-03 7.864e-04 5.951e-04

The results above are for β = 10−2 – Figure 5.8(a) shows a plot of the iteration numbers – using a
GMG approximation of K – for a range of β. This shows us that, as predicted by the theory above,
the method is fairly robust – albeit with higher iteration numbers as the parameter gets smaller –
for β to around 10−5, but for yet smaller β the convergence is poorer. The MATLAB interface for
the MI20 AMG method failed for the largest problem size in three dimensions, so we are unable to
report results in this case.

2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

log
2
(N)

N
o
.
o
f
it
e
r.

β = 10
−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(a) Example 5.1.1

2 3 4 5 6
0

20

40

60

80

100

120

140

log
2
(N)

N
o
.
o
f
it
e
r.

β = 10

−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(b) Example 5.1.1 in 3D

Figure 5.8: Plot of problem size vs MINRES iterations needed for different β for a distributed control
problem with Dirichlet boundary conditions, in two and three dimensions.

Table 5.4: Comparison of solution methods for solving Example 5.1.1 in 3D using MINRES
h GMG AMG backslash

time its time its time
2−2 0.133 10 0.022 10 0.013
2−3 0.138 9 0.055 9 0.108
2−4 0.597 8 0.777 8 6.572
2−5 4.810 7 8.716 7 —a

2−6 43.176 7 —b- —a

a Ran out of memory
b AMG failed

Table 5.5 shows results for the distributed control problem described in Example 5.1.2. This is
an objective function that is harder be obtain, as we see in the value of the cost functional, which
is two orders of magnitude larger here than in the previous case. The results here are analogous to

90

those in Table 5.3 – this suggests that the effectiveness of the method is independent of the problem
considered.

Table 5.5: Comparison of solution methods for solving Example 5.1.2 using MINRES
h GMG AMG backslash

time its time its time
2−2 0.314 11 0.018 11 0.000
2−3 0.306 12 0.010 12 0.001
2−4 0.346 15 0.026 15 0.008
2−5 0.419 15 0.066 15 0.034
2−6 0.810 15 0.271 15 0.197
2−7 2.524 15 1.237 15 1.163
2−8 9.663 14 5.212 14 7.168
2−9 36.660 13 20.118 13 58.599

The results in Table 5.5 are again for β = 10−2 – Figure 5.9(a) shows the iteration count for a
range of β. The results here are again similar to those for Example 5.1.1.

We now consider Example 5.1.3, which is again a distributed control problem, but with Neumann
boundary conditions. Since the discrete Neumann Laplacian matrix is singular – see Section 2.1 –
the method as described above will not work1. We get around this problem by ‘pinning’ one of the
nodes by enforcing a Dirichlet boundary condition at one point. This makes the matrix invertible
K, and then the method as described above can be used as before.

Table 5.5 shows the results in this case, again taking β = 10−2. Here the iteration count is
higher than in the Dirichlet case, due to the worse spectral properties of the matrix K in this case.
The algebraic multigrid method here seems to cope with the pinning of the node better than the
geometric multigrid method. Here we see only a slight increase in iteration numbers as N decreases
with a GMG approximation to K, and again we see mesh-independent convergence for the AMG
approximation. The times still scale linearly with the problem size. Figure 5.9(b) again shows a
plot of the number of iterations needed for different values of β.

Table 5.6: Comparison of solution methods for solving Example 5.1.3 using MINRES
h GMG AMG backslash

time its time its time
2−2 0.308 18 0.023 20 0.001
2−3 0.309 19 0.019 21 0.002
2−4 0.355 21 0.042 25 0.008
2−5 0.498 21 0.119 25 0.046
2−6 1.167 24 0.451 24 0.277
2−7 3.887 24 1.947 24 1.916
2−8 17.461 25 8.207 23 12.366
2−9 68.469 25 33.789 23 97.767

Table 5.7 and Figure 5.10(a) give the same results for Example 5.1.4, which had mixed boundary
conditions. We see that we again get convergence that is mesh-independent for both approximations
to K, and the iteration numbers lie somewhere between those of the purely Neumann case and the
purely Dirichlet case, as we might expect.

So far we have see that MINRES with block diagonal preconditioner is an optimal method of
distributed control problems. Example 5.1.5 is a boundary control problem with Neumann boundary
conditions. Table 5.8 and Figure 5.10(b) give the results in this case. Here we see that the number
of iterations needed are again mesh-independent.

1The singularity of K is not, in general, a problem for iterative methods – see, e.g. [39, Section 2.3] [128, Section
6.4]. The main issue here is that the right hand side for the second solve with the Laplacian does not necessarily
satisfy the consistency condition required for a solution to exist.

91

2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

log
2
(N)

N
o
.
o
f
it
e
r.

β = 10
−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(a) Example 5.1.2

2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

350

log
2
(N)

N
o
.
o
f
it
e
r.

β = 10
−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(b) Example 5.1.3

Figure 5.9: Plot of problem size vs MINRES iterations needed for different β for distributed control
problems with Dirichlet and Neumann boundary conditions.

2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

log
2
(N)

N
o
.
o
f
it
e
r.

β = 10
−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(a) Example 5.1.4

2 3 4 5 6 7 8 9
0

50

100

150

200

250

log
2
(N)

N
o
.
o
f
it
e
r.

β = 10
−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(b) Example 5.1.5

Figure 5.10: Plot of problem size vs MINRES iterations needed for different β for a distributed
control problem with mixed boundary conditions and a boundary control problem with Neumann
boundary conditions.

92

Table 5.7: Comparison of solution methods for solving Example 5.1.4 using MINRES
h GMG AMG backslash

time its time its time
2−2 1.078 14 0.392 14 0.001
2−3 0.300 15 0.015 16 0.001
2−4 0.335 17 0.030 18 0.007
2−5 0.453 18 0.092 19 0.039
2−6 0.892 17 0.359 19 0.236
2−7 2.921 17 1.486 17 1.353
2−8 11.223 16 5.929 16 7.788
2−9 42.130 15 25.931 17 47.718

Table 5.8: Comparison of solution methods for solving Example 5.1.5 using MINRES
h GMG AMG backslash

time its time its time
2−2 0.327 20 0.034 22 0.001
2−3 0.321 20 0.031 22 0.004
2−4 0.358 20 0.038 22 0.009
2−5 0.491 21 0.099 23 0.038
2−6 1.004 21 0.344 23 0.299
2−7 3.228 21 1.517 23 2.338
2−8 12.553 20 6.910 23 22.328
2−9 50.934 20 26.651 22 —a

a Ran out of memory

5.5 Block lower triangular preconditioners

Recall from Section 4.3 that the matrix

[
A0 0
B −S0

]−1 [
A BT

B 0

]

is self-adjoint in the inner product defined by 〈·, ·〉H , where

H =

[
A−A0 0

0 S0

]
,

as long as this does indeed define an inner product – i.e. A − A0 > 0 and S0 > 0. A0 and S0 are
chosen to be approximations to the (1,1) block and Schur complement respectively. This enables us
to use the block lower triangular preconditioner

P =

[
A0 0
B −S0

]

as a preconditioner in the conjugate gradient algorithm using the non-standard inner-product defined
by H.

The difficulty with this method is that in order for it to be applicable we need A − A0 to be
positive-definite. In our case, if Q̃ is our approximation to the mass matrix, then this condition is
the same as needing Q− Q̃ > 0. Now, if we assume that Q̃ is positive definite, this condition is the
same as saying that, for all x, xTQx > xTQ0x. Since Q̃ is positive definite we can write Q̃ = Q̃

1
2 Q̃

1
2 ,

and so yT Q̃− 1
2QQ̃− 1

2y > yTy for all y. It’s therefore clear that the condition that Q − Q̃ > 0 is
equivalent to having all the eigenvalues of Q̃−1Q bigger than unity.

If we use the approximation Q̃ = Ck, the Chebyshev semi-iteration as defined in Section 5.2,

93

then we can see from Table 5.2 that some of the eigenvalues will be less than one. However, we
have such good knowledge of the eigenvalues for this approximation, which is a significant advantage
here. Suppose we take our approximation to the (1,1) block to be

A0 =

[
β γkCk 0

0 γkCk

]
,

for some scaling parameter γk. Then, from (5.13), it is easily seen that

δk
γk

≤ xTQx

xT γkCkx
≤ ∆k

γk
.

Therefore, provided we pick γk < δk, A−A0 is positive. The value of δk can be read off Table 5.2.
Hence, in this case we can easily calculate a suitable scaling parameter a priori.

If we absorb the constant γk into the upper bound we can write

1 <
xTAx

xTA0x
≤ ∆k. (5.25)

We can use the approximation to the Schur complement described in Section 5.3, i.e. S0 = K̃Q−1K̃.
With these choices of A0 and S0, the conditions for Theorem 4.1.1 are satisfied, so using this along
with (5.23) and (5.25), we get that the eigenvalues of the preconditioned system satisfy

(1 + φ)∆k −
√
(1 + φ)2∆2

k − 4φ∆k

2
≤λ < (1 + Φ)−

√
(1 + Φ)2 − 4Φ

2
1 <λ ≤ ∆k or

(1 + φ) +
√
(1 + φ)2 − 4φ

2
<λ ≤ (1 + Φ)∆k +

√
(1 + Φ)2∆2

k − 4Φ∆k

2
,

where φ = c∗(1β ch
4 + 1)(1− ηm)2 and Φ = C∗(1βC + 1)(1 + ηm)2.

Figure 5.11 shows a plots of these eigenvalues, together with the predicted bounds, for Example
5.1.1 with a mesh size of h = 2−3 and for regularization parameters β = 10−2 and β = 10−5. Here
we give the eigenvalues in the case where solves with the stiffness matrix are exact and the mass
matrix is approximated by five or ten steps of the Chebyshev semi-iteration, scaled by parameters
γ5 = 0.92 and γ10 = 0.99. In calculating the bounds we get δk,∆k from Table 5.2. Again, the plots
suggest the bounds above are quite descriptive.

We now see how this method performs in practice. We keep the same approximation to the
Schur complement we had in the previous section – where a solve with K is either approximated by
one GMG V-cycle with 3 pre-smoothing steps – or it’s transpose as appropriate – or alternatively
by one MI20 AMG V-cycle with the default parameters.

We again approximate a solve with the mass matrix by five steps of the Chebyshev semi-iteration.
We now need to choose the parameter γ5. Table 5.2 gives us the smallest eigenvalue, δ5 = 0.9375,
hence the parameter can take any value smaller than that. Table A.4 in Appendix A shows that the
performance of the method doesn’t seem critical on the value of the parameter – even values greater
than δ5 appear to perform well, although there is no theory to guarantee these will always work.
However, as we should expect given the results in [20], convergence gets worse the further the ratio
δ5/γ5 is from unity. We take γ5 = 9.2 in the following computations.

The norm that this method minimizes is not easily computable, so in the results presented below
we stop the method when the residual measured in the 2-norm is reduced by a factor of 10−6.

First, consider Example 5.1.1, the distributed control problem with Dirichlet boundary condi-
tions. Table 5.9 gives the results in this case. We see that the method performs well here, giving
mesh size-independent convergence, and again the time to solve the system scales linearly with the
problem size. Figure 5.12(a) shows how the convergence changes with β, and again we see that the
method performs very well here down to β = 10−5.

Next, consider Example 5.1.3, a distributed control problem with Neumann boundary conditions.

94

0 50 100 150

0.8

1

1.2

1.4

1.6

1.8

2

(a) β = 10−2, five Chebyshev steps

0 50 100 150
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

(b) β = 10−2, ten Chebyshev steps

0 50 100 150
0

50

100

150

200

250

300

(c) β = 10−5, ten Chebyshev steps

0 50 100 150
0.8

1

1.2

1.4

1.6

1.8

2

(d) β = 10−5, ten Chebyshev steps (zoomed in)

Figure 5.11: Eigenvalues (’*’) and predicted bounds (’-’) for the block lower triangular preconditioner
where β = 10−2, 10−5, with exact K solves and approximate Q solves.

2 3 4 5 6 7 8 9
10

15

20

25

30

35

40

45

50

55

60

log
2
(N)

N
o

.
o

f
it
e

r.

β = 10
−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(a) Example 5.1.1, 2D

2 2.5 3 3.5 4
5

10

15

20

25

30

35

40

45

50

55

log
2
(N)

N
o

.
o

f
it
e

r.

β = 10

−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(b) Example 5.1.1, 3D

Figure 5.12: Plot of problem size vs BPCG iterations needed for different β for distributed control
problems with Dirichlet boundary conditions in two and three dimensions.

95

Table 5.9: Comparison of solution methods for solving Example 5.1.1 using BPCG
h GMG AMG backslash ‖yGh − ŷ‖2 J(yGh , u

G
h) ‖uG − uB‖2

time its time its time
2−2 1.443 11 0.067 11 0.000 1.412e-03 8.103e-04 6.647e-08
2−3 0.299 11 0.011 11 0.010 1.404e-03 7.962e-04 2.781e-07
2−4 0.314 10 0.019 10 0.025 1.396e-03 7.891e-04 2.283e-06
2−5 0.378 10 0.056 10 0.034 1.394e-03 7.871e-04 5.976e-06
2−6 0.664 10 0.232 10 0.192 1.393e-03 7.866e-04 9.857e-06
2−7 1.907 10 1.120 11 1.163 1.393e-03 7.865e-04 1.914e-05
2−8 7.657 10 5.209 11 7.149 1.393e-03 7.864e-04 2.809e-05
2−9 32.136 10 22.240 11 61.681 1.393e-03 7.864e-04 3.619e-05

Table 5.10: Comparison of solution methods for solving Example 5.1.1 in three dimensions using
BPCG

h GMG AMG backslash

time its time its time
2−2 0.133 10 0.022 10 0.013
2−3 0.138 9 0.055 9 0.108
2−4 0.597 8 0.777 8 6.572
2−5 4.810 7 8.716 7 —a

2−6 43.176 7 —b —a

a Ran out of memory
b AMG failed

The results in this case are given in Table 5.11 and Figure 5.13(a). The results are slightly worse
here, and we have a slight dependence on the mesh size. As we saw when solving the system using
MINRES, AMG performs better here than the geometric multigrid routine.

Table 5.11: Comparison of solution methods for solving Example 5.1.3 using BPCG
h GMG AMG backslash

time its time its time
2−2 0.321 14 0.020 14 0.001
2−3 0.318 14 0.018 14 0.002
2−4 0.327 12 0.032 14 0.008
2−5 0.444 14 0.089 14 0.047
2−6 0.886 14 0.347 14 0.283
2−7 3.028 16 1.565 15 1.910
2−8 13.387 17 7.208 15 12.130
2−9 66.489 21 33.921 17 133.496

Our final example is the boundary control problem, Example 5.1.5. The results of using BPCG on
this problem are given in Table 5.12 and Figure 5.13(b). We see that the method takes significantly
more iterations to converge here, although it is still mesh-size independent.

5.6 Constraint preconditioners

The third approach we shall consider for solving these problems is using a projected conjugate
gradient method with a constraint preconditioner. The theory behind this method was developed
by H.S. Dollar in [95], and is included here for completeness.

96

2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

200

log
2
(N)

N
o
.
o
f
it
e
r.

β = 10
−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(a) Example 5.1.3

2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

900

1000

log
2
(N)

N
o

.
o

f
it
e

r.

β = 10
−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(b) Example 5.1.4

Figure 5.13: Plot of problem size vs BPCG iterations needed for different β for distributed control
problems with Neumann and mixed boundary conditions.

Table 5.12: Comparison of solution methods for solving Example 5.1.5 using BPCG
h GMG AMG backslash

time its time its time
2−2 0.361 37 0.050 42 0.001
2−3 0.366 40 0.050 42 0.002
2−4 0.436 39 0.081 41 0.007
2−5 0.673 38 0.205 42 0.038
2−6 1.653 38 0.718 42 0.300
2−7 5.729 38 3.330 44 2.371
2−8 24.500 38 14.675 43 22.435
2−9 97.559 37 58.721 41 —a

a Ran out of memory

A constraint preconditioner in this case would be of the form

P =



P(1,1) P(2,1) −Q
P(1,2) P(2,2) K
−Q K 0


 .

Define P :=

[
P(1,1) P(2,1)

P(1,2) P(2,2)

]
. Then Theorem 4.4.1 tells us that if Z is a basis for the nullspace of

[−Q K], then the eigenvalues of the preconditioned system will either satisfy λ = 1, or ZTAZz =
λZTPZz for some z, where A here is, as usual, blkdiag(βQ,Q).

Since we are assuming we have discretized the state and control using the same basis, the matrix
we called Q̂ in (5.1) is square, and nonsingular. We can therefore consider the fundamental basis
matrix,

Z =

[
−Q−1K

I

]
.

Thus we have

ZTAZ =
[
−KQ−1 I

] [βQ 0
0 Q

] [
−Q−1K

I

]

= βKQ−1K +Q.

97

Note the similarity between this expression and Schur complement in Section 5.3. We can use the
same ideas presented there to develop an efficient constraint preconditioner. We want a matrix P
such that it is a constraint preconditioner and is such that ZTPZ = βKQ−1K. The obvious choice
of a matrix with these properties would be

P =



βQ 0 −Q
0 0 K

−Q K 0


 .

This preconditioner was considered by Biros and Ghattas [11]. In this situation an argument as
used to get (5.15) tells us that the upper and lower bounds on the eigenvalues of the generalized
eigenvalue problem ZTAZ = λZTPZ would be 1

βC + 1 and 1
β ch

4 + 1. Using this as a constraint
preconditioner will therefore give us a preconditioned system with eigenvalues such that

λ = 1,

or
1

β
ch4 + 1 ≤ λ ≤ 1

β
C + 1.

As we have seen in the previous sections, this will be well clustered for β large enough. This just
leaves us to consider how easy it is to invert in deciding whether its an usable preconditioner or not.

The first thing to note is that by permuting rows and columns we could transform P into a
triangular matrix – it is, using the definition of John Gilbert, a psychologically block triangular
matrix. To solve the system



βQ 0 −Q
0 0 K

−Q K 0






x1

x2

x3


 =




r1
r2
r3




we just need to solve

Kx3 = r2

βQx1 = r1 +Qx3

Kx2 = r3 +Qx1.

In order for constraint preconditioning to be successful we must solve for the constraints exactly so
that we remain on the constraint manifold. Here this means that at each iteration we must solve for
K – which is equivalent to solving the PDE – with high accuracy twice, which is computationally
expensive. Ideally we would like to find a preconditioner with the same spectral properties, but
without having to solve exactly for K where this appears in the constraint blocks. Consider the
matrix

P =




0 0 −Q
0 βKQ−1K K

−Q K 0


 .

Here, again, we see that

ZTAZ =
[
KQ−1 I

] [0 0
0 KQ−1K

] [
Q−1K
I

]

= KQ−1K

and so the eigenvalues of the preconditioned system in this case are the same as that we just

98

considered. This preconditioner differs in that to solve this system we need to solve

Qx3 = −r1

βKQ−1Kx2 = r2 −Kx3

Qx1 = r3 −Kx2.

These equations seem to require even more work to solve than the preconditioner we just considered.
However, on closer inspection we see that the two solves for K that are required here are not from
the constraint, but from A, the part we are free to choose, leaving the possibility of approximating
the action of the inverse of K available. The only part of the constraint block that we have to
solve here is Q, and we have efficient ways of solving for Q. Thus, if we use the same (multigrid)
approximation as in the previous two sections, a practical preconditioner would be

P2 =




0 0 −Q
0 βK̃Q−1K̃ K

−Q K 0


 .

An argument as in Section 5.3 shows that, with this modification, the eigenvalues of the precondi-
tioned system in this case satisfy

λ = 1,

or c∗(1− ηm)2(
1

β
ch4 + 1) ≤ λ ≤ C∗(1 + ηm)2(

1

β
C + 1),

where c∗, c, C∗, C are constants independent of h and β. Note that these eigenvalues are more
tightly clustered than in the other two methods.

Figure 5.14 shows a plots of these eigenvalues, together with the predicted bounds, for Example
5.1.1 with a mesh size of h = 2−3 and for regularization parameters β = 10−2 and β = 10−5. Here
we give the eigenvalues in the case where solves with the mass matrix are exact and the stiffness
matrix is either solved exactly, or approximated by one GMG V-cycle. In calculating the bounds
we take ηk = 0.15.

Note that this method relies heavily on the fact that Q̂ is invertible. The method as presented
here can therefore only be used if we discretize the control and the state using the same elements.
That means that it cannot be used to solve boundary control problems, for example. It may be
possible to adapt the method by considering only an invertible subsection of the matrix Q̂, but there
is at present no theory on this approach.

We now look at some numerical results when using this preconditioner. Again, here we look
at two approximations to the Schur complement – a solve with K is approximated by either one
GMG V-cycle with 3 smoothing steps, or by one AMG V-cycle using HSL MI20 with the default
parameters.

Here we need to solve accurately with the mass matrix, so we run the Chebyshev semi-iteration
until it has converged to a tolerance of 10−12.

We test for convergence on ‖r(k)‖(ZTPZ)−1 , which is an easily computed approximation to ‖x−
x(k)‖ZTAZ , the norm in which PPCG converges [52]. In the results that follow we run the method
until this quantity is reduced by a factor of 10−6.

First, consider Example 5.1.1, the distributed control problem with Dirichlet boundary condi-
tions. The results for this problem are given in Tables 5.13 and 5.14. A graph of the number of
iterations for different β is given in Figure 5.15(a).

We see from table 5.13 that this method has remarkably good convergence – converging in just
two iterations for the AMG approximation to K. However, if we look at value, the cost functional,
this is not decreasing as we refine h. Also, the difference between the exact solution and the solution
found by iterating using this method grows significantly as h decreases. Figure 5.16 shows the plots
of the control and state calculated using this method. To the eye, the state in Figure 5.16(a) looks
like the state in Figure 5.1(b), but the control in Figure 5.1(c) differs from that in Figure 5.16(b).

99

0 50 100 150
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

(a) β = 10−2, exact solves

0 50 100 150
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

(b) β = 10−2, approx solves

0 50 100 150
0

50

100

150

200

250

300

(c) β = 10−5, exact solves

0 50 100 150
0

50

100

150

200

250

300

350

(d) β = 10−5, approx solves

Figure 5.14: Eigenvalues (’*’) and predicted bounds (’-’) for the constraint preconditioner where
β = 10−2, 10−5, with exact and approximated K solves.

2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

log
2
(N)

N
o

.
o

f
it
e

r.

β = 10

−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(a) Example 5.1.1, 2D

2 3 4 5 6
0

10

20

30

40

50

60

log
2
(N)

N
o

.
o

f
it
e

r.

β = 10

−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(b) Example 5.1.1, 3D

Figure 5.15: Plot of problem size vs PPCG iterations needed for different β for distributed control
problems with Dirichlet conditions.

100

Table 5.13: Comparison of solution methods for solving Example 5.1.1 using PPCG
h GMG AMG backslash ‖yGh − ŷ‖2 J(yGh , u

G
h) ‖uG − uB‖2

time its time its time
2−2 0.323 3 0.018 3 0.000 1.412e-03 8.103e-04 2.206e-04
2−3 0.290 3 0.008 3 0.001 1.404e-03 7.962e-04 2.832e-03
2−4 0.299 3 0.011 2 0.006 1.397e-03 7.891e-04 3.245e-02
2−5 0.337 3 0.032 2 0.036 1.395e-03 7.873e-04 2.969e-01
2−6 0.497 3 0.130 2 0.199 1.398e-03 7.909e-04 2.725e+00
2−7 0.979 2 0.560 2 1.178 1.294e-03 3.681e-03 1.385e+02
2−8 3.690 2 2.807 2 7.312 1.292e-03 2.545e-02 7.836e+02
2−9 19.930 3 13.153 2 60.739 1.417e-03 2.904e-03 5.096e+02

Table 5.14: Comparison of solution methods for solving Example 5.1.1 in three dimensions using
PPCG

h GMG AMG backslash

time its time its time
2−2 0.696 2 0.132 2 0.036
2−3 0.114 2 0.032 2 0.059
2−4 0.345 2 0.428 2 7.051
2−5 3.215 2 4.761 1 —a

2−6 65.770 2 —b —a

a Ran out of memory
b AMG failed

Figure 5.17 shows a plot of the residuals of this method in both the norm described above, in with
PPCG converges, and also the 2-norm. We can see from this that, while the residual in the PPCG
norm gets reduced by a factor of ∼ 10−30 in 10 iterations, the residual in the 2-norm stagnates at
∼ 10−4. Therefore, to find an approximation to the optimal control – the effectiveness of which is
measured in the L2 norm (2.27) – it seems that care must be taken when using this method.

Table 5.15 shows the results when applying the constraint preconditioner to the Neumann prob-
lem, Example 5.1.3.

Table 5.15: Comparison of solution methods for solving Example 5.1.3 using PPCG
h GMG AMG backslash

time its time its time
2−2 0.043 3 0.007 3 0.003
2−3 0.010 3 0.009 3 0.007
2−4 0.017 3 0.020 3 0.008
2−5 0.043 3 0.042 3 0.055
2−6 0.171 3 0.162 3 0.347
2−7 0.669 3 0.665 3 1.772
2−8 2.989 3 2.995 3 10.303
t2−9 12.161 3 12.182 3 —a

a Ran out of memory

5.7 Comments

In this chapter we looked at fast iterative methods for solving the discrete optimality systems that
result with Poisson control, as introduced in Chapter 2. We tested our methods with distributed
control – with Dirichlet, Neumann and mixed boundary conditions – and also boundary control

101

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

(a) Computed state, y, for β = 10−2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

(b) Computed control, u, for β = 10−2

Figure 5.16: Desired state, state and control for Example 5.1.1 in two dimensions, β = 10−2, h = 2−5

calculated using PPCG with a constraint preconditioner.

Figure 5.17: Residuals for solution with PPCG

1 2 3 4 5 6 7 8 9 10
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

PPCG norm

2 norm

102

with Neumann boundary conditions. The methods we introduced rely on two components: an
approximation to the (1,1) block and the Schur complement.

The (1,1) block in the PDE constrained optimization problems we have considered here is made
up of mass matrices, and we showed that an inexpensive operation which is spectrally equivalent to
these can be obtained by using the Chebyshev semi-iteration to accelerate relaxed Jacobi. This is
an ideal situation to use this method, since we have all the required spectral information. This idea
was described in Wathen and Rees [126].

For the Schur complement approximation we drop the term that doesn’t contain the PDE, which
is a good approximation for all but the smallest values of the regularization parameter. The bounds
presented in this chapter for this approximation were given in [95]. Care must be taken that the
approximation used for the PDE can also be used to approximate the square of the PDE – we show
that this is the case for the multigrid approximation used here.

We then discussed three methods for solving the system. The first of these is MINRES with a
block diagonal preconditioner – composed of the two approximations described above – which was
first described in [95].

The second method we looked at relies on the fact that when we use a block diagonal precondi-
tioner with the above approximations we have good knowledge of the spectrum of the preconditioned
(1,1) block. Therefore we can trivially scale our approximation to make the (full) preconditioned
system self-adjoint in a non-standard inner product, enabling us to use CG in this inner product.
This method was first described in [96].

The final method we considered – due to Dollar – was also first described in [95]. This is a
constraint preconditioner which can be used with the projected conjugate gradient method. All of
the above methods were shown to be mesh size independent, and scale linearly with the problem
size.

The techniques described here can be coupled with a primal-dual active set method to handle
bound constraints on the control. For more detail see, for example, Rees, Stoll and Wathen [97]
or Stoll and Wathen [111]. The first two methods require that the (1,1) block be non-singular –
this would not be the case if, for example, you could only apply the control in part of the domain.
How to adapt the methods to cope with this difficulty would be an interesting direction for future
research.

There have been many other approaches suggested in the literature to solve the saddle-point
system we are interested in, and we’d like to discuss a number of them here. A number of people
have looked at solving the reduced Hessian system:

Hredu = gred,

which is obtained by block elimination. In our notation, Hred = βQu + Q̂TK−1QyK
−1Q̂, gred =

Q̂TK−1b+ Q̂TK−1QyK
−1d. This is much smaller than the original system, but is also dense, and

cannot be explicitly formed or stored for all but the smallest problems. Among people who developed
mesh-size independent methods for solving this system were Biros and Ghattas [11] and Haber and
Asher [56].

For the specific problem as above for the Poisson equation, Schöberl and Zulehner [103] have
developed preconditioners based on non-standard multigrid procedures which are both optimal with
respect to the problem size and with respect to the choice of regularization parameter, β. The
method in [103] was extended by Herzog and Sachs so that it is applicable to problems with bound
constraints in [63]. It is, however, not clear how these methods would generalize to other problems.
In [104] Schöberl, Zulehner and Simon recently described another multigrid preconditioner for elliptic
optimal control problems which has h and β independent properties.

Other solution methods employing multigrid for this and similar classes of problems are described
by, for example, Asher and Haber [6], Engel and Griebel [41]. See the survey article by and Borzi
and Schulz [13] and the references therein for more information about multigrid solution methods.
We mention that Biros and Dogan [12] have also developed a multigrid-based preconditioner which
has both h and β independent convergence properties, but again it is not clear how their method
would generalize to other PDEs.

103

Domain Decomposition and Model Order Reduction ideas are also successfully applied in this con-
text; see for example Heinkenschloss and Nguyen ([60]) and Heinkenschloss, Sorensen and Sun([62]).

104

Chapter 6

Preconditioners for the optimal

control of the convection-diffusion

equation

6.1 The Convection-Diffusion equation

The convection diffusion equation is an equation of the form

−ε∇2u+ ~w · ∇u = f, (6.1)

where ε is a small parameter which, without loss of generality, we will take to be positive. This is
similar to Poisson’s equation, except we have an additional convection term, ~w · ∇u. The equation
(6.1) can be thought of as modelling the concentration of some pollutant, u, as it moves in a stream
of velocity ~w, and subject also to diffusion. The nature of the problem is highly dependent on the
value of ε. For large ε the equation is dominated by the Laplacian term, so the solution will be
highly diffusive in nature, like solutions of Poisson’s equation. For small ε, however, the convection
term will dominate and the solution will typically have layers.

Consider the boundary conditions

u = gD on ΩD,
∂u

∂n
= gn on ΩN ,

and let H1
E = {u ∈ H1(Ω) : u = gD on ∂ΩD} and H1

E0
= {u ∈ H1(Ω) : u = 0 on ∂ΩD}. Then we

can write the weak formulation of the problem: find u ∈ H1
E such that

ε

∫

Ω

∇u · ∇v +
∫

Ω

(~w · ∇u)v =

∫

Ω

fv + ε

∫

∂ΩN

gNv ∀ v ∈ H1
E0
. (6.2)

Note that the bilinear form here is not symmetric, due to the convection term – this is a big difference
from Poisson’s equation. We can try and solve (6.2) using Galerkin finite elements, namely for some
finite dimensional subspaces V hE0

⊂ H1
E0

and V hE , an affine space of functions that satisfy the Dirichlet

boundary condition, find uh ∈ V hE such that

ε

∫

Ω

∇uh · ∇vh +
∫

Ω

(~w · ∇uh)vh =

∫

Ω

fvh + ε

∫

∂ΩN

gNvh ∀ vh ∈ V hE0
.

In the case where the convection term dominates it is well known that this method can be inaccurate,
since the discrete solution can exhibit non-physical oscillations; see e.g. [39, Section 3.3]. We shall
use the following example to illustrate the issues:

105

Example 6.1.1. Let Ω = [0, 1]2, and consider the problem

−ε∇2u+ ~w · ∇u = 0,

u = 0 on ∂Ω0,

u = 1 on ∂Ω1,

where ∂Ω1 = [0, 1]× {1}, ∂Ω0 = ∂Ω\∂Ω1 and ~w = [sin π
6 ,− cos π6].

This example has a boundary layer near x = 1, as can be seen on the plot of the solution in Figure
6.1(b). Figure 6.1(a) shows the solution obtained using a Galerkin method – note the presence of
the oscillations near the boundary layer. The line in the figure indicates the direction of ~w.

0
0.2

0.4
0.6

0.8
1

−1

−0.5

0

0.5

1
−0.5

0

0.5

1

1.5

(a) Galerkin Solution

0
0.2

0.4
0.6

0.8
1

−1

−0.5

0

0.5

1
−0.5

0

0.5

1

(b) SUPG Solution

Figure 6.1: Plots of stabilized and unstabilized solutions of Example 6.1.1, where ε = 1/200 and
h = 2−5.

Consider the general problem again, and let ~w =W ~w∗, where ~w∗ is a vector normalized to have
size unity in some norm, and let L be a characterizing length scale for the problem. Then we can
consider the Peclet number for the problem,

P :=
WL

ε
.

If P � 1, then the solution can have a steep gradient, and so a very fine mesh is required to resolve
this behaviour correctly. If a fine mesh is not used with a Galerkin method one generally sees local
oscillations generated by these layers, as in Figure 6.1(a).

This effect is clearly dependent on the mesh size, h, so we want a notion of the Peclet number
that is also dependent on h that gives us an intuition about what is a good mesh. This is given by
the mesh Peclet number :

Ph :=
Ph
2L

.

Note here that h here is taken to be the length of the longest element edge. This gives a more
quantifiable way of seeing of how changing the discretization can give a better accuracy of the
solution; for Ph � 1, a Galerkin method is likely to be inaccurate. We refer the interested reader
to, for example, the book by Roos, Stynes and Tobiska [98, Section III.3] for more detail.

The Streamline Upwind Petrov-Galerkin (SUPG) method, originally introduced by Hughes and
Brooks [70], is one way to alleviate the difficulty described above. This is a Petrov-Galerkin method
– i.e. the test spaces and the trial spaces in the finite element method are different. In particular,
as above we take the trial space to be V hE , but we take the test space to be the set of vectors of
the form vh + δ ~w · ∇vh, where vh ∈ V hE0

and δ is a constant parameter which is to be determined a
priori and, in fact, can be defined locally on individual elements. Proceeding formally, we thus get

106

the bilinear form defined by

asd(uh, vh) = ε

∫

Ω

∇uh · ∇(vh + δ ~w · ∇vh)− εδ

∫

∂Ω

(~w · ∇vh)
∂uh
∂n

+

∫

Ω

(~w · ∇uh)(vh + δ ~w · ∇vh)

= ε

∫

Ω

∇uh · ∇vh +
∫

Ω

(~w · ∇uh)vh + δ

∫

Ω

(~w · ∇uh)(~w · ∇vh)

−εδ
∫

Ω

(∇2uh)(~w · ∇vh).

However, uh is not required to have a second derivative, so the last term may not be well defined.
Assuming that the restriction of functions in V hE to individual elements ∆k lies in H2(∆k), we can
sum this last integral element-wise to give

asd(uh, vh) = ε

∫

Ω

∇uh · ∇vh +
∫

Ω

(~w · ∇uh)vh + δ

∫

Ω

(~w · ∇uh)(~w · ∇vh)

−εδ
∑

k

∫

∆k

(∇2uh)(~w · ∇vh).

We also need to discretize the right hand side using the same trial and test spaces, giving

lsd(vh) :=

∫

Ω

fvh + δ

∫

Ω

f(~w · ∇vh),

and hence we can write the SUPG discretization as: Find uh ∈ V hE such that

asd(uh, vh) = lsd(vh) ∀ vh ∈ V hE0
.

It remains to choose a value of the parameter δ. It is natural to choose different values of δ for
each element, thus giving us a δk associated with each element ∆k. Elman, Silvester and Wathen
[39, p. 136] suggest using δk as given by the formula

δk =

{
hk

2| ~wk|

(
1− 1

Pk
h

)
Pkh > 1

0 Pkh ≤ 1
.

Here, hk is a measure of the element length in the direction of the wind. For example, for a
rectangular element of sides hx and hy, if ~w = [cos θ, sin θ],

hk = min(hx/| cos θ|, hy/| sin θ|).

This method was used to produce the plot in Figure 6.1(b). As we can see from the figure, this
stabilization method has counteracted the oscillations that were present in the Galerkin solution,
even though it cannot precisely resolve the boundary layer on the given mesh. In this sense, SUPG
stabilization localizes errors in a boundary layer.

6.2 Iterative solution of the convection-diffusion equation

We saw in section 3.2 that the combination of multigrid and a Krylov subspace method is an efficient
way to solve the discrete Poisson equation. The same is true in the case of the convection-diffusion
equation – although in this case the multigrid methods are less well understood theoretically.

To get an effective multigrid method for the convection-diffusion equation one must be careful
when defining the coarse-grid operator. Recall that in the case of the Poisson equation we advocated
the use of the Galerkin coarse grid operator – Ā = PTAP, where P is the prolongation matrix. Here,

107

we need a coarse grid matrix which does not introduce high frequencies. The Galerkin method may
not be enough here, so instead we follow the method of Ramage [93] and explicitly construct the
coarse grid matrix using SUPG stabilization on the coarse grid. This choice of Ā will be enough to
correctly resolve the features of the solution on the coarse grid – see, e.g. [93, 94].

The other important component of an effective multigrid method is the choice of smoothing
operator; in particular, it is important to pick a smoother that takes into account the direction of
the flow. Ramage [93] suggests using a block-Gauss-Seidel smoother to achieve this, with the blocks
chosen to follow the direction of the flow as much as possible. The post-smoother then should be
chosen to be in the opposite direction, so that the post-smoothing operator is the transpose of the
pre-smoother.

The last remaining ingredient of a multigrid cycle is the grid-transfer operators. There has
been some work on “operator dependent” transfer operators – see, e.g. [128, Section 5.4] and the
references therein. However, if we define the smoother and coarse grid matrix as defined above, then
the standard restriction and prolongation operators defined in Section 3.2 seem to work adequately
here. See [39, Section 4.3] for a more detailed discussion of these issues.

As in Section 3.2, we would like to use multigrid as a preconditioner to accelerate convergence of
a Krylov subspace method. Here the matrix that results from the discretization of the equation is
not symmetric, so we have to use a non-symmetric solver. Recall from Section 3.1.8 that a suitable
solver is GMRES.

Table 6.1 shows the results of solving Example 6.1.1 using GMRES, with the multigrid method
described above as a preconditioner. As h = 2−2 is the coarsest grid, the preconditioner is a
direct solve, so GMRES converges in one iteration. For smaller h, convergence is essentially mesh-
independent, as we expect from the theory.

Table 6.1: Solving the Convection-Diffusion equation using GMRES with a multigrid preconditioner
h its time
2−2 1 0.297
2−3 4 0.297
2−4 4 0.308
2−5 4 0.325
2−6 4 0.366
2−7 5 0.566
2−8 5 1.415

6.3 Optimal control of the convection-diffusion equation

We now turn our attention to the problem of controlling the convection-diffusion equation. We can
formulate this problem, as in Section 2.2, by minimizing a cost functional of tracking-type. In this
section we will only consider distributed control problems with Dirichlet boundary conditions; the
theory can be extended to other problems in a similar manner as in Chapters 2 and 5.

Given a vector field ~w, a function g, and ε > 0, the control problem is

min
y,u

1

2
||y − ŷ||22 +

β

2
||u||22 (6.3)

s.t. − ε∇2y + ~w · ∇y = u in Ω (6.4)

y = g on ∂Ω, (6.5)

for some regularization parameter β. This problem has been recently considered in, for example,
[29, 92, 8]. We will illustrate our methods with the aid of an example.

108

Example 6.3.1. Let Ω = [0, 1]2, and find

min
y,u

1

2
||y − ŷ||22 +

β

2
||u||22

s.t. − ε∇2y + ~w · ∇y = u in Ω

y = ŷ on ∂Ω,

where ~w = [cos θ, sin θ] for some θ, ε is a constant, and

ŷ =

{
(2x1 − 1)2(2x2 − 1)2 if x ∈ [0, 12]

2

0 otherwise
.

Example 6.3.1 uses the same objective function, ŷ, as we used in the case of the Poisson equation,
which was plotted in Figure 5.1(a). This is not a natural solution to the convection-diffusion equation,
so this state will, in general, not be easy to achieve.

In contrast to the case of Poisson control, since the convection diffusion equation is not self-adjoint
there will in general be a difference between the optimize-then-discretize and the discretize-then-
optimize approaches. In the next two sections we shall derive the discrete optimality conditions for
each case.

6.3.1 Optimize-then-discretize

First, consider the optimize-then-discretize approach applied to the general problem (6.3)-(6.5). We
shall use the Lagrange multiplier method, as described in Chapter 2.2.2. Consider the Lagrangian
function

L(y, u, p1, p2) :=
1

2
||y− ŷ||2L2(Ω)+β||u||2L2(Ω)+

∫

Ω

(−ε∇2y+ ~w ·∇y−u)p1 dx+
∫

∂Ω

(y−g)p2 ds. (6.6)

A necessary and sufficient condition for optimality is that the partial Frechét derivatives with respect
to the four functions y, u, p1 and p2 vanish. Differentiation with respect to the Lagrange multipliers,
p1 and p2, gives the state equation, which is the PDE constraint:

−ε∇2y + ~w · ∇y = u
y = g on ∂Ω.

}
[State eqn]

Differentiating (6.6) with respect to the state, y, gives the adjoint equation. We know

Dy(L(ȳ, ū, p1, p2))h = 0,

where ū and ȳ denote the optimal control and state respectively, and Dy(·)h denotes the partial
Frechét derivative in the direction of h. Thus we have

∫

Ω

(y − ŷ)h dx+

∫

Ω

(−ε∇2h)p1 dx

︸ ︷︷ ︸
[A]

+

∫

Ω

(~w · ∇h)p1 dx
︸ ︷︷ ︸

[B]

+

∫

∂Ω

hp2 dx = 0. (6.7)

The two terms that contain h in a form other than simple multiplication are labelled [A] and
[B] above, and we will treat these separately. First, consider [A]. Applying the Divergence theorem
twice gives us

∫

Ω

(ε∇2h)p1 dx = ε

∫

Ω

h(∇2p1) dx− ε

∫

∂Ω

p1
∂h

∂n
ds+ ε

∫

∂Ω

h
∂p1
∂n

ds. (6.8)

109

We now turn our attention to [B].

∫

Ω

(~w · ∇h)p1 dx =

∫

Ω

(∇ · (h~w))p1 dx−
∫

Ω

(h∇ · ~w)p1 dx

= −
∫

Ω

h(~w · ∇p1) dx+

∫

∂Ω

p1h~w · ~n dx+

∫

Ω

(h∇ · ~w)p1 dx.

Substituting this and (6.8) into (6.7) we get

0 =

∫

Ω

(y − ŷ)h dx− ε

∫

Ω

h(∇2p1) dx+ ε

∫

∂Ω

p1
∂h

∂n
ds− ε

∫

∂Ω

h
∂p1
∂n

ds (6.9)

−
∫

Ω

h(~w · ∇p1) dx+

∫

∂Ω

p1h~w · ~n dx−
∫

Ω

(h∇ · ~w)p1 dx+

∫

∂Ω

hp2 dx.

This holds for all h ∈ H1(Ω). In particular, it must hold for all h such that h = ∂h
∂n = 0 on ∂Ω. Let

S1 denote the set consisting of all such h. Then the following holds for all h ∈ S1:

0 =

∫

Ω

(y − ŷ)h dx− ε

∫

Ω

h(∇2p1) dx−
∫

Ω

h(~w · ∇p1) dx−
∫

Ω

h(∇ · ~w)p1 dx.

Since S1 is sufficiently dense, applying the fundamental lemma of the calculus of variations we get

−ε∇2p1 − ~w · ∇p1 − (∇ · ~w)p1 = ŷ − y in Ω.

This relation is independent of h, and so holds for all h. If we return to (6.9) with this new
information, and also assuming that h ∈ H1

0(Ω), then we see that

0 = ε

∫

∂Ω

p1
∂h

∂n
ds ∀h ∈ H1

0(Ω),

which, applying the fundamental lemma of the calculus of variations once again, implies that p1 = 0
on ∂Ω. Now, looking at what remains of (6.9) for all h ∈ H1(Ω), we see that on ∂Ω,

p2 = ε
∂p1
∂n

− p1 ~w · ~n.

As this last equation is the only place where p2 appears in the optimality system, we can define
p := p1, and so the adjoint equation is given by:

−ε∇2p− ~w · ∇p− (∇ · ~w)p = ŷ − y
p = 0 on ∂Ω.

}
[Adjoint eqn]

Lastly, differentiating (6.6) with respect to the control, u, gives us the gradient equation:

βu− p = 0. [Grad. eqn]

We have now derived the continuous optimality system for this control problem – namely, the
state equation, adjoint equation and the gradient equation labelled above. If we discretize these, we
get the equations that need to be solved to get a solution via the optimize-then-discretize approach.

First, we look at the gradient equation. Discretizing this leads to the equation

βQu−Qp = 0,

where Q is the standard mass matrix. Next, discretizing the state equation is just like discretizing
a standard convection diffusion problem, so we get

Ksdy = Gsdu+ d,

110

where Ksd is the matrix defined by the bilinear form asd(·, ·) defined above, i.e.

(Ksd)i,j = ε

∫

Ω

∇φi · ∇φj +
∫

Ω

(~w · ∇φi)φj + δ

∫

Ω

(~w · ∇φi)(~w · ∇φj)− εδ
∑

k

∫

∆k

(∇2φi)(~w · ∇φj)

and similarly Qsd is defined by lsd(·) as

(Qsd)i,j =

∫

Ω

φiφj + δ

∫

Ω

φi(~w · ∇φj).

For the discretization of the adjoint equation, notice that this too is an convection diffusion equation.
This differs from the state equation in that the ‘wind’, ~w, is blowing from the opposite direction,
and a reaction term −∇ · ~w has been introduced. We will assume this term is zero, as would be the
case if the vector ~w describes an incompressible flow. The adjoint equation therefore becomes

−ε∇2p− ~w · ∇p = ŷ − y
p = 0 on ∂Ω.

}
[Adjoint eqn]

Again, this is just an convection diffusion equation, and – assuming we use the same finite element
space for p as we did for u and y – we can discretize this as we did with the state equation to get

Lsdp = b−Rsdy,

where

(Lsd)j,i = ε

∫

Ω

∇φi · ∇φj −
∫

Ω

(~w · ∇φi)φj + δ

∫

Ω

(~w · ∇φi)(~w · ∇φj)

+ εδ
∑

k

∫

∆k

(∇2φi)(~w · ∇φj),

(Rsd)i,j =

∫

Ω

φiφj − δ

∫

Ω

φi(~w · ∇φj), and

bi =

∫

Ω

ŷφi.

Putting these three equations together gives us the following discrete problem, the solution of
which gives us an approximation to the solution of the optimal control problem:




βQ 0 −Q
0 Rsd Lsd

−Qsd Ksd 0






u

y

p


 =




0

b

d


 . (6.10)

This formulation is strongly consistent in the sense that if we replace the finite dimensional uh,
yh and ph by their optimal values then the three equations that form the optimality system will
be satisfied. It is, however, clearly not a symmetric linear system, so there is no finite dimensional
problem for which this is the optimality system. We also discretized both PDEs using the SUPG
stabilization method, which is dependent on a stabilization constant δ. Even if we use the same
finite element basis for all the quantities needed (y, u and p), it is not clear that the same value of
δ would be applicable for the two PDEs.

6.3.2 Discretize-then-optimize

The second approach is to discretize the PDE first, and then solve the optimal control problem with
this - finite dimensional - constraint. On discretizing the PDE we get, as in the last section,

Ksdy = Qsdu+ d.

111

We discretize the cost functional in the same way, giving the minimum of (2.9) is equivalent to
finding the minimum of

min
u,y

1

2
yTQy − yTb+ βuTQu.

We can therefore write the discrete version of the Lagrangian function:

L :=
1

2
yTQy − yTb+ βuTQu− pT (Ksdy −Qsdu+ d).

As above, the optimality is given be the point at which the partial derivatives of L with respect to
y,u and p are equal to zero. This is given by the solution of the linear system




βQ 0 −QTsd
0 Q KT

sd

−Qsd Ksd 0






u

y

p


 =




0

b

d


 . (6.11)

This is clearly a symmetric linear system, different in form to that of (6.10). In this case only
the last equation is strongly consistent in the sense defined above. The optimal control, state and
adjoint would not satisfy the first two equations in this formulation.

6.3.3 Comparison of the solutions

Figures 6.2 to 6.5 correspond to solving Example 6.3.1 with ε = 1/200, β = 0.01, N = 26 and various
values of θ.

Note that, in the discretize then optimize case, the approximation to the controls, udto, isn’t
always zero on the boundary, whereas the corresponding controls in the optimize then discretize
case, uotd, don’t seem to have this problem. This seems to be due to the fact that the discretize
then optimize method is not strongly consistent. In the continuous case the gradient equation tells
us that the the optimal control is a scalar multiple of the adjoint variable, which is itself the solution
of a convection-diffusion equation. This means that the optimal control can – and often does –
have layers, even when the state does not; see, for example, Figures 6.3 and 6.4. We have taken
no account of this in the discretize-then-optimize approach, and for this reason it seems that the
optimize-then-discretize approach – although corresponding to no finite-dimensional optimization
problem – is the better method.

The link between the forward and adjoint equations here mean that the analysis of a numeri-
cal method to solve the control problem for the convection-diffusion equation is significantly more
complicated than corresponding analysis of the forward problem. Heinkenschloss and Leykekhman
[61] show that applying SUPG to the control problem will always give no better than first order
accuracy in the presence of a boundary layer.

We mention that Becker and Vexler [8] and Braack [16] have recently developed stabilization
methods for which the discrete problem is adjoint-consistent – that is, the optimize-then-discretize
method gives a symmetric linear system. Heinkenschloss and Leykekhman [61] claim that even
with such a method there is an inherent difficulty in the problem that will make the solution only
first-order accurate in the presence of any layer.

6.4 Preconditioning

Consider first the system obtained when you discretize-then-optimize, (6.11). This system is sym-
metric positive definite, so we can again apply MINRES. In this case the exact Schur complement is
1
βQsdQ

−1QTsd+KsdQ
−1KT

sd. Figure 6.6 shows the maximum and minimum eigenvalues of the Schur
complement, along with those of the first and second terms in the sum that forms it. We see that,
in this case, the value of β for which the term with the mass matrices becomes important is larger
than in the Poisson case. This means that – at least in the case where the control and state are

112

0

0.2

0.4

0.6

0.8

0
0.2

0.4
0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

−0.5

0

0.5

1

1.5

2

(a) Discretize then optimize.

0
0.2

0.4
0.6

0.8

00.20.40.60.8

0

0.2

0.4

0

0.5

1

0
0.5

1
−0.5

0

0.5

1

1.5

(b) Optimize then discretize.

Figure 6.2: Plot of optimal state (left) and control (right) for θ = π/4.
‖udto − uotd‖2 = 0.8062.

113

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a) Discretize then optimize.

0

0.5

1

00.20.40.60.8

0

0.2

0.4

0.6

0

0.5

1

0
0.5

1
−0.5

0

0.5

1

1.5

(b) Optimize then discretize.

Figure 6.3: Plot of optimal state (left) and control (right) for θ = 0.
‖udto − uotd‖2 = 0.4831.

114

0
0.2

0.4
0.6

0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

(a) Discretize then optimize.

0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

0

0.2

0.4

0.6

0.8

0
0.5

1

0

0.5

1
−3

−2

−1

0

1

(b) Optimize then discretize.

Figure 6.4: Plot of optimal state (left) and control (right) for θ = 3π/2.
‖udto − uotd‖2 = 1.904.

115

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(a) Discretize then optimize.

−0.5
0

0.5

0
0.5

0

0.2

0.4

0.6

0.8

0
0.5

1

0

0.5

1
−0.4

−0.2

0

0.2

0.4

(b) Optimize then discretize.

Figure 6.5: Plot of optimal state (left) and control (right) for θ = 2.4.
‖udto − uotd‖2 = 0.2968.

116

discretized using the same bases – we may be able to consider two ideal preconditioners,

P1 := blkdiag(βQ,Q,KsdQ
−1KT

sd), and P2 := blkdiag(βQ,Q,
1

β
QsdQ

−1QTsd),

the first of which would be good for larger values of β, and the second good for values of β near to
zero.

10
−6

10
−4

10
−2

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

log(β)

lo
g

(e
ig

)

Mass

Stiff

S

(a) Minimum eigenvalue

10
−6

10
−4

10
−2

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

log(β)

lo
g

(e
ig

)

Mass

Stiff

S

(b) Maximum eigenvalue

Figure 6.6: Extremal eigenvalues vs β where the control and the state are both discretized using Q1

elements – h = 2−2.

We can get a practical version of P1 by approximating the Q solves by the Chebyshev semi-
iteration and the Ksd and KT

sd solves using the multigrid technique described in Section 6.2. Table
6.2 shows the number of iterations, along with the time taken, to solve the system (6.11) for the
problem in Example 6.3.1 for various values of β . We have taken θ = 2.4 and ε = 1/200.

Table 6.2: Number of iterations taken to solve the system with preconditioner P1.

h δ δ/hk time (its)
β = 1 β = 10−2 β = 10−4 β = 10−6 β = 10−8

2−2 0.166 0.49 0.008 (9) 0.003 (18) 0.002 (21) 0.011 (21) 0.027 (21)
2−3 0.081 0.48 0.018 (11) 0.040 (33) 0.10 (97) 0.12 (117) 0.15 (123)
2−4 0.039 0.46 0.073 (12) 0.28 (43) 1.26 (203) 2.02 (353) 2.50 (410)
2−5 0.017 0.42 0.38 (12) 1.42 (47) 8.73 (281) (> 500) (> 500)
2−6 0.0072 0.34 2.10 (12) 8.22 (49) 57.1 (324) (> 500) (> 500)

We can see from the results that this preconditioner is good for the larger values of β, but loses
optimality faster than the corresponding preconditioner did in the Poisson case. The preconditioner
P2, on the other hand, should behave counter to this. Table 6.3 gives the results for the same
problem, using the alternative preconditioner. We see that this also behaves as the theory predicts.
Note that we rely on a direct method to solve the Qsd blocks in the results presented here, as we
don’t have a spectrally equivalent operator for this block. We therefore lose the linear time scaling
with the problem size that we had in Chapter 5.

We saw in the previous section that the optimize-then-discretize approach seemed to give a better
approximation to the continuous solution, so we now turn our attention to the linear system (6.10).
The big difference here is that the matrix is no longer symmetric, so we cannot use MINRES. Instead
we use the non-symmetric equivalent, GMRES. The result by Murphy, Golub and Wathen [87] tells
us that even in the non-symmetric case, the block diagonal preconditioner with the exact Schur
complement will have three eigenvalues. Hence – as long as our approximations to the ideal case are

117

Table 6.3: Number of iterations taken to solve the system with preconditioner P2.

h δ δ/hk time (its)
β = 1 β = 10−2 β = 10−4 β = 10−6 β = 10−8

2−2 0.166 0.49 0.002 (19) 0.009 (18) 0.009 (7) 0.0006 (3) 0.008 (3)
2−3 0.081 0.48 0.16 (123) 0.059 (54) 0.015 (11) 0.008 (5) 0.004 (3)
2−4 0.039 0.46 (> 500) 0.79 (147) 0.11 (19) 0.03 (5) 0.02 (3)
2−5 0.017 0.42 (> 500) 11.9 (400) 1.27 (43) 0.22 (7) 0.11 (3)
2−6 0.0072 0.34 (> 500) (> 500) 18.1 (111) 1.90 (11) 0.78 (4)

good enough – our approximate preconditioner should have good convergence.
We therefore consider the analogues to P1 and P2 above,

M1 := blkdiag(βQ,Rsd,KsdR
−1
sd Lsd), and M2 := blkdiag(βQ,Rsd,

1

β
Qsd).

The results using these two preconditioners are shown in Tables 6.4 and 6.5. Here we see essentially
the same behaviour as in the discretize-then-optimize case, so the lack of symmetry doesn’t seem
to affect the preconditioner too much. The main difference is with M2 for the smallest value of β,
where the iteration doesn’t converge. This is probably due to the fact that the eigenvalues aren’t
the only thing that effects convergence of GMRES, as described in Section 3.1.8.

Table 6.4: Number of iterations taken to solve the system given by the optimize then discretize
approach with GMRES (without restarts) and preconditioner M1.

h δ δ/hk time (its)
β = 1 β = 10−2 β = 10−4 β = 10−6 β = 10−8

2−2 0.166 0.49 0.002 (9) 0.004 (19) 0.007 (19) 0.009 (19) 0.0087 (19)
2−3 0.081 0.48 0.023 (12) 0.067 (34) 0.13 (74) 0.14 (83) 0.15 (89)
2−4 0.039 0.46 0.160 (14) 0.40 (46) 1.15 (144) 1.75 (199) 2.05 (226)
2−5 0.017 0.42 1.66 (14) 3.59 (52) 9.17 (192) 17.6 (384) (> 500)
2−6 0.0072 0.34 39.9 (16) 64.72 (54) 85.9 (214) (> 500) (> 500)

Table 6.5: Number of iterations taken to solve the system given by the optimize then discretize
approach with GMRES (without restarts) with preconditioner M2.

h δ δ/hk time (its)
β = 1 β = 10−2 β = 10−4 β = 10−6 β = 10−8

2−2 0.166 0.49 0.024 (19) 0.007 (19) 0.007 (12) 0.017 (9) 0.006 (7)
2−3 0.081 0.48 0.16 (199) 0.10 (77) 0.032 (21) 0.021 (11) 0.020 (9)
2−4 0.039 0.46 3.21 (433) 1.40 (211) 0.033 (21) 0.15 (15) 0.10 (9)
2−5 0.017 0.42 (> 500) (> 500) 3.86 (99) 2.24 (21) 1.49 (11)
2−6 0.0072 0.34 (> 500) (> 500) 79.8 (265) 35.0 (37) (> 500)

We have demonstrated preconditioners that are effective for both large and small values of β.
For the values in the middle, it seems that if we could combine these preconditioners, we might get
a good convergence. For a symmetric positive definite matrix, Bridson and Greif [25] have derived a
‘multipreconditioned’ conjugate gradient algorithm, which has exactly this property. An equivalent
multipreconditioned GMRES algorithm – if such a method could be constructed – may be the right
method for dealing with these mid-range β. This would be a possible direction for further research
in this area.

118

6.5 Comments

In this chapter we looked at control of a non-self adjoint PDE, the convection diffusion equation. We
explored two options for solving the problem numerically – optimize then discretize and discretize
then optimize. The PDE was discretized using the SUPG method. Numerical results seemed to
suggest that the (strongly consistent) optimize-then-discretize method is the better option. This
method leads to a non-symmetric discrete optimality system, and so we solve it using GMRES.

The choice of Schur complement approximation is less clear in this case, and we give two possi-
bilities. If this includes the discrete PDE then care must be taken to use a multigrid routine that
takes into account any layers; we use a scheme which was described by Ramage [93].

We give numerical results for solving the system using MINRES and GMRES with a block
diagonal preconditioner. These show that – apart from very small β and β ≈ 10−4 – this describes
a practical method. Note that for the optimize-then-discretize case we cannot use the non-standard
CG method of Section 4.3 as we do not know the required spectral information.

119

120

Chapter 7

Preconditioners for the optimal

control of the Stokes equations

7.1 The Stokes Equations

The Stokes equations describe the motion of an incompressible viscous fluid in the case where the
velocity is small, or the flow is tightly confined. The equations, in the case where the viscosity is
scaled to be unity, are given by

−∇2~u+∇p = ~f (7.1)

∇ · ~u = 0, (7.2)

with appropriate boundary conditions. Here ~u is a vector field which denotes the velocity of the
fluid, p is a scalar field which represents the pressure, and ~f is an external force, which causes
an acceleration of the flow. The first equation represents conservation of momentum, while the
second represents conservation of mass, or incompressiblilty of the velocity. For more details on the
derivation of the equation see, for example, [39, Chapter 0]. We only consider the two-dimensional
case here, for simplicity, although everything should generalize to three-dimensions in the obvious
way.

We supplement (7.1-7.2) with boundary conditions of the form

~u = ~w on ∂ΩD,
∂~u

∂n
− ~np = ~s on ∂ΩN , (7.3)

where ∂ΩN ∪ ∂ΩD = ∂Ω, ∂ΩN ∩ ∂ΩD = ∅, ~n denotes the outward-pointing normal to ∂Ω and ∂~u
∂n

is the directional derivative in the normal direction. As with the Poisson equation, these are called
Dirichlet and Neumann boundary conditions respectively.

We must assume that
∫
∂ΩD

ds 6= 0 in order to guarantee a unique velocity solution. Also, if the

velocity is prescribed everywhere on the boundary, so ∂ΩN = ∅, then the pressure p is only unique
up to a constant, which is called the hydrostatic pressure level. By integrating (7.2) and applying
the Divergence theorem we see that in this case it is necessary that

∫

Ω

∇ · ~u =

∫

∂Ω

~w · ~n = 0.

If we divide the boundary up as

∂Ω+ = {x ∈ ∂Ω : ~w · ~n > 0},
∂Ω0 = {x ∈ ∂Ω : ~w · ~n = 0},
∂Ω− = {x ∈ ∂Ω : ~w · ~n < 0},

121

then the condition above tells us that
∫

∂Ω+

~w · ~n+

∫

∂Ω
−

~w · ~n = 0. (7.4)

This simply says that the volume of fluid entering the domain must equal the fluid leaving the
domain. If this condition is not satisfied, then the Stokes equations have no solution. A flow such
that ~w ·~n = 0 on ∂Ω automatically satisfies this condition, and such a problem is known as enclosed
flow. Example 7.1.1 is of this type.

Example 7.1.1. Let Ω = [0, 1]2, and let ~i and ~j denote unit vectors in the direction of the x and y

axis respectively. Let ~u and p satisfy the Stokes equations (7.1 - 7.2) with ~f = ~0, and let ~u = ~0 on

the boundary except for on x = 1, 0 ≤ y ≤ 1, where ~u = −~j.

Example 7.1.1 is a classic test problem in fluid dynamics called leaky cavity flow. Figure 7.1
shows the (exponentially distributed) streamlines and pressure for this problem. The flow has
small recirculations – called Moffatt eddies – in the corners of the boundary at x = 0, which are
counterrotating relative to the main flow. The discontinuity of the velocity at x = 1, y = 1 and
x = 1, y = 0 gives rise to singularities in the pressure at these points.

Figure 7.1: Pressure and streamlines for Example 7.1.1

0

0.5

1

0

0.5

1
−400

−200

0

200

400

Pressure
Streamlines

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Similar results are given by solving the related problems, watertight cavity flow, where

~u = −~j on x = 1, 0 < y < 1,

and regularized cavity flow, where

~u = (y4 − 1)~j on x = 1, 0 < y < 1.

For the rest of the section, we consider purely Dirichlet boundary conditions, so ∂ΩD = ∂Ω in
(7.3). The treatment in the mixed case is similar – see, for example, [39, Chapter 5] for details.
Suppose ~u ∈ R2, and define the solution and test spaces

H1
E := {~u ∈ H1(Ω)2 : ~u = ~w on ∂Ω},

H1
0 := {~u ∈ H1(Ω)2 : ~u = ~0 on ∂Ω}.

122

Recall that in the case of the pure Dirichlet problem the pressure is only defined up to a constant,
which is usually fixed by enforcing the normalization

∫

Ω

p = 0.

Let M = L2,0(Ω) := {f ∈ L2(Ω) :
∫
Ω f = 0}. Then the weak formulation of (7.1-7.2), along with

(7.3), is: Find ~u ∈ H1
E and p ∈M such that

∫

Ω

∇~u : ∇~v −
∫

Ω

p∇ · ~v =

∫

Ω

~f · ~v for all ~v ∈ H1
0,

∫

Ω

q∇ · ~u = 0 for all q ∈M.

Note that here ∇~u : ∇~v :=
∑

i,j
∂~ui

∂xj

∂~vi
∂xj

, the componentwise scalar product. An application of the

divergence theorem to the second equation shows that the addition of a constant to q does not
change the equation; we can therefore identify M with the quotient space L2(Ω)/R.

It can be shown – see, for example, Braess [19, Chapter III] – that weak solutions are uniquely
defined when an inf-sup condition of the form

inf
q 6=constant

sup
~v 6=~0

| 〈q,∇ · ~v〉 |
‖~v‖1,Ω‖q‖0,Ω

≥ γ, (7.5)

is satisfied for some γ > 0. Here ‖~v‖21,Ω = (
∫
Ω ~v · ~v +∇~v : ∇~v) is a norm for functions in H1

0 and

‖q‖20,Ω =
∫
Ω q

2.
When developing finite-element approximations to the Stokes equations one must ensure that an

analogous inf-sup condition is satisfied in finite dimensions. In particular, a discrete version of (7.5)
must hold, and so the discretization spaces must be chosen carefully. In particular, the choice of
basis used to discretize ~u and p will not be independent.

The discretization of (7.1-7.2) is usually done by mixed finite elements. Let Xh
0 = span{~φj} ⊂

H1
0, j = 1, . . . , nu and Mh = span{ψk} ⊂ M, k = 1, . . . , np. Then, as in Section 2.1, let us

approximate ~u and p by ~uh and ph, where

~uh =

nu∑

j=1

Uj~φj +

nu+n∂∑

j=nu+1

Uj~φj

ph =

np∑

k=1

Pkψk,

where the Uj for j = nu+1, . . . , nu+n∂ are chosen to interpolate the boundary data. The Galerkin
approach then leads to a linear system of the form

[
K BT

B 0

] [
ũ

p

]
=

[
f

g

]
, (7.6)

123

where

K = [ki,j] ∈ R
nu×nu , ki,j =

∫

Ω

∇~φi : ∇~φj ,

B = [bk,j] ∈ R
np×nu , bk,j = −

∫

Ω

ψk∇ · ~φj ,

f = [fi] ∈ R
nu , fi =

∫

Ω

~f · ~φ−
nu+n∂∑

j=nu+1

Uj

∫

Ω

∇~φi : ∇~φj ,

g = [gk] ∈ R
np , gk =

nu+n∂∑

j=nu+1

Uj

∫

Ω

ψk∇ · ~φj .

Note that one usually uses the same finite element space to discretize the two components of velocity.
Let {φi}, i = 1, . . . , n be a set of finite element basis functions, where 2n = nu. Then if we use the
natural splitting

{~φ1, . . . , ~φnu} := {(φ1, 0)T , . . . , (φn, 0)T , (0, φ1)T , . . . , (0, φn)T },

we can rewrite (7.6) as 


K 0 BTx
0 K BTy
Bx By 0






ũx

ũy

p


 =




fx
fy
g


 ,

where

K = [ki,j] ∈ R
n×n, ki,j =

∫

Ω

∇φi · ∇φj ,

Bx = [bxk,i] ∈ R
np×n, bxk,i = −

∫

Ω

ψk
∂φi
∂x

,

By = [byk,j] ∈ R
np×n, byk,j = −

∫

Ω

ψk
∂φj
∂y

,

i.e. K = blkdiag(K,K), where K is the usual stiffness matrix from Section 2.1.
As alluded to above, care must be taken when choosing the finite element approximation spaces.

In particular, in order for the solvability condition to be satisfied, we require that our discretization
satisfies null(BT) = {1} [39, pp. 226-227].

Since 1 ∈ null(BT), the discrete Stokes system is singular. For a solution to exist we must have
the compatibility condition on the right hand side in (7.6) that gT1 = 0. This is just a discrete
representation of conservation of mass (7.4) – see [39, pp. 227-228] for a discussion.

It is also required to pick approximation spaces such that for all possible grids, there exists a
constant γ > 0 such that

min
qh 6=constant

max
~vh 6=~0

| 〈qh,∇ · ~vh〉 |
‖~vh‖1,Ω‖qh‖0,Ω

≥ γ. (7.7)

For more details see e.g. Elman, Silvester and Wathen [39, Section 5.3]. Such a condition is satisfied
if we used Q2 elements to discretize the velocity, and Q1 elements to discretize the pressure. This
scheme is known as Taylor-Hood or Q2 −Q1 discretization, and is the discretization we will use in
the remainder of this chapter.

7.2 Iterative solution of the discrete Stokes equations

Note that the discrete Stokes equations (7.6) form a saddle point system, as defined in Chapter
4. Therefore we can apply the algorithms described in that chapter for solving this equation. In
particular, we will look at solving the system using MINRES with a block-diagonal preconditioner

124

of the form

P =

[
K0 0
0 S0

]
, (7.8)

where K0 approximates K and S0 approximates the Schur complement, BK−1BT .
Since K is just a block-diagonal matrix comprised of two discrete Laplacian matrices a multigrid

method – as described in Section 3.2 – would provide a good approximate inverse. As previously, let
ρ be the contraction of a multigrid method. Then if we let K̃m denote m cycles, a simple extension
of (3.35) tells us that for the generalized Rayleigh quotient, the bounds

1− ρm ≤ vTKv

vT K̃mv
≤ 1 + ρm (7.9)

hold for all v ∈ Rnu .
We just need a good approximation to the Schur complement. The approach described below is

due to Silvester and Wathen [127, 106], and uses the inf-sup condition. Recall that

‖~vh‖21,Ω =

∫

Ω

~vh · ~vh +∇~vh : ∇~vh ≥
∫

Ω

∇~vh : ∇~vh = ‖∇~vh‖20,Ω.

Therefore if the discrete inf-sup condition (7.7) holds, we must also have

min
qh 6=constant

max
~vh 6=~0

| 〈qh,∇ · ~vh〉 |
‖∇~vh‖0,Ω‖qh‖0,Ω

≥ γ. (7.10)

As in Section 2.1, ‖∇~vh‖20,Ω = vTKv and ‖qh‖20,Ω = qTQpq, where v and q are the vectors of
coefficients of the expansion of vh and qh in their respective finite element bases and Qp is the
pressure mass matrix. Also, | 〈qh,∇ · ~vh〉 | = |qTBv|.

We can now write the inf-sup condition (7.10) in terms of vectors as

γ2 ≤ min
q 6=1

max
v 6=0

(qTBv)2

(vTKv) (qTQpq)

= min
q 6=1

1

qTQpq
max

w=K1/2v 6=0

(qTBK−1/2w)2

wTw

= min
q 6=1

1

qTQpq
max
w 6=0

((K−1/2BTq)Tw)2

wTw
.

The maximum here is attained when w = K−1/2BTq, so we have

γ2 ≤ min
q 6=1

qTBK−1BTq

qTQpq
. (7.11)

Now consider the generalized eigenvalue problem

[
0 BT

B 0

] [
v

q

]
= σ

[
K 0
0 Qp

] [
v

q

]
. (7.12)

It is clear that if v and q lie in the null space of B and BT respectively, then σ = 0. Now suppose
v /∈ null(B) and q /∈ null(BT). Then left-multiplying with [vT − qT] gives us

σ(vTKv − qTQpq) = 0,

since vTBTq − qTBv = 0. This tells us that if σ 6= 0, then vTKv = qTQpq. We can write (7.12)
as [

σK BT

B σQp

] [
v

q

]
=

[
0

0

]
.

125

Then if σ 6= 0, we can perform block-Gaussian elimination, and we can obtain the following relations:

(σQp −
1

σ
BK−1BT)q = 0

(σK − 1

σ
BTQ−1

p B)v = 0.

These can be written in terms of a Rayleigh quotient as

qTBK−1BTq

qTQpq
= σ2 =

vTBTQ−1
p Bv

vTKv
. (7.13)

Comparing this with (7.11), and noting that null(B) = 1, as the pressure is unique up to a constant,
we see that γ = σmin, and moreover we can write another characterization of the inf-sup condition
as

γ2 ≤ min
{v∈Rnu : vTKu=0, u∈null(B)}

vTBTQ−1
p Bv

vTKv
. (7.14)

The value of γ clearly depends upon the discretization used. For Q2−Q1 elements on uniform grids,
γ2 = 0.2. See [39, p. 271] for more details. The more stable the elements used, the closer to unity
this bound will be.

We have just found a lower bound on the eigenvalues of Q−1
p (BK−1BT). If we can show that

they are also bounded above, then Qp will be shown to have been a good approximation to the Schur
complement. Note that an application of Cauchy-Schwarz gives

| 〈qh,∇ · ~vh〉 | ≤ ‖qh‖‖∇ · ~vh‖.

For all ~vh ∈ H1
0,

‖∇~vh‖2 = ‖∇ · ~vh‖2 + ‖∇ ∧ ~vh‖ ≥ ‖∇ · ~vh‖2,
hence

| 〈qh,∇ · ~vh〉 |
‖∇~vh‖‖qh‖

≤ 1.

Writing this in terms of matrices and vectors, and combining with (7.11), we have shown that there
exist constants γ2 and Γ2 such that

γ2 ≤ qTBK−1BTq

qTQpq
≤ Γ2, (7.15)

which holds for all q ∈ Rnp such that q 6= c1, for any scalar c. Using (7.13), we can alternatively
write this as

γ2 ≤ vTBTQ−1
p Bv

vTKv
≤ Γ2, (7.16)

which holds for all v ∈ Rnu such that vTKu = 0 if u ∈ null(B). Note that, due to hydrostatic
pressure q = 1 being in the null space of the Schur complement, there will always be an eigenvalue
at 0. As long as our starting vector in an iterative method starts with no component in this space
– i.e. x(0) satisfies the discrete compatibility condition – then we will always remain orthogonal to
this space (in exact arithmetic), and hence we can ignore the zero eigenvalue.

The mass matrix Qp is therefore spectrally equivalent to the Schur complement. However, in
order to be an effective preconditioner, (7.8) must be easy to invert, and so we must approximate Qp.
Elman, Silvester and Wathen [39] suggest taking it’s diagonal, but we can make the approximation
better by taking a fixed number of steps of the Chebyshev semi-iteration, as described in Section
5.2. As before, let C−1

k denote the application of k such steps. Then we get that Cm satisfies

δkγ
2 ≤ qTBK−1BTq

qTCmq
≤ ∆kΓ

2 ∀ q ∈ R
np s.t. q 6= 1 (7.17)

126

for some constants δk, ∆k independent of h, and which both approach unity as k grows – see Table
5.2.

The above theory suggests that

P =

[
K̃m 0
0 Ck

]
,

would be a reasonable choice. We can now apply Theorem 4.2.1 – with the obvious modification –
along with (7.9) and (7.17), to get that the preconditioned system has one eigenvalue at zero, and
the remaining eigenvalues satisfy

θ −
√
θ2 + 4Θ∆kΓ2

2
≤ λ ≤ Θ−

√
Θ2 + 4δkγ2θ

2
,

θ ≤ λ ≤ Θ,

or
θ +

√
θ2 + 4θδkγ2

2
≤ λ ≤ Θ+

√
Θ2 + 4∆kΓ2Θ

2
,

where θ = 1− ρm and Θ = 1 + ρm.
Table 7.1 shows the time and number of iterations taken to solve the discrete Stokes system using

MINRES with the preconditioner described above. Here we have used five steps of the Chebyshev
semi-iteration to approximate Q, and one V-cycle of the HSL MI20 algebraic multigrid routine with
the default parameters to approximate the stiffness matrix.

Table 7.1: Solving the Stokes equations using MINRES with the Silvester-Wathen preconditioner
h time its
2−2 0.015 25
2−3 0.029 27
2−4 0.076 28
2−5 0.349 30
2−6 1.504 30
2−7 6.616 30

7.3 Optimal control of the Stokes equations

We now want to turn our attention to problems in optimal control, where the PDE constraints
are Stokes equations. We will only consider distributed control here, although – as in Chapter 5
– boundary control could be treated in the same way. One way of formulating the Stokes control
problem is the following:

min
v,p,u

1

2
‖~v − ~̂v‖2L2(Ω) +

δ

2
‖p− p̂‖2L2(Ω) +

β

2
‖~u‖2L2(Ω) (7.18)

s.t.−∇2~v +∇p = ~u in Ω

∇ · ~v = 0 in Ω,

~v = ~w on ∂Ω

where ~v is the velocity field, p is the pressure, ~w is the prescribed velocity on the boundary, and ~u is
the control field. A constant δ is added in front of the desired pressure to enable us to penalize the
pressure, allowing us to stop it from getting too large: usually p̂ = 0 would be selected. Note here
that the control is applied only to the momentum equation, as incompressibility could not generally
be controlled in most flow problems.

We use the discretize-then-optimize technique here, although as the Stokes equations are self-
adjoint we will get the same system if we optimize-then-discretize and choose to discretize the the

127

variables in the same way.
As in the previous section, let {~φj}, j = 1, . . . , nv and {ψk}, k = 1, . . . , np be sets of finite element

basis functions that form a stable mixed approximation for the Stokes equations. Furthermore, let
{~χj}, j = 1, . . . , nu be a basis such that ~uh =

∑nu

i=1 Ui~χi is a discrete approximation to the control,
~u. The discrete Stokes equations are of the form

[
K BT

B 0

] [
v

p

]
=

[
Q̂
0

]
u+

[
f

g

]
,

where K and B are as defined above and

Q̂ = [qi,j] ∈ R
nv ,nu , qi,j =

∫

Ω

~φi · ~χj

f = [fi] ∈ R
nv , fi = −

nu+n∂∑

j=nu+1

Uj

∫

Ω

∇~φi : ∇~φj ,

g = [gk] ∈ R
np , gk =

nu+n∂∑

j=nu+1

Uj

∫

Ω

ψk∇ · ~φj .

Similarly to Section 2.2, the discrete cost functional is equivalent to

min
v,p,u

1

2
vTQ~vv − vTb+

δ

2
pTQpp− δpTd+

β

2
uTQ~uu

where Qs is the mass matrix of the basis used to discretize the variable s and

b = [bi] ∈ R
nv , bi =

∫

Ω

~̂v~φi,

d = [dk] ∈ R
np , dk =

∫

Ω

p̂ψk.

If we introduce two vectors of Lagrange multipliers, λ and µ, then the discrete optimality system is
of the form 



βQ~u 0 0 −Q̂T 0
0 Q~v 0 K BT

0 0 δQp B 0

−Q̂ K BT 0 0
0 B 0 0 0







u

v

p

λ

µ



=




0

b

δd
f

g



. (7.19)

We can relabel this equation so that it is more recognizably of the same form as in the previous
chapters; the system becomes



βQ~u 0 −Q̂T

0 Q K
−Q̂ K 0






u

y

ξ


 =




0

c

h


 ,

where Q = blkdiag(Q~v, δQp), K =

[
K BT

B 0

]
, Q̂ = [Q̂T 0]T and the vectors y, ξ, c and h take

their obvious definitions.
Let us consider the following example:

Example 7.3.1. Let Ω = [0, 1]2, and consider an optimal control problem of the form (7.18), with
Dirichlet boundary conditions as given in Example 7.1.1 (leaky cavity flow). Take the desired pressure

as p̂ = 0 and let ~̂v = y~i − x~j. The exponentially distributed streamlines of the desired velocity are
shown in Figure 7.2.

128

Streamlines

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.2: Streamlines of ~̂v

This problem can be interpreted physically as
finding a forcing term which reduces the Moffat ed-
dies present in the solution to Example 7.1.1; such
eddies may be associated with cavitation in a real
life situation. Figure 7.3 shows the streamlines of
the velocity and pressure associated with the opti-
mal control for β = 10−2, and h = 2−5, and Fig-
ure 7.4 shows the equivalent plots for β = 10−5. We
plot all streamlines as exponentially distributed so
that we can see the behaviour in the corners where
the eddies are located.

We see in the figures that there appears to be a
singularity along the edges in the pressure solution
if β is taken too small. Increasing δ does decrease
the size of the pressure; δ = 1 seems to correspond
to a maximum value at about the level of the peaks in the forward problem.

0

0.5

1

0

0.5

1
−200

−100

0

100

200

Pressure
Streamlines

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a) Computed state for β = 10−2, δ = 1

0

0.5

1

0

0.5

1
−200

−100

0

100

200

Pressure
Streamlines

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(b) Computed state for β = 10−2, δ = 10

Figure 7.3: Computed states for Example 7.3.1 in two dimensions, β = 10−2.

129

0

0.5

1

0

0.5

1
−400

−200

0

200

400

Pressure
Streamlines

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a) Computed state for δ = 1

0

0.5

1

0

0.5

1
−40

−20

0

20

40

Pressure
Streamlines

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(b) Computed state for δ = 10

Figure 7.4: Computed states for Example 7.3.1 in two dimensions, β = 10−5.

7.4 Preconditioning the control problem

As in the previous sections, the keys to a good preconditioner are good approximations to the
(1,1) block and the Schur complement of the saddle point system. Here the (1,1) block is A :=
blkdiag(βQ~u,Q), so as previously we can replace each solve with a mass matrix by a fixed number
of steps of the Chebyshev semi-iteration. This will give us a spectrally equivalent operator in the
sense that for such an approximation, A0, there exist constants δ, ∆ independent of the mesh size
such that for all x ∈ Rnv+np+nu ,

δ ≤ xTAx

xTA0x
≤ ∆.

Now consider the Schur complement, S := 1
β Q̂Q

−1
~v Q̂T + KQ−1K. As in Section 5.3, KQ−1K is

the dominant term in this sum for all but the smallest values of β – this is the term that contains the
PDE. Figure 7.5 shows the eigenvalue distribution for this approximation of S for a relatively coarse
Q2 −Q1 discretization with β = 10−2. As we can see from the figure, this clusters the eigenvalues
nicely, and so we can expect good convergence of MINRES if we used this approximation as S0.

However, a preconditioner must be easy to invert, and solving a system with KQ−1K requires
two solves with the discrete Stokes matrix at each iteration, which is not cheap. We therefore would

130

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

Figure 7.5: Eigenvalues of (KQ−1K)−1S

like some matrix, K̃, such that K̃Q−1K̃ approximates KQ−1K. Note, as in Section 5.2, the mass
matrices are not important here and it is sufficient that K̃K̃T approximates K2.

In order to find such an approximation we again turn to the result of Braess and Peisker, as
described in Section 5.3. Recall that it is not sufficient that K̃ approximates K. Indeed, as we
saw in the previous section, Silvester and Wathen [106, 127] showed that an ideal preconditioner

is blkdiag(K,Mp), where K is a multigrid cycle, but the eigenvalues of (K̂K̂T)−1K2 are not at all
clustered, and the approximation for the Schur complement of the control problem is a poor one in
this case. Table 7.2 shows the number of MINRES iterations taken using this approximation – with
exact solves. Clearly this is not a good method.

Table 7.2: Comparison of solution methods for solving Example 7.3.1 using MINRES with the
block diagonal preconditioner, where K is approximated by the block diagonal Silvester Wathen
preconditioner.

h size time its

2−2 344 0.526 242
2−3 1512 10.668 1320
2−4 6344 217.240 5172

Suppose we wish to solve the equation Kx = b, for some right hand side vector b. The theory in
Section 5.3 shows us that if we take an approximation Km which is implicitly defined by an iteration
such that x(m) = K−1

m b, say, which converges to the solution x in the sense that

‖x(m) − x‖ ≤ ηm‖x‖,

then ηm = ‖K−1
m K − I‖, and we have

(1− ηm)2 ≤ xTK2x

xTKTmKmx
≤ (1 + ηm)2.

Hence, such an approximation is suitable for use in this case.
Note that an inner iteration of MINRES cannot be used to approximate K, unless run until

convergence, since – like CG – MINRES is a Krylov subspace method, and hence nonlinear. We
would therefore have to use a flexible outer method if we were to make this approximation. Therefore
we consider a stationary method – in particular, the inexact Uzawa method of Section 4.1. Recall

131

that this is a Richardson iteration based on a splitting matrix of the form

M =

[
K0 0
B −τQ0

]
,

where K0 approximates K and Q0 approximates Qp, which is itself spectrally equivalent to the
Schur complement. By the result of Braess and Peisker we just need to show that this iteration
converges, and we’ll have a usable approximation to the discrete Stokes equations. We ignore the
one zero eigenvalue of K which is due to the hydrostatic pressure here, and in what follows, since if
we start an iteration orthogonal to this kernel, we will remain orthogonal to the kernel [39, Section
2.3].

Recall Corollary 4.1.2, that the convergence of this method depends upon the size of the param-
eter

ξ := max

{
1− υ,Υ− 1, 1− (1 + ψ)Υ−

√
(1 + ψ)2Υ2 − 4ψΥ

2
,

(1 + Ψ)Υ +
√
(1 + Ψ)2Υ2 − 4ΨΥ

2
− 1,

√
1 + Ψ− 2

√
Ψcos θ,

√
1 + ψυ − 2

√
ψυ cos θ

}
,

where υ, Υ, ψ, Ψ, θ are constants defined in the statement of the Corollary. Inexact Uzawa will
converge if ξ < 1, with the asymptotic convergence rate being ξ. Figure 7.6 shows the bounds
predicted above and the actual eigenvalues for a number of approximations to the matrix K.

Figure 7.6 shows we will get asymptotic convergence, but in practice we see good results from the
first iteration. Also, the theory above is equally valid for the block upper triangular approximation
to the discrete Stokes matrix, whereas in practice we observe that it takes far more iterations with
this upper triangular splitting to get good convergence. Recall from Section 3.1.1 that one way
of quantifying any transient behaviour is by using pseudospectra. Figure 7.7 shows plots of the
pseudospectra of I − M−1K, generated by EigTool [129], in the cases where M is block upper
triangular and block lower triangular. It is clear that the eigenvalue at unity (due to the hydrostatic
pressure) has no effect on the pseudospectra in the block lower triangular case, but the pseudospectra
in the block upper triangular case protrude significantly outside the unit circle. This will lead to
some transient effects in the convergence of the simple iteration in the block upper triangular case
[116, Chapter 24].

Let us again return to the case where K−K0 is positive definite. Then we know from Section 4.3
that

M−1K =

[
K0 0
B −S0

]−1 [
K BT

B 0

]

is self adjoint in the inner product defined by

H =

[
K −K0 0

0 S0

]
.

If we define K̂ := M−1K, then we have that K̂ is H−normal, i.e.

K̂†K̂ = K̂K̂†,

where K̂† = H−1K̂TH. This means that the iteration matrix I −M−1K is H−normal, and so

‖I −M−1K‖H = ρ(I −M−1K).

This tells us that
‖xk − x‖H ≤ ρk‖x‖H,

132

0 0.5 1 1.5 2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) h = 0.25, K0 given by 1 AMG V-cycle with 1 pre-
and 1 post-smoothing step

0 0.5 1 1.5 2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) h = 0.25, K0 given by 1 AMG V-cycle with 2 pre-
and 2 post-smoothing steps

0 0.5 1 1.5 2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c) h = 0.25, K0 given by 2 AMG V-cycles with 2 pre-
and 2 post-smoothing steps

0 0.5 1 1.5 2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(d) h = 0.125, K0 given by 1 AMG V-cycle with 1 pre-
and 1 post-smoothing step

Figure 7.6: *’s denote computed eigenvalues. Lines, from left to right, are at 0,
(ψ+1)Υ−

√
(ψ+1)2Υ2−4ψΥ

2 , υ, Υ and
(Ψ+1)Υ+

√
(Ψ+1)2Υ2−4ΨΥ

2 . (the last two virtually coincide here).
Dashed region is the bounds for the complex eigenvalues. Also shown is the unit circle centred at
z = 1.

.

133

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

dim = 531

−8

−7

−6

−5

−4

−3

−2

(a) Block-lower-triangular splitting, S0 = Mp, K0 is 1 AMG V-
cycle, 1 pre- and 1 post-smoothing step

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

dim = 531

−8

−7

−6

−5

−4

−3

−2

(b) Block-upper-triangular splitting, S0 = Mp, K0 is 1 AMG V-
cycle, 1 pre- and 1 post-smoothing step

Figure 7.7: Pseudospectra of I −M−1K

134

where ρ = ρ(I − P−1K), the spectral radius of the iteration matrix. To apply the result of Braess
and Peisker we need a constant ηk such that the error converges the 2−norm, i.e.

‖xk − x‖2 ≤ ηk‖x‖2.

We know that over a finite dimensional vector space all norms are equivalent. Therefore there
exists constants ψ and Ψ such that

√
ψ‖x‖2 ≤ ‖x‖H ≤

√
Ψ‖x‖2,

and hence

‖xk − x‖2 ≤ ‖xk − x‖H/
√
ψ

≤ ρm√
ψ
‖x‖H

≤
√
Ψρm√
ψ

‖x‖2.

We now need to know the values of the constants ψ and Ψ.
Recall the standard bounds of the two dimensional finite element matrices from Theorems 2.1.1

and 2.1.2:

dh2xTx ≤ xTKx ≤ DxTx

ch2xTx ≤ xTQx ≤ Ch2xTx.

Also, we assume the approximation to the stiffness matrix satisfies

1 < δ ≤ xTKx

xTK0x
≤ ∆, (7.20)

for some constants δ and ∆. Then xTHx ≤ ΨxTx means that

yT (K −K0)y + zTS0z ≤ Ψ(yTy + zT z).

Therefore if we have constants Ψ1 and Ψ2 such that

yT (K −K0)y ≤ Ψ1y
Ty and zTS0z ≤ Ψ2z

T z

then we can take Ψ = max (Ψ1,Ψ2).
First, note that from (7.20)

xTKx ≤ ∆xTK0x

∆xTKx− (∆− 1)xTKx ≤ ∆xTK0x

∆(xTKx− xTK0x) ≤ (∆− 1)xTKx

xT (K −K0)x ≤ D(∆− 1)

∆
xTx

∴

xT (K −K0)x

xTx
≤ D(∆− 1)

∆
.

Therefore

Ψ1 =
(∆− 1)D

∆
.

135

Let S0 = Q̃p, where

θ ≤ xTQpx

xT Q̃px
≤ Θ

Then

zTS0z

zT z
=

zT Q̃pz

zT z

=
zT Q̃pz

zTQpz
· z

TQpz

zT z

≤ Cph
2

θ
.

Therefore Ψ2 = Cph
2, and hence

Ψ = max

(
(∆− 1)D

∆
,
Cph

2

θ

)
.

Now we turn our attention to the lower bound. Similarly to above, we take ψ = min (ψ1, ψ2),
where

ψ1y
Ty ≤ yT (K −K0)y and ψ2z

T z ≤ zTS0z.

Again, we have from (7.20):

δyTK0y ≤ yTKy

= δyTKy + (1− δ)yTKy

(δ − 1)yTKy ≤ δyT (K −K0)y

(δ − 1)dh2

δ
≤ yT (K −K0)y

yTy
.

Again following an argument as above,

zTS0z

zT z
=

zT Q̃pz

zTQpz
· x

TQpx

xTx

≥ cph
2

Θ
.

Therefore

ψ = min

(
(δ − 1)c~udh

2

δ
,
cph

2

Θ

)
.

The contraction constant for convergence in the 2-norm is given by ρm
√
Ψ/

√
ψ. It is clear that√

ψ = βh, where β is a constant. For the numerator, in general, we will have Ψ = (∆−1)D
∆ , as h2 is

small. This would mean that
√
Ψ√
ψ

= O
(
h−1

)
,

i.e. the contraction constant would be dependent upon h.
However, we have control over the value of ∆, as this measures the accuracy of the approximation

to K. Recall that K0 is a good approximation to K if ∆ is close to unity. As K0 is a multigrid
process we can make this parameter as close to 1 as required by simply taking more V-cycles, better

smoothing, etc. If this approximation is good enough, and (∆−1)D
∆ is smaller than

Cph
2

θ , we will get

136

a constant number of iterations, at least up to some value of h. Note that we have knowledge of all
the parameters involved, so given a smallest required value of h – which one will know a priori – one
can pick an approximation K0 which gives a reasonable method. The quantity ρm also appears in
the numerator, so convergence can be improved by taking more inexact Uzawa iterations.

Table 7.3 shows the results for solving (7.19) using MINRES, with right hand side as in Example
7.3.1 and with β = 10−2. As a preconditioner we use the block lower triangular preconditioner, with
K approximated by m steps of the simple iteration with splitting matrix

M =

[
K0 0
B −S

]
,

where S = BK−1BT is the exact Schur complement of the Stokes equation. K0 is given by k AMG
V-cycles. This is not a practical preconditioner, but we can see clearly that if the approximation
K0 is not good enough we don’t get an optimal preconditioner. This phenomenon is explained by
the theory above.

Table 7.3: Comparison of solution methods for solving Example 7.3.1 using MINRES preconditioned
with the block diagonal preconditioner with m steps of inexact Uzawa approximating K and k AMG
V-cycles approximating K.

h size Exact, m=1 m=1, k=1 m=1, k=2 m=1, k=3 m=1, k=4
time its time its time its time its time its

2−2 344 0.089 25 0.092 29 0.079 27 0.082 27 0.085 27
2−3 1512 0.382 27 0.432 35 0.352 27 0.365 27 0.380 27
2−4 6344 3.192 25 7.359 65 3.179 27 3.235 27 3.296 27
2−5 25992 60.063 25 403.933 179 72.858 31 64.028 27 64.055 27

h size Exact, m=2 m=2, k=1 m=2, k=2 m=2, k=3 m=2, k=4
time its time its time its time its time its

2−2 344 0.073 21 0.100 27 0.099 25 0.096 23 0.101 23
2−3 1512 0.408 23 0.429 29 0.400 25 0.423 25 0.450 25
2−4 6344 3.466 23 3.954 31 3.347 25 3.193 23 3.319 23
2−5 25992 57.284 21 98.885 39 65.489 25 60.051 23 61.398 23

Even though the above argument only holds for K − K0 positive definite, we see the same
behaviour in practice for the general case. Because solving the approximation to K is particularly
expensive here it is worth getting the approximation to the mass matrix, Q0, as close to Q as possible.
Therefore, in the results that follow, we take Q0 to be given by 20 steps of the Chebyshev semi-
iteration applied to the appropriate mass matrix. As discussed in Section 4.1, the inexact Uzawa
method can be improved with the introduction of a parameter τ in front of the approximation to
the Schur complement. In the inexact case we saw that the optimal parameter is hard to obtain,
but a good approximation is (φ+Φ)/2, where λ(S−1

0 S) ∈ [φ,Φ]. We saw in Section 7.2 that for Q1

elements and a Dirichlet problem, λ(Q−1
p S) ∈ [0.2, 1], so we take our scaling parameter as τ = 3/5.

We therefore advocate a practical splitting matrix for inexact Uzawa of

M =

[
K0 0
B −τQ0

]
.

Having defined approximations to the Schur complement and the (1,1) block of the saddle point
system we can now look at practical ways of solving the system (7.19). As the block Q̂ is not square,
we cannot use the constraint preconditioning technique derived in Section 5.6 here. However, the
other two methods – a block diagonal preconditioner for MINRES and a block lower triangular
preconditioner for CG in a non-standard inner product – can be used here.

Tables A.5 and A.6 in Appendix A show some experiments with different numbers of V-cycles
and iterations of inexact Uzawa in the approximations for K. These suggest that taking two steps of
the inexact Uzawa method, with K0 given by three AMG V-cycles, will be a good preconditioner.
The results for solving Example 7.3.1 with β = 10−2, δ = 1 to a tolerance of 10−6 (in the appropriate

137

norm) are given in Table 7.4.

Table 7.4: Comparison of solution methods for solving Example 7.3.1 using MINRES and BPCG
preconditioned with the block diagonal and block lower triangular preconditioners respectively with
2 steps of inexact Uzawa approximating K and 3 AMG V-cycles approximating K.

h size MINRES BPCG backslash

time its time its time

2−2 344 0.189 25 0.083 14 0.016
2−3 1512 0.358 31 0.194 17 0.059
2−4 6344 1.176 33 0.679 18 0.601
2−5 25992 4.965 33 3.133 20 7.300
2−6 105224 22.704 35 14.584 21 —

As we see from Table 7.4, the overall technique which we have described seems to be a good
method for solving the Stokes control problem. Comparing the results here with those to solve the
forward problem in Table 7.1 the iteration numbers aren’t that much more, and solving the control
problem using the block-triangular preconditioner is just over a factor of ten more expensive that
solving a single forward problem for every grid size.

Figures 7.8 and 7.9 show the number of iterations taken to solve this problem for different values
of β and δ respectively. These show that – as we might expect from the theory – lowering β and
increasing δ make the number of iterations required to solve the system higher using our methods.
From the plots in Figures 7.3 and 7.4 it seems that the value δ = 1 gives a pressure of the same
order as the uncontrolled problem, the solution of which is shown in Figure 7.1. However, one can
conceive of situations where we require a tighter bound on the pressure, and hence a higher value
of δ.

2 3 4 5 6 7
0

200

400

600

800

1000

1200

1400

log
2
(N)

N
o

.
o

f
it
e

r.

β = 10
−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(a) MINRES

2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

log
2
(N)

N
o
.
o
f
it
e
r.

β = 10
−1

β = 10
−2

β = 10
−3

β = 10
−4

β = 10
−5

β = 10
−6

(b) BPCG

Figure 7.8: Plot of problem size vs iterations needed for different β, where δ = 1.

7.5 Comments

In this chapter we applied a block diagonal preconditioner with MINRES and a block lower triangular
preconditioner with CG in a non-standard inner product to a flow control problem. We based
our approximation to the (1,1) block on the same approximation to the mass matrix introduced
previously.

We had to be a bit more careful when approximating the PDE here – it is not enough to simply
use a preconditioner for the forward problem. Our approximation to the Stokes equation is based on
the inexact Uzawa method. We use the fact that the pressure mass matrix is spectrally equivalent to

138

2 3 4 5 6 7
0

50

100

150

200

250

300

350

log
2
(N)

N
o
.
o
f
it
e
r.

δ = 10
2

δ = 10

δ = 1

δ = 10
−1

δ = 10
−2

δ = 10
−3

(a) MINRES

2 3 4 5 6 7
0

20

40

60

80

100

120

140

160

180

200

log
2
(N)

N
o
.
o
f
it
e
r.

δ = 10
2

δ = 10

δ = 1

δ = 10
−1

δ = 10
−2

δ = 10
−3

(b) BPCG

Figure 7.9: Plot of problem size vs iterations needed for different δ, where β = 10−2.

the Schur complement of the discrete Stokes equations, which we get from the LBB condition. We
showed that, for a given h, we can pick an approximation to the stiffness matrix such that we get
an efficient method for that value of h; this approximation will also be effective for all larger h. The
CPU times taken to solve the control problem are about an order of magnitude larger than those to
solve the forward problem on the same size mesh using block-diagonally preconditioned MINRES,
which seems an acceptable cost for a much harder problem.

139

140

Chapter 8

Conclusion

The discrete optimality system for PDE-constrained optimization problems has a saddle point struc-
ture, and we typically know a lot of information about the individual blocks. This thesis describes
how to use this information to develop block preconditioners to speed up convergence of Krylov
subspace methods when applied to such problems.

In the early chapters we saw how iterative methods can be split into linear methods – which
could be written in the form of a matrix – and non-linear methods. The non-linear methods, such
as CG and MINRES, automatically choose the optimal parameters that the method needs, which
often leads to superlinear convergence. Therefore these should be the iterative methods of choice.

We looked at three iterative methods which can be applied to these problems – MINRES, con-
jugate gradients with a non-standard inner product, and projected conjugate gradients. These are
preconditioned by different types of block matrices – namely block diagonal, block lower triangular
and constraint preconditioners respectively. Ideal preconditioners in each of these cases generally
involve the (1,1) block and the Schur complement of the saddle point system. We introduced an
approximation to the Schur complement that involves dropping one of the additive terms, and this
seems to work well for the range of regularization parameters we’re interested in.

Our aim in this thesis was to develop preconditioners that are factorization free, and for which
the time to solve the system scales linearly with the problem size (at least until the computer runs
out of memory). Therefore we needed to approximate the blocks in the ideal preconditioner by
spectrally equivalent – but cheaper to solve – matrices.

A good method to approximate a block is often a few steps of an (inner) iterative process. Here
we must use a linear method unless we use a flexible outer iteration. In this thesis we saw two cases
– the Chebyshev semi-iteration for the mass matrix and inexact Uzawa for the Stokes equations –
where this philosophy was used.

The (1,1) block is invariably a block diagonal matrix composed of mass matrices or scalar mul-
tiples of mass matrices. The Chebyshev semi-iteration is a relatively inexpensive algorithm that
enables you to get as good an approximation to this block as we need, so this is an integral part of
our approach. We also saw how this approximation can be used to improve current preconditioners
for the Stokes equations.

For the Schur complement we require an approximation to the PDE for which its square approx-
imates the square of the PDE – a preconditioner for the forward problem isn’t always enough. This
property holds whenever we use a convergent linear iteration as our approximation – e.g. multigrid
or inexact Uzawa.

We demonstrated our methods with Poisson’s equation, the convection-diffusion and the Stokes
equations, and also for a number of different boundary conditions. They seemed to perform well for
a range of values of the regularization parameter, but were not independent of this parameter. The
methods – in particular the approximation used for the Schur complement – break down for ‘small’
β.

Systems of a similar form result when we include bound constraints on the control via a primal-
dual active set method, and it has been demonstrated elsewhere that these ideas can be used ef-

141

fectively there. Similarly, they should be able to handle state constraints when incorporated by
Moreau-Yosida relaxation.

There are many more topics that could be covered. The cases included here are all idealized cases,
and a practical situation would be a lot more difficult. Further complications could include multiple
PDE constraints, the control only acting on a part of the domain, different regularization methods
and minimizing different norms, to name but a few. It appears that the methods described here,
possibly with some modification, may be applicable in at least some of these cases, and exploring
these would be an interesting area for future research.

142

Appendix A

Further Numerical Results

All results were obtained using MATLAB 7.9.0 (R2009b) on a PC with a triple core 2800MHz AMD
Phenom II X3 720 Processor with 3.3GB of RAM, running Ubuntu Linux 8.04.

A.1 Poisson control with MINRES

Below we consider Example 5.1.1, and use a GMG approximation for K. Table A.1 shows the results
for β = 0.01, and we vary the number of V-cycles and the pre- and post-smoothing steps. The mass
matrix is approximated in the preconditioner by five steps of the Chebyshev semi-iteration. The best
choice in terms of CPU time here appears to be taking the GMG approximation to be one V-cycle,
and three pre-smoothing steps on the first K solve, and corresponding post-smoothing steps on the
second K solve, so that K̃M−1K̃T is symmetric.

Table A.1: CPU times and iterations needed to solve (3.32) for Example 5.1.1 using MINRES
preconditioned with a block diagonal preconditioner with 5 steps of the Chebyshev semi-iteration
for the mass matrix, and a GMG method or a direct method for the stiffness matrix.

N backslash 1V(1,1) 1V(2,0) 1V(2,2) 1V(3,0) 1V(4,0)
time its time its time its time its time its time its

2−2 0.0048 11 0.2843 13 0.2839 13 0.2857 11 0.2851 11 0.2824 11
2−3 0.0087 12 0.2929 17 0.2907 16 0.2901 14 0.2901 14 0.2905 14
2−4 0.0303 15 0.3183 22 0.3092 18 0.3085 16 0.3120 16 0.3098 16
2−5 0.1394 16 0.4204 26 0.3856 20 0.3841 18 0.3804 18 0.3778 17
2−6 0.6749 15 0.8269 26 0.6931 20 0.7324 18 0.6771 18 0.6526 17
2−7 3.3118 15 2.6753 27 2.0937 20 1.9647 18 1.9306 18 1.8247 16
2−8 17.3016 14 10.7074 27 7.6996 19 7.4689 17 7.2917 17 7.1032 16
2−9 89.3951 13 43.1284 26 31.4706 19 30.4888 17 25.9341 15 26.7674 15

2V(1,1) 2V(2,0) 2V(2,2) 2V(3,0) 2V(4,0)
time its time its time its time its time its

2−2 0.2875 11 0.2859 11 0.2866 11 0.2884 11 0.2875 11
2−3 0.2951 12 0.2949 12 0.2976 12 0.2968 12 0.2963 12
2−4 0.3248 16 0.3237 15 0.3274 15 0.3251 15 0.3278 15
2−5 0.4337 17 0.4323 17 0.4375 16 0.4436 17 0.4391 16
2−6 0.8532 17 0.8919 17 0.8480 15 0.8133 15 0.8370 15
2−7 2.6505 16 2.6094 16 2.5868 15 2.5599 15 2.6469 15
2−8 10.6491 16 10.6604 16 10.1085 14 9.5502 14 9.9863 14
2−9 40.6688 15 40.2644 15 38.4384 13 37.2299 13 38.6217 13

Now consider the same problem – where we take K̃ as described above, but where we vary the
number of steps of the Chebyshev semi-iteration. Table A.2 shows these results. Here we see that
taking five steps of the Chebyshev semi-iteration seems a reasonable value.

143

Table A.2: CPU times and iterations needed to solve (3.32) for Example 5.1.1 in two dimensions
using MINRES preconditioned with a block diagonal preconditioner with one V-cycle of a GMG
method with 3 pre-smoothing steps for stiffness matrix, and the Chebyshev semi-iteration or a
direct method for the mass matrix.

N backslash Cheb(1) Cheb(2) Cheb(3) Cheb(4) Cheb (5)
time its time its time its time its time its time its

2−2 0.2829 9 0.2897 18 0.2888 15 0.2854 13 0.2851 12 0.2833 11
2−3 0.2927 11 0.3080 32 0.2995 25 0.2942 18 0.2904 15 0.2897 14
2−4 0.3135 13 0.3293 30 0.3569 45 0.3125 20 0.3163 20 0.3069 16
2−5 0.4194 13 0.4061 27 0.6248 70 0.3831 21 0.3982 23 0.3747 18
2−6 0.9701 13 0.7728 26 1.7862 79 0.6730 20 0.7384 23 0.6535 18
2−7 3.6334 13 2.1928 24 6.6955 80 1.9909 20 2.1458 22 1.8589 18
2−8 24.3166 14 8.4898 23 27.9162 77 7.5390 19 8.8784 22 7.3544 17
2−9 712.7708 15 34.3914 23 107.9846 72 29.3921 18 36.7658 22 25.8337 15

Cheb (6) Cheb (7) Cheb (8) Cheb (9) Cheb (10)
time its time its time its time its time its

2−2 0.2856 10 0.2856 10 0.2847 10 0.2843 9 0.2857 10
2−3 0.2910 13 0.2905 13 0.2907 13 0.2891 12 0.2902 12
2−4 0.3056 15 0.3078 15 0.3079 15 0.3061 14 0.3075 14
2−5 0.3761 18 0.3640 15 0.3671 15 0.3688 15 0.3661 14
2−6 0.6617 18 0.6515 17 0.6392 16 0.6529 16 0.6126 14
2−7 1.8069 17 1.8478 17 1.8010 16 1.8221 16 1.8670 16
2−8 7.4505 17 7.1906 16 7.3044 16 7.5308 16 7.7240 16
2−9 29.8898 17 29.4687 16 29.8581 16 28.6421 15 31.2615 16

The results above also show that the method is fairly robust with respect to these parameters;
we have not tried to find the optimal set of parameters for all situations, but have found some are
good in this particular situation, and hence we infer that they’ll be reasonable – if not the best – in
the other examples.

Table A.3 shows the results of varying the approximation to the mass matrix in 3D. It seems we
need more steps of the Chebyshev semi-iteration here to get good convergence. It also seems that
we need a better approximation to the stiffness matrix to get an optimal preconditioner.

Table A.3: CPU times and iterations needed to solve (3.32) for Example 5.1.1 in three dimensions
using MINRES preconditioned with a block diagonal preconditioner with one V-cycle of a GMG
method with 3 pre-smoothing steps for stiffness matrix, and the Chebyshev semi-iteration or a
direct method for the mass matrix.

N backslash Cheb(5) Cheb(6) Cheb(7) Cheb(8) Cheb (9)
time its time its time its time its time its time its

2−2 0.0900 9 0.0936 14 0.0908 12 0.0913 12 0.0905 11 0.0909 11
2−3 0.1752 11 0.1393 18 0.1370 17 0.1347 16 0.1361 16 0.1274 13
2−4 2.2062 13 0.7744 22 0.7227 20 0.7267 19 0.6939 18 0.6758 17
2−5 80.8994 15 8.3222 24 10.6165 31 7.8761 22 7.9963 22 7.4102 20

Cheb (10) Cheb (11) Cheb (12) Cheb (13) Cheb (14)
time its time its time its time its time its

2−2 0.0910 11 0.0905 10 0.0917 10 0.0911 10 0.0914 10
2−3 0.1284 13 0.1298 13 0.1313 13 0.1322 13 0.1300 12
2−4 0.6193 15 0.6321 15 0.6444 15 0.6553 15 0.6684 15
2−5 7.0364 18 7.0979 18 6.9172 17 6.9669 17 7.0282 17

144

A.2 Poisson control with BPCG

Below we again consider Example 5.1.1 with use a GMG approximation for K. Table A.4 shows
the results for β = 0.01, and we vary the scaling parameter. The mass matrix is approximated in
the preconditioner by five steps of the Chebyshev semi-iteration and the GMG approximation is
taken to be one V-cycle, with three pre-smoothing steps on the first K solve, and corresponding
post-smoothing steps on the second K solve, so that K̃M−1K̃T is symmetric. This shows that the
number of iterations taken is fairly independent of the choice of parameter, even when A − A0 is
indefinite. We take a value of 0.9, as this is theoretically in the right range, and seems to be a good
parameter in terms of mesh-independence.

Table A.4: CPU times and iterations needed to solve (3.32) for Example 5.1.1 using BPCG precondi-
tioned with a block diagonal preconditioner with one V-cycle of a GMGmethod with 3 pre-smoothing
steps for stiffness matrix, and the 5 steps of the Chebyshev semi-iteration scaled by the parameter
given below.

N backslash 0.8 0.82 0.84 0.86 0.88
time its time its time its time its time its time its

2−2 0.0066 11 0.2892 12 0.2865 12 0.2870 12 0.2886 11 0.2872 11
2−3 0.0104 11 0.2939 12 0.2930 12 0.2927 12 0.2913 11 0.2928 11
2−4 0.0238 10 0.3068 12 0.3063 12 0.3061 12 0.3064 12 0.3047 11
2−5 0.0956 10 0.3670 13 0.3591 12 0.3601 12 0.3608 12 0.3600 12
2−6 0.5555 10 0.5990 12 0.5997 12 0.5907 12 0.5965 12 0.5990 12
2−7 2.3584 10 1.6910 12 1.6943 12 1.7079 12 1.7417 12 1.6059 11
2−8 12.8185 10 6.6888 12 6.6080 12 6.6104 12 6.5941 12 6.1898 11
2−9 69.9849 10 26.7286 12 26.6583 12 26.8807 12 26.6778 12 24.4598 11

0.9 0.92 0.94 0.96 0.98
time its time its time its time its time its

2−2 0.2864 11 0.2863 11 0.2864 11 0.2818 10 0.2868 12
2−3 0.2910 11 0.2915 11 0.2913 11 0.2917 11 0.2931 12
2−4 0.3038 11 0.3037 11 0.3045 11 0.3073 12 0.3045 11
2−5 0.3525 11 0.3532 11 0.3528 11 0.3525 11 0.3530 11
2−6 0.5674 11 0.5662 11 0.5673 11 0.5718 11 0.5928 12
2−7 1.6020 11 1.5714 11 1.5719 11 1.5730 11 1.5718 11
2−8 6.0851 11 6.1732 11 6.2072 11 6.1557 11 6.2095 11
2−9 24.2881 11 24.6174 11 24.8731 11 24.3915 11 24.8613 11

145

A.3 Stokes Control

Tables A.5 and A.6 show the CPU times and number of iterations taken to solve Example 7.3.1,
with δ = 1, β = 0.01, and using a Q2 −Q1 discretization. We use for various combinations of steps
of inexact Uzawa (m) and numbers of V-cycles (k). In both cases, m = 2, k = 3 is close to the
optimal in terms of CPU times, so this is the approximation we will use in our calculations.

Table A.5: Comparison of solution methods for solving Example 7.3.1 using MINRES preconditioned
with the block diagonal preconditioner with m steps of inexact Uzawa approximating K and k AMG
V-cycles approximating K.

h size Exact, m=1 m=1, k=1 m=1, k=2 m=1, k=3 m=1, k=4
time its time its time its time its time its

2−2 344 0.159 33 0.159 39 0.147 37 0.150 37 0.146 35
2−3 1512 0.340 41 0.350 51 0.348 45 0.342 43 0.362 43
2−4 6344 1.373 45 1.498 77 1.075 49 1.189 49 1.300 49
2−5 25992 6.925 49 15.337 202 4.629 53 5.160 53 5.501 51
2−6 105224 33.651 51 256.084 761 22.715 59 23.590 55 25.946 55
2−7 423432 166.125 55 4324.460 2917 156.118 91 118.288 61 123.625 57

h size Exact, m=2 m=2, k=1 m=2, k=2 m=2, k=3 m=2, k=4
time its time its time its time its time its

2−2 344 0.127 25 0.155 29 0.152 27 0.145 25 0.150 25
2−3 1512 0.358 29 0.351 37 0.348 33 0.360 31 0.392 31
2−4 6344 1.393 29 1.325 51 1.085 35 1.173 33 1.244 31
2−5 25992 6.692 29 9.135 91 4.547 37 4.690 33 5.049 31
2−6 105224 32.018 29 112.836 251 24.607 45 22.377 35 22.496 31
2−7 423432 149.018 29 1665.296 831 168.235 69 107.146 37 110.390 33

h size Exact, m=3 m=3, k=1 m=3, k=2 m=3, k=3 m=3, k=4
time its time its time its time its time its

2−2 344 0.160 25 0.197 29 0.193 27 0.194 26 0.195 25
2−3 1512 0.441 27 0.353 29 0.395 29 0.442 29 0.454 27
2−4 6344 1.767 27 1.085 33 1.161 29 1.359 29 1.562 29
2−5 25992 8.549 27 5.335 43 4.831 31 5.787 31 6.737 31
2−6 105224 45.490 29 42.679 75 24.762 35 26.070 31 30.053 31
2−7 423432 207.394 29 486.900 193 126.073 39 127.852 33 139.232 31

h size Exact, m=4 m=4, k=1 m=4, k=2 m=4, k=3 m=4, k=4
time its time its time its time its time its

2−2 344 0.178 23 0.223 27 0.201 23 0.212 23 0.221 23
2−3 1512 0.510 25 0.425 29 0.452 27 0.473 25 0.524 25
2−4 6344 2.076 25 1.226 31 1.420 29 1.574 27 1.825 27
2−5 25992 10.568 25 5.337 35 5.616 29 6.818 29 7.506 27
2−6 105224 50.025 25 32.377 47 26.969 31 30.326 29 32.991 27
2−7 423432 231.266 25 274.496 89 138.780 35 140.510 29 154.589 27

146

Table A.6: Comparison of solution methods for solving Example 7.3.1 using BPCG preconditioned
with the block lower triangular preconditioner with m steps of inexact Uzawa approximating K and
k AMG V-cycles approximating K.

h size Exact, k=1 m=1, k=1 m=1, k=2 m=1, k=3 m=1, k=4
time its time its time its time its time its

2−2 344 0.094 18 0.090 21 0.077 20 0.080 20 0.081 20
2−3 1512 0.194 23 0.213 30 0.185 24 0.196 24 0.207 24
2−4 6344 0.805 25 0.975 46 0.638 27 0.697 27 0.759 27
2−5 25992 4.135 28 9.876 116 2.881 30 2.857 27 3.366 29
2−6 105224 20.453 28 195.805 488 15.557 35 15.289 31 16.075 30
2−7 423432 88.670 27 3335.464 1910 97.563 50 71.348 33 75.632 32

h size Exact, k=2 m=2, k=1 m=2, k=2 m=2, k=3 m=2, k=4
time its time its time its time its time its

2−2 344 0.069 14 0.087 17 0.080 15 0.077 14 0.080 14
2−3 1512 0.208 17 0.211 22 0.203 19 0.197 17 0.213 17
2−4 6344 0.681 14 0.806 29 0.680 21 0.667 18 0.623 15
2−5 25992 3.960 17 5.905 54 2.853 22 3.002 20 2.900 17
2−6 105224 20.285 16 78.473 152 16.427 27 14.323 21 13.112 17
2−7 423432 84.896 16 1180.818 522 109.179 41 64.640 21 62.739 18

h size Exact, k=3 m=3, k=1 m=3, k=2 m=3, k=3 m=3, k=4
time its time its time its time its time its

2−2 344 0.085 14 0.104 16 0.103 15 0.113 16 0.111 15
2−3 1512 0.248 15 0.204 17 0.216 16 0.238 16 0.263 16
2−4 6344 0.933 14 0.656 19 0.699 17 0.768 16 0.876 16
2−5 25992 5.126 16 3.347 25 3.011 18 3.333 17 3.815 17
2−6 105224 25.932 16 28.122 44 15.390 20 15.210 17 17.418 17
2−7 423432 116.586 16 314.582 114 77.655 23 71.785 18 82.790 18

h size Exact, k=4 m=4, k=1 m=4, k=2 m=4, k=3 m=4, k=4
time its time its time its time its time its

2−2 344 0.095 13 0.118 15 0.108 13 0.113 13 0.118 13
2−3 1512 0.257 13 0.243 17 0.243 15 0.254 14 0.285 14
2−4 6344 1.159 14 0.734 18 0.801 16 0.768 13 0.885 13
2−5 25992 6.079 14 3.271 21 3.355 17 3.810 16 4.147 15
2−6 105224 29.596 14 21.686 29 15.791 17 17.472 16 16.522 13
2−7 423432 128.962 14 173.559 53 86.672 21 78.532 16 85.994 15

147

148

Bibliography

[1] Robert Alexander Adams and John J. F. Fournier. Sobolev spaces. Academic Press, 2nd
edition, 2003.

[2] S.R. Arridge. Optimal tomography in medical imaging. Inverse Problems, 15:R41–R93, 1999.

[3] K Arrow, L. Hurwicz, and H Uzawa. Studies in Nonlinear Programming. Stanford University
Press, 1958.

[4] S.F. Ashby. CHEBYCODE: A Fortran implementation of Manteuffel’s adaptive Chebyshev
algorithm. Technical report, University of Illinois, 1985.

[5] S.F. Ashby, T.A. Manteuffel, and J.S. Otto. A comparison of adaptive Chebyshev and least
squares polynomial preconditioning for Hermitian positive definite linear systems. SIAM J.
Sci. Comput., 13:1–29, 1992.

[6] Uri M. Asher and Eldad Haber. A multigrid method for distributed parameter estimation
problems. Electron. Trans. Numer. Anal., 15:1–17, 2003.

[7] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM, 2nd edition, 1994.

[8] Roland Becker and Boris Vexler. Optimal control of the convection-diffusion equation using
stabilized finite element methods. Numer. Math., 106(3):349–367, 2007.

[9] Michele Benzi, Gene H. Golub, and Jörg Liesen. Numerical solution of saddle point problems.
Acta Numer., 14:1–137, 2005.

[10] Mäıtine Bergounioux, Kazufumi Ito, and Karl Kunisch. Primal-dual strategy for constrained
optimal control problems. SIAM J. Control Optim., 37(4):1176–1194, 1999.

[11] G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-
constrained optimization. Part I: The Krylov-Schur solver. SIAM J. Sci. Comput., 27, 2000.

[12] George Biros and Günay Dogan. A multilevel algorithm for inverse problems with elliptic PDE
constraints. Inverse Problems, 24(3):034010 (18pp), 2008.

[13] A. Borz̀ı and V. Schulz. Multigrid methods for PDE optimization. SIAM Rev., 51(2):361–395,
2009.

[14] Ilia Bouchouev and Victor Isakov. Uniqueness, stability and numerical methods for the inverse
problem that arises in financial markets. Inverse Problems, 15:R95–R116, 1999.

[15] J. Boyle, M. D. Mihajlovic, and J. A. Scott. HSL MI20: an efficient amg preconditioner.
Technical Report RAL-TR-2007-021, Department of Computational and Applied Mathemat-
ics, Rutherford Appleton Laboratory, 2007.

[16] M. Braack. Optimal control in fluid mechanics by finite elements with symmetric stabilization.
SIAM J. Control Optim., 48(2):672–687, 2009.

149

[17] D. Braess and W. Hackbusch. A new convergence proof for the multigrid method including
the V-cycle. SIAM J. Numer. Anal., 20(5):967–975, 1983.

[18] D. Braess and D. Peisker. On the numerical solution of the biharmonic equation and the role
of squaring matrices for preconditioning. IMA J Numer. Anal., 6:393–404, 1986.

[19] Dietrich Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics.
Cambridge University Press, 3rd edition, 2007.

[20] J.H. Bramble and J. E. Pasciak. A preconditioning technique for indefinite systems resulting
from mixed approximations of elliptic problems. Math. Comp., 50:1–17, 1988.

[21] J.H. Bramble, J. E. Pasciak, and A.T. Vassilev. Analysis of the inexact Uzawa algorithm for
saddle point problems. SIAM J. Numer. Anal., 34:1072–1092, 1997.

[22] A Brandt. Multi-level adaptive technique MLAT for fast numerical solution to boundary value
problems. In 3rd International Conference on Numerical Methods in Fluid Mechanics, 1973.

[23] A Brandt, S.C. McCormick, and J. Ruge. Algebraic multigrid (AMG) for sparse matrix equa-
tions, pages 257–284. Cambridge University Press, 1985.

[24] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite Element
Methods. Springer, 3rd edition, 2008.

[25] Robert Bridson and Chen Greif. A multipreconditioned conjugate gradient algorithm. SIAM
J. Matrix Anal. Appl., 27(4):1056–1068, 2006.

[26] William L. Briggs, Van Emden Henson, and S.F. McCormick. A Multigrid Tutorial. SIAM,
2nd edition, 2000.

[27] Zhi-Hao Cao. A note on eigenvalues of matrices which are self-adjoint in symmetric bilinear
forms. SIAM J. Matrix Anal. Appl., 30:1421–1423, 2008.

[28] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems. Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics, 2nd revised edition, 2002.

[29] S. S. Collis and M. Heinkenschloss. Analysis of the streamline upwind/Petrov Galerkin method
applied to the solution of optimal control problems. Technical Report TR02–01, Department
of Computational and Applied Mathematics, Rice University, Houston, TX 77005–1892, 2002.

[30] P. Concus, G.H. Golub, and D.P. O’Leary. A generalized conjugate gradient method for the
numerical solution of elliptic partial-differential equations. In Proceedings of the Symposium
on Sparse Matrix Computations, Argonne National Laboratory, Academic, New York, pages
309–332, 1976.

[31] H. S. Dollar. Iterative linear algebra for constrained optimization. PhD thesis, University of
Oxford, 2005.

[32] H. S. Dollar, Nicholas I. M. Gould, Martin Stoll, and Andrew J. Wathen. Preconditioning
saddle-point systems with applications in optimization. SIAM J. Sci. Comput., 32(1):249–
270, 2010.

[33] H. Sue Dollar, Nicholas I. M. Gould, Wil H. A. Schilders, and Andrew J. Wathen. Implicit-
factorization preconditioning and iterative solvers for regularized saddle-point systems. SIAM
J. Matrix Anal. Appl., 28(1):170–189, 2006.

[34] H. Sue Dollar and Andrew J. Wathen. Approximate factorization constraint preconditioners
for saddle-point matrices. SIAM J. Sci. Comput., 27(5):1555–1572, 2006.

[35] I Duff, A.M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford University
Press, 1986.

150

[36] H. Egger and H. W. Engl. Tikhonov regularization applied to the inverse problem of option
pricing: Convergence analysis and rates. Inverse Problems, 21:1027–1045, 2005.

[37] H.C. Elman. Multigrid and Krylov subspace methods for the discrete Stokes equations. In-
ternat. J. Numer. Methods Fluids, 22:755–770, 1995.

[38] H.C. Elman and G.H. Golub. Inexact and preconditioned Uzawa algorithms for saddle point
problems. SIAM J. Numer. Anal., 31:1645–1661, 1994.

[39] Howard Elman, David Silvester, and Andy Wathen. Finite elements and fast iterative solvers:
with applications in incompressible fluid dynamics. Numerical Mathematics and Scientific
Computation. Oxford University Press, Oxford, 2005.

[40] M. Embree. How descriptive are GMRES convergence bounds? Technical Report NA 99/08,
Oxford University Computing Laboratory, 1999.

[41] M. Engel and M. Griebel. A multigrid method for constrained optimal control problems. Tech-
nical report, SFB-Preprint 406, Sonderforschungsbereich 611, Rheinische Friedrich-Wilhelms-
Universität Bonn, 2008.

[42] Lawrence C. Evans. Partial Differential Equations. American Mathematical Society, 1998.

[43] B. Fischer. Polynomial Based Iteration Methods for Symmetric Linear Systems. Wiley-
Teubner, 1996.

[44] M Fortin and R. Glowinski. Augmented Lagrangian Methods: Applications to the Numerical
Solution of Boundary Value Problems. North Holland, 1983.

[45] R. Freund and N. Nachtigal. QMR: A quasi-minimal residual method for non-Hermitian linear
systems. Numer. Math., 60:315339, 1991.

[46] O. Ghattas and C. Orozco. Massively parallel aerodynamic shape optimization. Comput. Syst.
Eng., 1:311–320, 1992.

[47] P. E. Gill, W. Murray, and M. H. Wright. Practical optimization. Academic Press Inc., 1981.

[48] I. Gohberg, P. Lancaster, and L. Rodman. Matrices and Indefinite Scalar Products. Birkhäuser-
Verlag, 1983.

[49] Gene H. Golub and Charles F. van Loan. Matrix Computations. The Johns Hopkins University
Press, 3rd edition, 1996.

[50] G.H. Golub and M.D. Kent. Estimates of eigenvalues for iterative methods. Math. Comp.,
53:249–263, 1989.

[51] G.H. Golub and R.S. Varga. Chebyshev semi iterative methods, successive overrelaxation
iterative methods and second order Richardson iterative methods. Numer. Math., 3(1):147–
156, 1961.

[52] Nicholas I. M. Gould, Mary E. Hribar, and Jorge Nocedal. On the solution of equality con-
strained quadratic programming problems arising in optimization. SIAM J. Sci. Comput.,
23(4):1376–1395, 2001.

[53] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, 1997.

[54] Anne Greenbaum, Vlastimil Pták, and Zdeněk Strakoš. Any nonincreasing convergence curve
is possible for GMRES. SIAM J. Matrix Anal. Appl., 17(3):465–469, 1996.

[55] Piotr P. Grinevich and Maxim A. Olshanskii. An iterative method for the Stokes-type problem
with variable viscosity. SIAM J. Sci. Comput., 31:3959–3978, 2009.

151

[56] E. Haber and U. Ascher. Preconditioned all–at–once methods for large sparse parameter
estimation problems. Inverse Problems, 17:1847–1864, 2000.

[57] E. Haber and L. Hanson. Model problems in PDE-constrained optimization. Technical Report
TR-2007-009, Emory University, 2007.

[58] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer-Verlag, 1994.

[59] W. Hackbush. Multi-Grid methods and applications. Springer-Verlag, 1985.

[60] Heinkenschloss and H. Nguyen. Neumann-Neumann domain decomposition preconditioners
for linear-quadratic elliptic optimal control problems. SIAM J. Sci. Comput., 28:1001–1028,
2006.

[61] M Heinkenschloss and D. Leykekhman. Local error estimates for SUPG solution of advection-
diffusion dominated elliptic linear-quadratic optimal control problems. SIAM J. Numer. Anal.,
47(6):4607–4638, 2010.

[62] M. Heinkenschloss, D. C. Sorensen, and K. Sun. Balanced truncation model reduction for a
class of descriptor systems with application to the Oseen equations. SIAM J. Sci. Comput.,
30(2):1038–1063, 2008.

[63] R. Herzog and E. Sachs. Preconditioned conjugate gradient method for optimal control prob-
lems with control and state constraints. Technical Report Preprint-Number SPP1253-088,
Deutsche Forschungsgemeinschaft, Priority Program 1253, 2009.

[64] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.
Res. Nat. Bur. Stand., 49:409–436, 1952.

[65] N.J. Higham. Accuracy and Stabitily of Numerical Algorithms. SIAM, 2nd edition edition,
2002.

[66] M. Hintermüller and K. Kunisch. Feasible and non-interior path-following in constrained
minimization with low multiplier regularity. SIAM J. Control Optim., 45:1198–1221, 2006.

[67] M. Hintermüller and K. Kunisch. Path-following methods for a class of constrained minimiza-
tion problems in function space. SIAM J. Optim., 17:159–187, 2006.

[68] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints. Math-
ematical Modelling: Theory and Applications. Springer, 2008.

[69] C. R. Horn and R. A. Johnson. Martix Analysis. Cambridge University Press, 1990.

[70] T.J.R. Hughes and A. Brooks. Finite Element Methods for Convection Dominated Flows,
chapter ”A multidimensional upwind scheme with no crosswind diffusion”, pages 120–131.
AMD-vol 34. ASME, 1979.

[71] Kazufumi Ito and Karl Kunisch. Augmented Lagrangian–SQP methods for nonlinear optimal
control problems of tracking type. SIAM J. Control Optim., 34(3):874–891, 1996.

[72] P Jiránek and M Rozlozńık. Maximum attainable accuracy of inexact saddle point solvers.
SIAM J. Matrix Anal. Appl., 29(4):12971321, 2008.

[73] O.G. Johnson, C.A. Micchelli, and G. Paul. Polynomial preconditioners for conjugate gradient
calculations. SIAM J. Numer. Anal., 20:362–376, 1983.

[74] Carsten Keller, Nicholas I. M. Gould, and Andrew J. Wathen. Constraint preconditioning for
indefinite linear systems. SIAM J. Matrix Anal. Appl., 21(4):1300–1317, 2000.

[75] Axel Klawonn. Block-triangular preconditioners for saddle point problems with a penalty
term. SIAM J. Sci. Comput., 19:172–184, 1998.

152

[76] M.V. Klibanov and T.R. Lucas. Numerical solution of a parabolic inverse problem in optical
tomography using experimental data. SIAM J. Appl. Math., 59:6516–6534, 1999.

[77] Cornelius Lanczos. Iteration method for the solution of the eigenvalue problem of linear
differential and integal operators. J. Res. Nat. Bur. Stand., 45:255–282, 1950.

[78] J. Liesen and B. N. Parlett. On nonsymmetric saddle point matrices that allow conjugate
gradient iterations. Numer. Math., 108:605–624, 2008.

[79] J. L. Lions. Optimal Control of Systems. Springer, 1968.

[80] T.A. Manteuffel. The Tchebychev iteration for nonsymmetric linear systems. Numer. Math.,
28:307–327, 1977.

[81] T.A. Manteuffel. Adaptive procedure for estimation of parameter for the nonsymmetric
Tchebychev iteration. Numer. Math., 28:187–208, 1978.

[82] J. C. Mason and D. C. Handscomb. Chebyshev polynomials. CRC Press, 2003.

[83] H. Maurer and J. Zowe. First and second order necessary and sufficient optimality conditions
for infinite-dimensional programming problems. Math. Program., 16:98–110, 1979.

[84] G Meurant. Computer Solution of Large Linear Systems. North Holland, 1999.

[85] A. Meyer and T. Steidten. Improvement and experiments on the Bramble-Pasciak type CG
for mixed problems in elasticity. Technical report, TU Chemnitz, Germany, 2001.

[86] Christian Meyer, Arnd Rösch, and Fredi Tröltzsch. Optimal control of PDEs with regularized
pointwise state constraints. Comput. Optim. Appl., 33:209–228, 2006.

[87] Malcolm F. Murphy, Gene H. Golub, and Andrew J. Wathen. A note on preconditioning for
indefinite linear systems. SIAM J. Sci. Comput., 21(6):1969–1972, 2000.

[88] Pekka Neittaanmaki, Jürgen Sprekels, and Dan Tiba. Optimization of Elliptic Systems.
Springer, 2006.

[89] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 1999.

[90] D.P. O’Leary. Yet another polynomial preconditioner for the conjugate gradient algorithm.
Linear Algebra Appl., 29:377–388, 1991.

[91] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations.
SIAM J. Numer. Anal., 12(4):617–629, 1975.

[92] Alfio Quarteroni, Gianluigi Rozza, Luca Dede, and Annalisa Quaini. IFIP International Fed-
eration for Information Processing, volume 199 of System Modeling and Optimization, chapter
”Numerical approximation of a control problem for advection-diffusion processes”, pages 261–
273. Springer, 2006.

[93] A. Ramage. A multigrid preconditioner for stabilised discretisations of advection-diffusion
problems. J. Comput. Appl. Math., 110(1):187 – 203, 1999.

[94] Alison Ramage and Howard C. Elman. Some observations on multigrid convergence for
convection-diffusion equations. Comput. Vis. Sci., 10(1):43–56, 2007.

[95] Tyrone Rees, H. Sue Dollar, and Andrew J. Wathen. Optimal solvers for PDE-constrained
optimization. SIAM J. Sci. Comput., 32(1):271–298, 2010.

[96] Tyrone Rees and Martin Stoll. Block triangular preconditioners for PDE-constrained optimiza-
tion. Technical Report 15/09, OCCAM, Oxford University Mathematical Institute, March
2009. (to appear in NLAA).

153

[97] Tyrone Rees, Martin Stoll, and Andrew J. Wathen. All-at-once preconditioning in PDE-
constrained optimization, August 2009. (to appear in Kybernetika for special issue on Algo-
rithmy meeting, Podbansk, Slovakia).

[98] H-G Roos, M. Stynes, and L. Tobiska. Robust Numerical Methods for Singularly Perturbed
Differential Equations. Springer, 2008.

[99] Y. Saad. Practical use of polynomial preconditioning for the conjugate gradient method. SIAM
J. Sci. Comput., 6:865–881, 1985.

[100] Y. Saad. Iterative methods for sparse linear systems. PWS Publishing, Boston, 1996.

[101] Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, 1986.

[102] Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.,
14:461–469, 1993.

[103] Joachim Schöberl and Walter Zulehner. Symmetric indefinite preconditioners for saddle point
problems with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal.
Appl., 29(3):752–773, 2007.

[104] Joachim Schöberl, Walter Zulehner, and René Simon. A robust multigrid method for elliptic
optimal control problems. Technical Report 2010-01, Institute of Computational Mathematics,
Johannes Kepler University, Linz, 2010.

[105] Ajit Shenoy, Matthias Heinkenschloss, and Eugene M. Cliff. Airfoil design by an all-at-once
method. Int. J. Comput. Fluid Dyn., 11:3–25, 1998.

[106] D.J. Silvester and A.J. Wathen. Fast iterative solution of stabilised Stokes systems Part II:
Using general block preconditioners. SIAM J. Numer. Anal., 31:1352–1367, 1994.

[107] V Simoncini and D. Szyld. Flexible inner-outer Krylov subspace methods. SIAM J. Numer.
Anal., 40:2219–2239, 2003.

[108] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci.
Statist. Comput., 10:3652, 1989.

[109] Martin Stoll. Solving Linear Systems using the Adjoint. PhD thesis, University of Oxford,
2009.

[110] Martin Stoll and Andy Wathen. Combination preconditioning and the Bramble–Pasciak+

preconditioner. SIAM J. Matrix Anal. Appl., 30(2):582–608, 2008.

[111] Martin Stoll and Andy Wathen. Preconditioning for active set and projected gradient methods
as semi-smooth Newton methods for PDE-constrained optimization with control constraints.
Technical Report 09/25, Oxford Centre for Collaborative Applied Mathematics, 2009.

[112] Gilbert Strang and Geroge J. Fix. An analysis of the Finite Element Method. Wellesley
Cambridge Press, 1973.

[113] Angus E. Taylor. Introduction to Functional Analysis. John Wiley & Sons, 1958.

[114] H.S. Thorne. Properties of linear systems in PDE-constrained optimization. Part i: Distributed
control. Technical Report RAL-TR-2009-017, Rutherford Appleton Laboratory, 2009.

[115] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.

[116] Lloyd N. Trefethen and M. Embree. Spectra and Pseudospectra. Princeton, 2005.

154

[117] F. Tröltzsch. On finite element error estimates for optimal control problems with elliptic PDEs.
In Proceedings of the Conference ”Large-Scale Scientific Computations”, to appear in Springer
Lect. Notes in Comp. Sci., 2009.

[118] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Appli-
cations. American Mathematical Society, 2010.

[119] U Trottenberg, C Oosterlee, and A Schüller. Multigrid. Academic Press, 2000.

[120] H. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13:631–644, 1992.

[121] H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge University
Press, 2003.

[122] M.B. van Gijzen. Conjugate gradient-like solution algorithms for the mixed finite element ap-
proximation of the biharmonic equation, applied to plate bending problems. Comput. Methods
Appl. Mech. Engrg., 121:121–136, 1995.

[123] R.S. Varga. Matrix Iterative Analysis. Prentice Hall, 1962.

[124] B. Vexler. Finite element approximation of elliptic Dirichlet optimal control problems. Numer.
Func. Anal. Opt., 28:957 – 973, 2007.

[125] A. J. Wathen. Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J Numer Anal,
7(4):449–457, 1987.

[126] A. J. Wathen and T. Rees. Chebyshev semi-iteration in preconditioning for problems including
the mass matrix. Electronic Transactions on Numerical Analysis, 34:125–135, 2009.

[127] Andrew Wathen and David Silvester. Fast iterative solution of stabilised Stokes systems. part
I: Using simple diagonal preconditioners. SIAM J. Numer. Anal., 30(3):630–649, 1993.

[128] P. Wesseling. An Introduction to Multigrid Methods. John Wiley & Sons, 1992.

[129] T. G.Wright. EigTool. Software available at http://www.comlab.ox.ac.uk/pseudospectra/eigtool,
2002.

[130] Walter Zulehner. Analysis of iterative methods for saddle point problems: a unified approach.
Math. Comput., 71(238):479–505, 2001.

155

