
The Handy Board Technical Reference

Fred G. Martin∗

∗University of Massachusetts Lowell, Computer Science Department, 1 Univer-
sity Avenue, Lowell, MA 01854. E-mail: fredm@cs.uml.edu. This document is
Copyright c© 1991–2007 by Fred G. Martin. It may be distributed freely in verba-
tim form provided that no fee is collected for its distribution (other than reasonable
reproduction and mailing costs) and this copyright notice is included. An electronic
version of this document and the freely distributable software described herein are
available from the Handy Board home page at http://handyboard.com/.

1

The Handy Board is a hand-held, battery-powered microcontroller
board ideal for personal and educational robotics projects. Based on
the Motorola 68HC11 microprocessor, the Handy Board includes 32K
of battery-backed static RAM, outputs for four DC motors, inputs for
a variety of sensors, and a 16×2 character LCD screen. The Handy
Board runs Interactive C, a cross-platform, multi-tasking version of the
C programming language.

The Handy Board is distributed under MIT’s free licensing policy,
in which the design may be licensed for for personal, educational, or
commercial use with no charge.

Contents

1 Specifications 1

2 Quick Start 2

3 Ports and Connectors 4

4 Interactive C 7
4.1 Using IC . 8

4.1.1 IC Commands . 8
4.1.2 Line Editing . 9
4.1.3 The Main Function 10

4.2 A Quick C Tutorial . 10
4.3 Data Types, Operations, and Expressions 12

4.3.1 Variable Names 13
4.3.2 Data Types . 13
4.3.3 Local and Global Variables 13
4.3.4 Constants . 15
4.3.5 Operators . 16
4.3.6 Assignment Operators and Expressions 17
4.3.7 Increment and Decrement Operators 18
4.3.8 Precedence and Order of Evaluation 18

4.4 Control Flow . 19
4.4.1 Statements and Blocks 19
4.4.2 If-Else . 19
4.4.3 While . 20
4.4.4 For . 20
4.4.5 Break . 21

4.5 LCD Screen Printing . 21
4.5.1 Printing Examples 21
4.5.2 Formatting Command Summary 22
4.5.3 Special Notes . 22

4.6 Arrays and Pointers . 23
4.6.1 Declaring and Initializing Arrays 23
4.6.2 Passing Arrays as Arguments 24
4.6.3 Declaring Pointer Variables 24
4.6.4 Passing Pointers as Arguments 25

i

4.7 Library Functions . 26
4.7.1 Output Control 26
4.7.2 Sensor Input . 28
4.7.3 Time Commands 31
4.7.4 Tone Functions 31

4.8 Multi-Tasking . 32
4.8.1 Overview . 32
4.8.2 Creating New Processes 33
4.8.3 Destroying Processes 34
4.8.4 Process Management Commands 35
4.8.5 Process Management Library Functions 35

4.9 Floating Point Functions 36
4.10 Memory Access Functions 37
4.11 Error Handling . 38

4.11.1 Compile-Time Errors 38
4.11.2 Run-Time Errors 39

5 Sensors and Motors 40
5.1 Connector Wiring Technique 40

5.1.1 Wire Type . 41
5.1.2 Stripping and Tinning Wire Ends 41
5.1.3 Installing Heat Shrink Tubing 42
5.1.4 Soldering to Male Header 43
5.1.5 Shrinking the Tubing 44

5.2 Motors . 45
5.3 Sensors . 45

5.3.1 Basic Sensor Connector 45
5.3.2 Switch Sensor . 46
5.3.3 Photocell Sensor 47
5.3.4 Infrared Reflectance Sensor 48

6 Battery Maintenance 51
6.1 Battery Charging . 51
6.2 Adapter Specifications 52

7 Part Listing 53

ii

8 Schematic Drawings 55
8.1 CPU and Memory . 55
8.2 Motor Outputs . 56
8.3 Digital Inputs . 57
8.4 Analog Inputs . 58
8.5 Infrared Transmission . 59
8.6 Power Supply . 59
8.7 Infrared Reception . 60
8.8 Serial Interface and Battery Charger 61

9 Printed Circuit Board Layouts 62
9.1 Handy Board Component Side 62
9.2 Handy Board Solder Side 63
9.3 Handy Board Silkscreen 64
9.4 Interface/Charger Board Component Side 65
9.5 Interface/Charger Board Solder Side 65
9.6 Interface/Charger Board Silkscreen 66

10 Pin-Out Detail 67

11 Handy Board Community 68

12 Licensing 68

iii

1 Specifications

The Handy Board features:

• 52–pin Motorola 68HC11 microprocessor with system clock at 2
MHz.

• 32K of battery-backed CMOS static RAM.

• Two TI SN754410NE chips capable of driving four DC motors at
1 amp per motor.

• 16 × 2 character LCD screen.

• Two user-programmable buttons, one knob, and piezo beeper.

• Powered header inputs for 7 analog sensors and 9 digital sensors.

• Internal 9.6v nicad battery with built-in recharging circuit.

• Hardware 38 kHz oscillator and drive transistor for IR output and
on-board 38 kHz IR receiver.

• 8-pin powered connector to the 68HC11 SPI circuit (1 Mbaud
serial peripheral interface).

• Expansion bus with chip selects allows easy expansion using in-
expensive digital I/O latches.

• Board size of 4.25 × 3.15 inches, designed for a commercial,
high grade plastic enclosure which holds battery pack beneath
the board.

1

2 Quick Start

Interactive C (IC) is the most popular compiler software used with
the Handy Board. It is maintained by the Kiss Institute for Practical
Robotics (KIPR).

Interactive C may be downloaded from www.kipr.org/ic. IC is pro-
vided free of charge as a service to educators and the general public by
KIPR.

Here are the steps to getting started with the Handy Board and Inter-
active C:

1. Attach the Handy Board’s separate Serial Interface board to your
host computer:

• There are two variants of the interface board: Serial and
USB.

– If using Serial Interface. Connect the Serial Interface
board to the host computer using a standard 9-pin to
25-pin modem cable.

– If using Serial Interface with USB-serial adapter.
Use a USB-Serial adapter cable if your computer does
not have a serial port. Install the drivers for the adapter
cable if necessary.

– If using USB Interface. Install “virtual COM port”
drivers from http://ftdichip.com/Drivers/VCP.htm.

• Using a wall adapter, attach power to the Serial Interface
board. The board’s Red PWR LED should light up.

• Connect the Handy Board to the Serial Interface using a
standard 4–wire telephone cable.

2

2. Initialize the board by downloading the pcode/firmware for In-
teractive C. Here are the steps:

• Launch Interactive C version 4.x or higher.

• Select Handy Board from the Controller Type dialog.

• Choose Connect Later from the Communications Dialog.

• Choose Download Firmware from the Tools menu. Select
the proper serial port, click Download Firmware, and follow
the on-screen instructions.

In this step, you will put the Handy Board into a special
bootstrap download mode, by holding down the Stop but-
ton while turning on system power. The pair of LED’s by
the two push buttons should light up, and then turn off.
When power is on and both of the LED’s are off, the Handy
Board is in download mode.

3. After the firmware is downloaded, the Handy Board should beep,
and the Interactive C welcome message should appear on the
Handy Board’s LCD screen.

4. You are ready to use Interactive C.

3

3 Ports and Connectors

(17) LCD screen(1) power
switch

OFF

ON
(2) computer

connector

(3) 4 DC
motor outputs

and
indicators

(4) “Start”
button (5) “Stop”

button
(6) low battery

indicator
(7) power/ready

indicator

(8)
9 digital
inputs

(9)
7 analog

inputs
(10)

IR output
and

indicator

(11)
IR input
sensor

(13) user
knob

(14) battery
trickle-charge

connector

(15) charge
indicator

(12) analog
expansion

header

(19) power
expansion

header

(16) SPI
expansion

header

(18) piezo
beeper

Figure 1. Labeled Handy Board Diagram

Figure 1, above, shows a labeled view of the Handy Board’s ports,
connectors, inputs, and outputs. In the following, each of these is briefly
described.

1. Power Switch. The power switch is used to turn the Handy Board
on and off. The Handy Board retains the contents of its memory
even when the board is switched off.

2. Computer Connector. Via this RJ11 connector, the Handy Board
attaches to a desktop computer (using the separate Interface/Charger
Board).

3. 4 DC Motor Outputs and Indicators. The Handy Board’s four
motor outputs are located at this single 12–pin connector. Each

4

motor output consists of three pins; the motor connects to the
outer two pins and the center pin is not used. Red and green
LEDs indicate motor direction. From top to bottom, the motor
outputs are numbered 0 to 3.

4. Start Button. The Start button is used to control the execution
of Interactive C programs. Also, its state may be read under user
program control.

5. Stop Button. The Stop button is used to put the Handy Board
into a special bootstrap download mode. Also, its state may be
read under user program control.

6. Low Battery Indicator. The red Low Battery LED lights when
for a brief interval each time the Handy Board is switched on. If
this LED is on steadily, it indicates that the battery is low and
that the CPU is halted.

7. Power/Ready Indicator. The green Power/Ready LED lights when
the Handy Board is in normal operation, and flashes when the
Handy Board is transmitting serial data. If the board is pow-
ered on and this LED is off, then the Handy Board is in special
bootstrap mode.

8. 9 Digital Inputs. The bank of digital input ports is here. From
right to left, the digital inputs are numbered 7 to 15.

9. 7 Analog Inputs. The bank of analog input ports is here. From
right to left, the analog inputs are numbered 0 to 6.

10. IR Output and Indicator. The infrared output port is here.
The red indicator LED lights when the output is enabled.

11. IR Input Sensor. The dark green-colored infrared sensor is here.

12. Analog Expansion Header. The analog expansion header is a
1×4 connector row located above analog inputs 0 to 3.

13. User Knob. The user knob is a trimmer potentiometer whose
value can be read under user program control.

5

14. Battery Trickle-Charge Connector. The battery charge con-
nector is a coaxial power jack to accept a 12 volt signal for trickle-
charging the Handy Board’s internal battery.

15. Charge Indicator. The yellow charge indicator LED lights when
the Handy Board is charging via the coaxial power jack.

16. SPI Expansion Header. The SPI expansion header is a 2×4 pin
jack that allows connection with the 6811’s serial peripheral in-
terface circuit. See the CPU and memory schematic diagram for
a pin-out of this connector.

17. LCD Screen. The Handy Board is provided with a 16×2 LCD
screen which can display data under user control.

18. Piezo Beeper. The Handy Board has a simple piezo beeper for
generating tones under user control.

19. Power Expansion Header. The power expansion header is a
1×4 pin jack that provides access to the unregulated motor power
and ground signals.

6

4 Interactive C

Interactive C (IC for short) is a C language consisting of a compiler
(with interactive command-line compilation and debugging) and a run-
time machine language module. IC implements a subset of C including
control structures (for, while, if, else), local and global variables,
arrays, pointers, 16-bit and 32-bit integers, and 32-bit floating point
numbers.

IC works by compiling into pseudo-code for a custom stack machine,
rather than compiling directly into native code for a particular proces-
sor. This pseudo-code (or p-code) is then interpreted by the run-time
machine language program. This unusual approach to compiler design
allows IC to offer the following design tradeoffs:

• Interpreted execution that allows run-time error checking and
prevents crashing. For example, IC does array bounds checking
at run-time to protect against programming errors.

• Ease of design. Writing a compiler for a stack machine is signif-
icantly easier than writing one for a typical processor. Since IC’s
p-code is machine-independent, porting IC to another processor
entails rewriting the p-code interpreter, rather than changing the
compiler.

• Small object code. Stack machine code tends to be smaller
than a native code representation.

• Multi-tasking. Because the pseudo-code is fully stack-based,
a process’s state is defined solely by its stack and its program
counter. It is thus easy to task-switch simply by loading a new
stack pointer and program counter. This task-switching is han-
dled by the run-time module, not by the compiler.

Since IC’s ultimate performance is limited by the fact that its output
p-code is interpreted, these advantages are taken at the expense of raw
execution speed. Still, IC is no slouch.

7

IC was designed and implemented by Randy Sargent with
the assistance of Fred Martin. This manual includes refer-
ence material for both the original command-line version of
IC (e.g., the open-source v2.8x distribution) and the more
modern GUI version (v4.x and above, maintained by the
Kiss Institute for Practical Robotics).

4.1 Using IC

Before IC can be used, the Handy Board must have the runtime
“firmware” or “pcode” operating program already loaded.

When IC is booted, it immediately attempts to connect with the
Handy Board, which should be turned on and running the pcode hb.s19

program. In later version of IC, the firmware is named lib hb exp.frm.
After synchronizing with the Handy Board, IC compiles and down-

loads the default set of library files, and then presents the user with the
“C>” prompt. At this prompt, either an IC command or C–language
expression may be entered.

All C expressions must be ended with a semicolon. For example, to
evaluate the arithmetic expression 1 + 2, type the following:

C> 1 + 2;

(The underlined portion indicates user input.) When this expression is
typed, it is compiled by IC and then downloaded to the Handy Board
for evaluation. The Handy Board then evaluates the compiled form
and returns the result, which is printed on the IC console.

To evaluate a series of expressions, create a C block by beginning
with an open curly brace “{” and ending with a close curly brace “}”.
The following example creates a local variable i and prints the sum i+7

to the Handy Board’s LCD screen:

C> {int i=3; printf("%d", i+7);}

4.1.1 IC Commands

IC responds to the following commands. These commands are available
as menu selections from the IC application.

8

• Load file. The command load <filename> compiles and loads
the named file. The Handy Board must be attached for this to
work. IC looks first in the local directory and then in the IC
library path for files.

Several files may be loaded into IC at once, allowing programs to
be defined in multiple files.

• Unload file. The command unload < filename > unloads the
named file, and re-downloads remaining files.

• List files, functions, or globals. The command list files

displays the names of all files presently loaded into IC. The com-
mand list functions displays the names of presently defined C
functions. The command list globals displays the names of all
currently defined global variables.

• Kill all processes. The command kill all kills all currently
running processes.

• Print process status. The command ps prints the status of
currently running processes.

• Help. The command help displays a help screen of IC commands.

• Quit. The command quit exits IC. In the MS-DOS version,
ctrl-C can also be used.

4.1.2 Line Editing

IC has a built-in line editor and command history, allowing editing and
re-use of previously typed statements and commands. The mnemonics
for these functions are based on standard Emacs control key assign-
ments.

To scan forward and backward in the command history, type ctrl-P
or ↑ for backward, and ctrl-N or ↓ for forward.

Figure 2 shows the keystroke mappings understood by IC.
IC does parenthesis-balance-highlighting as expressions are typed.

9

Keystroke Function
ctrl-A beginning-of-line
ctrl-B backward-char
← backward-char
ctrl-D delete-char
ctrl-E end-of-line
ctrl-F forward-char
→ forward-char
ctrl-K kill-line

Figure 2. IC Command-Line Keystroke Mappings

4.1.3 The Main Function

After functions have been downloaded to the Handy Board, they can be
invoked from the IC prompt. If one of the functions is named main(),
it will automatically be run when the Handy Board is reset.

To reset the Handy Board without running the main() function (for
instance, when hooking the board back to the computer), hold down
the Start button when turning on the Handy Board. The board will
reset without running main().

4.2 A Quick C Tutorial

Most C programs consist of function definitions and data structures.
Here is a simple C program that defines a single function, called main.

void main()
{

printf("Hello, world!\n");
}

All functions must have a return value; that is, the value that they
return when they finish execution. main has a return value type of
void, which is the “null” type. Other types include integers (int) and
floating point numbers (float). This function declaration information
must precede each function definition.

10

Immediately following the function declaration is the function’s name
(in this case, main). Next, in parentheses, are any arguments (or inputs)
to the function. main has none, but a empty set of parentheses is still
required.

After the function arguments is an open curly-brace “{”. This signi-
fies the start of the actual function code. Curly-braces signify program
blocks, or chunks of code.

Next comes a series of C statements. Statements demand that some
action be taken. Our demonstration program has a single statement, a
printf (formatted print). This will print the message “Hello, world!”
to the LCD display. The \n indicates end-of-line.

The printf statement ends with a semicolon (“;”). All C statements
must be ended by a semicolon. Beginning C programmers commonly
make the error of omitting the semicolon that is required at the end of
each statement.

The main function is ended by the close curly-brace “}”.

Let’s look at an another example to learn some more features of
C. The following code defines the function square, which returns the
mathematical square of a number.

int square(int n)
{

return n * n;
}

The function is declared as type int, which means that it will return
an integer value. Next comes the function name square, followed by
its argument list in parenthesis. square has one argument, n, which
is an integer. Notice how declaring the type of the argument is done
similarly to declaring the type of the function.

When a function has arguments declared, those argument variables
are valid within the “scope” of the function (i.e., they only have mean-
ing within the function’s own code). Other functions may use the same
variable names independently.

The code for square is contained within the set of curly braces. In
fact, it consists of a single statement: the return statement. The return
statement exits the function and returns the value of the C expression
that follows it (in this case “n * n”).

11

Expressions are evaluated according set of precendence rules depend-
ing on the various operations within the expression. In this case, there
is only one operation (multiplication), signified by the “*”, so prece-
dence is not an issue.

Let’s look at an example of a function that performs a function call
to the square program.

float hypotenuse(int a, int b)
{

float h;

h = sqrt((float)(square(a) + square(b)));

return h;
}

This code demonstrates several more features of C. First, notice
that the floating point variable h is defined at the beginning of the
hypotenuse function. In general, whenever a new program block (in-
dicated by a set of curly braces) is begun, new local variables may be
defined.

The value of h is set to the result of a call to the sqrt function. It
turns out that sqrt is a built-in function that takes a floating point
number as its argument.

We want to use the square function we defined earlier, which returns
its result as an integer. But the sqrt function requires a floating point
argument. We get around this type incompatibility by coercing the
integer sum (square(a) + square(b)) into a float by preceding it with
the desired type, in parentheses. Thus, the integer sum is made into a
floating point number and passed along to sqrt.

The hypotenuse function finishes by returning the value of h.

This concludes the brief C tutorial.

4.3 Data Types, Operations, and Expressions

Variables and constants are the basic data objects in a C program.
Declarations list the variables to be used, state what type they are,
and may set their initial value. Operators specify what is to be done
to them. Expressions combine variables and constants to create new
values.

12

4.3.1 Variable Names

Variable names are case-sensitive. The underscore character is allowed
and is often used to enhance the readability of long variable names. C
keywords like if, while, etc. may not be used as variable names.

Global variables and functions may not have the same name. In
addition, local variables named the same as functions prevent the use
of that function within the scope of the local variable.

4.3.2 Data Types

IC supports the following data types:

16-bit Integers 16-bit integers are signified by the type indicator
int. They are signed integers, and may be valued from −32,768 to
+32,767 decimal.

32-bit Integers 32-bit integers are signified by the type indicator
long. They are signed integers, and may be valued from−2,147,483,648
to +2,147,483,647 decimal.

32-bit Floating Point Numbers Floating point numbers are sig-
nified by the type indicator float. They have approximately seven
decimal digits of precision and are valued from about 10−38 to 1038.

8-bit Characters Characters are an 8-bit number signified by the
type indicator char. A character’s value typically represents a printable
symbol using the standard ASCII character code.

Arrays of characters (character strings) are supported, but individual
characters are not.

4.3.3 Local and Global Variables

If a variable is declared within a function, or as an argument to a
function, its binding is local, meaning that the variable has existence
only that function definition.

13

If a variable is declared outside of a function, it is a global variable.
It is defined for all functions, including functions that are defined in
files other than the one in which the global variable was declared.

Variable Initialization Local and global variables can be initialized
when they are declared. If no initialization value is given, the variable
is initialized to zero.

int foo()
{
int x; /* create local variable x

with initial value 0 */
int y= 7; /* create local variable y

with initial value 7 */
...

}

float z=3.0; /* create global variable z
with initial value 3.0 */

Local variables are initialized whenever the function containing them
runs.

Global variables are initialized whenever a reset condition occurs.
Reset conditions occur when:

1. New code is downloaded;

2. The main() procedure is run;

3. System hardware reset occurs.

Persistent Global Variables A special uninitialized form of global
variable, called the “persistent” type, has been implemented for IC. A
persistent global is not initialized upon the conditions listed for normal
global variables.

To make a persistent global variable, prefix the type specifier with
the key word persistent. For example, the statement

persistent int i;

14

creates a global integer called i. The initial value for a persistent
variable is arbitrary; it depends on the contents of RAM that were
assigned to it. Initial values for persistent variables cannot be specified
in their declaration statement.

Persistent variables keep their state when the Handy Board is turned
off and on, when main is run, and when system reset occurs. Persis-
tent variables, in general, will lose their state when a new program is
downloaded. However, it is possible to prevent this from occurring. If
persistent variables are declared at the beginning of the code, before
any function or non-persistent globals, they will be re-assigned to the
same location in memory when the code is re-compiled, and thus their
values will be preserved over multiple downloads.

If the program is divided into multiple files and it is desired to pre-
serve the values of persistent variables, then all of the persistent vari-
ables should be declared in one particular file and that file should be
placed first in the load ordering of the files.

Persistent variables were created with two applications in mind:

• Calibration and configuration values that do not need to be re-
calculated on every reset condition.

• Robot learning algorithms that might occur over a period when
the robot is turned on and off.

4.3.4 Constants

Integers Integers may be defined in decimal integer format (e.g., 4053
or -1), hexadecimal format using the “0x” prefix (e.g., 0x1fff), and
a non-standard but useful binary format using the “0b” prefix (e.g.,
0b1001001). Octal constants using the zero prefix are not supported.

Long Integers Long integer constants are created by appending the
suffix “l” or “L” (upper- or lower-case alphabetic L) to a decimal inte-
ger. For example, 0L is the long zero. Either the upper or lower-case
“L” may be used, but upper-case is the convention for readability.

15

Floating Point Numbers Floating point numbers may use expo-
nential notation (e.g., “10e3” or “10E3”) or must contain the decimal
period. For example, the floating point zero can be given as “0.”,
“0.0”, or “0E1”, but not as just “0”.

Characters and Character Strings Quoted characters return their
ASCII value (e.g., ’x’).

Character strings are defined with quotation marks, e.g., "This is a

character string.".

4.3.5 Operators

Each of the data types has its own set of operators that determine
which operations may be performed on them.

Integers The following operations are supported on integers:

• Arithmetic. addition +, subtraction -, multiplication *, division
/.

• Comparison. greater-than >, less-than <, equality ==, greater-
than-equal >=, less-than-equal <=.

• Bitwise Arithmetic. bitwise-OR |, bitwise-AND &, bitwise-
exclusive-OR ^, bitwise-NOT ~.

• Boolean Arithmetic. logical-OR ||, logical-AND &&, logical-
NOT !.

When a C statement uses a boolean value (for example, if), it
takes the integer zero as meaning false, and any integer other than
zero as meaning true. The boolean operators return zero for false
and one for true.

Boolean operators && and || stop executing as soon as the truth of
the final expression is determined. For example, in the expression
a && b, if a is false, then b does not need to be evaluated because
the result must be false. The && operator “knows this” and does
not evaluate b.

16

Long Integers A subset of the operations implemented for integers
are implemented for long integers: arithmetic addition +, subtraction
-, and multiplication *, and the integer comparison operations. Bitwise
and boolean operations and division are not supported.

Floating Point Numbers IC uses a package of public-domain float-
ing point routines distributed by Motorola. This package includes arith-
metic, trigonometric, and logarithmic functions.

The following operations are supported on floating point numbers:

• Arithmetic. addition +, subtraction -, multiplication *, division
/.

• Comparison. greater-than >, less-than <, equality ==, greater-
than-equal >=, less-than-equal <=.

• Built-in Math Functions. A set of trigonometric, logarithmic,
and exponential functions is supported, as discussed in Section 4.9
of this document.

Characters Characters are only allowed in character arrays. When a
cell of the array is referenced, it is automatically coerced into a integer
representation for manipulation by the integer operations. When a
value is stored into a character array, it is coerced from a standard
16-bit integer into an 8-bit character (by truncating the upper eight
bits).

4.3.6 Assignment Operators and Expressions

The basic assignment operator is =. The following statement adds 2 to
the value of a.

a = a + 2;

The abbreviated form

a += 2;

could also be used to perform the same operation.

All of the following binary operators can be used in this fashion:

+ - * / % << >> & ^ |

17

4.3.7 Increment and Decrement Operators

The increment operator “++” increments the named variable. For ex-
ample, the statement “a++” is equivalent to “a= a+1” or “a+= 1”.

A statement that uses an increment operator has a value. For exam-
ple, the statement

a= 3;
printf("a=%d a+1=%d\n", a, ++a);

will display the text “a=3 a+1=4.”
If the increment operator comes after the named variable, then the

value of the statement is calculated after the increment occurs. So the
statement

a= 3;
printf("a=%d a+1=%d\n", a, a++);

would display “a=3 a+1=3” but would finish with a set to 4.

The decrement operator “--” is used in the same fashion as the
increment operator.

4.3.8 Precedence and Order of Evaluation

The following table summarizes the rules for precedence and associa-
tivity for the C operators. Operators listed earlier in the table have
higher precedence; operators on the same line of the table have equal
precedence.

18

Operator Associativity

() [] left to right
! ~ ++ -- - (type) right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| right to left
= += -= etc. right to left
, left to right

4.4 Control Flow

IC supports most of the standard C control structures. One notable
exception is the case and switch statement, which is not supported.

4.4.1 Statements and Blocks

A single C statement is ended by a semicolon. A series of statements
may be grouped together into a block using curly braces. Inside a block,
local variables may be defined.

There is never a semicolon after a right brace that ends a block.

4.4.2 If-Else

The if else statement is used to make decisions. The syntax is:

if (expression)

statement-1
else

statement-2

expression is evaluated; if it is not equal to zero (e.g., logic true),
then statement-1 is executed.

19

The else clause is optional. If the if part of the statement did not
execute, and the else is present, then statement-2 executes.

4.4.3 While

The syntax of a while loop is the following:

while (expression)

statement

while begins by evaluating expression. If it is false, then statement is
skipped. If it is true, then statement is evaluated. Then the expression
is evaluated again, and the same check is performed. The loop exits
when expression becomes zero.

One can easily create an infinite loop in C using the while statement:

while (1)

statement

4.4.4 For

The syntax of a for loop is the following:

for (expr-1 ; expr-2 ; expr-3)

statement

This is equivalent to the following construct using while:

expr-1 ;

while (expr-2) {

statement
expr-3 ;

}

Typically, expr-1 is an assignment, expr-2 is a relational expression,
and expr-3 is an increment or decrement of some manner. For example,
the following code counts from 0 to 99, printing each number along the
way:

int i;
for (i= 0; i < 100; i++)
printf("%d\n", i);

20

4.4.5 Break

Use of the break provides an early exit from a while or a for loop.

4.5 LCD Screen Printing

IC has a version of the C function printf for formatted printing to
the LCD screen.

The syntax of printf is the following:

printf(format-string , [arg-1] , . . . , [arg-N])

This is best illustrated by some examples.

4.5.1 Printing Examples

Example 1: Printing a message. The following statement prints a
text string to the screen.

printf("Hello, world!\n");

In this example, the format string is simply printed to the screen.
The character “\n” at the end of the string signifies end-of-line.

When an end-of-line character is printed, the LCD screen will be cleared
when a subsequent character is printed. Thus, most printf statements
are terminated by a \n.

Example 2: Printing a number. The following statement prints
the value of the integer variable x with a brief message.

printf("Value is %d\n", x);

The special form %d is used to format the printing of an integer in
decimal format.

Example 3: Printing a number in binary. The following statement
prints the value of the integer variable x as a binary number.

printf("Value is %b\n", x);

21

The special form %b is used to format the printing of an integer in
binary format. Only the low byte of the number is printed.

Example 4: Printing a floating point number. The following
statement prints the value of the floating point variable n as a floating
point number.

printf("Value is %f\n", n);

The special form %f is used to format the printing of floating point
number.

Example 5: Printing two numbers in hexadecimal format.

printf("A=%x B=%x\n", a, b);

The form %x formats an integer to print in hexadecimal.

4.5.2 Formatting Command Summary

Format Command Data Type Description

%d int decimal number
%x int hexadecimal number
%b int low byte as binary number
%c int low byte as ASCII character
%f float floating point number
%s char array char array (string)

4.5.3 Special Notes

• The final character position of the LCD screen is used as a sys-
tem “heartbeat.” This character continuously blinks back and
forth when the board is operating properly. If the character stops
blinking, the Handy Board has crashed.

• Characters that would be printed beyond the final character po-
sition are truncated.

• The printf() command treats the two-line LCD screen as a single
longer line.

• Printing of long integers is not presently supported.

22

4.6 Arrays and Pointers

IC supports one-dimensional arrays of characters, integers, long in-
tegers, and floating-point numbers. Pointers to data items and arrays
are supported.

4.6.1 Declaring and Initializing Arrays

Arrays are declared using the square brackets. The following statement
declares an array of ten integers:

int foo[10];

In this array, elements are numbered from 0 to 9. Elements are accessed
by enclosing the index number within square brackets: foo[4] denotes
the fifth element of the array foo (since counting begins at zero).

Arrays are initialized by default to contain all zero values; arrays
may also be initialized at declaration by specifying the array elements,
separated by commas, within curly braces. Using this syntax, the size of
the array would not specified within the square braces; it is determined
by the number of elements given in the declaration. For example,

int foo[]= {0, 4, 5, -8, 17, 301};

creates an array of six integers, with foo[0] equalling 0, foo[1] equalling
4, etc.

Character arrays are typically text strings. There is a special syntax
for initializing arrays of characters. The character values of the array
are enclosed in quotation marks:

char string[]= "Hello there";

This form creates a character array called string with the ASCII values
of the specified characters. In addition, the character array is termi-
nated by a zero. Because of this zero-termination, the character array
can be treated as a string for purposes of printing (for example). Char-
acter arrays can be initialized using the curly braces syntax, but they
will not be automatically null-terminated in that case. In general, print-
ing of character arrays that are not null-terminated will cause problems.

23

4.6.2 Passing Arrays as Arguments

When an array is passed to a function as an argument, the array’s
pointer is actually passed, rather than the elements of the array. If
the function modifies the array values, the array will be modified, since
there is only one copy of the array in memory.

In normal C, there are two ways of declaring an array argument: as
an array or as a pointer. IC only allows declaring array arguments as
arrays.

As an example, the following function takes an index and an array,
and returns the array element specified by the index:

int retrieve_element(int index, int array[])
{

return array[index];
}

Notice the use of the square brackets to declare the argument array as
an array of integers.

When passing an array variable to a function, use of the square brack-
ets is not needed:

{
int array[10];

retrieve_element(3, array);
}

4.6.3 Declaring Pointer Variables

Pointers can be passed to functions which then go on to modify the
value of the variable being pointed to. This is useful because the same
function can be called to modify different variables, just by giving it a
different pointer.

Pointers are declared with the use of the asterisk (*). In the example

int *foo;
float *bar;

foo is declared as a pointer to an integer, and bar is declared as a
pointer to a floating point number.

24

To make a pointer variable point at some other variable, the amper-
sand operator is used. The ampersand operator returns the address of
a variable’s value; that is, the place in memory where the variable’s
value is stored. Thus:

int *foo;
int x= 5;

foo= &x;

makes the pointer foo “point at” the value of x (which happens to be
5).

This pointer can now be used to retrieve the value of x using the
asterisk operator. This process is called de-referencing. The pointer, or
reference to a value, is used to fetch the value being pointed at. Thus:

int y;

y= *foo;

sets y equal to the value pointed at by foo. In the previous example,
foo was set to point at x, which had the value 5. Thus, the result of
dereferencing foo yields 5, and y will be set to 5.

4.6.4 Passing Pointers as Arguments

Pointers can be passed to functions; then, functions can change the val-
ues of the variables that are pointed at. This is termed call-by-reference;
the reference, or pointer, to the variable is given to the function that
is being called. This is in contrast to call-by-value, the standard way
that functions are called, in which the value of a variable is given the
to function being called.

The following example defines an average sensor function which
takes a port number and a pointer to an integer variable. The function
will average the sensor and store the result in the variable pointed at
by result.

In the code, the function argument is specified as a pointer using the
asterisk:

25

void average_sensor(int port, int *result)
{
int sum= 0;
int i;

for (i= 0; i< 10; i++) sum += analog(port);

*result= sum/10;
}

Notice that the function itself is declared as a void. It does not need
to return anything, because it instead stores its answer in the pointer
variable that is passed to it.

The pointer variable is used in the last line of the function. In this
statement, the answer sum/10 is stored at the location pointed at by
result. Notice that the asterisk is used to get the location pointed by
result.

4.7 Library Functions

Library files provide standard C functions for interfacing with hard-
ware on the Handy Board. These functions are written either in C or as
assembly language drivers. Library files provide functions to do things
like control motors, make tones, and input sensors values.

IC automatically loads the library file every time it is invoked. The
name of the default library file is is contained as a resource within
the IC application. On command-line versions of IC, this resource
may be modified by invoking “ic -config”. On the Macintosh, the IC
application has a STR resource that defines the name of the library file.

The Handy Board’s root library file is named lib hb.lis.

4.7.1 Output Control

DC Motors DC motor ports are numbered from 0 to 3.
Motors may be set in a “forward” direction (corresponding to the

green motor LED being lit) and a “backward” direction (corresponding
to the motor red LED being lit).

The functions fd(int m) and bk(int m) turn motor m on or off, re-
spectively, at full power. The function off(int m) turns motor m off.

26

The power level of motors may also be controlled. This is done
in software by a motor on and off rapidly (a technique called pulse-
width modulation. The motor(int m, int p) function allows control of
a motor’s power level. Powers range from 100 (full on in the forward
direction) to -100 (full on in the backward direction). The system
software actually only controls motors to seven degrees of power, but
argument bounds of −100 and +100 are used.

void fd(int m)

Turns motor m on in the forward direction. Example: fd(3);

void bk(int m)

Turns motor m on in the backward direction. Example: bk(1);

void off(int m)

Turns off motor m. Example: off(1);

void alloff()

void ao()

Turns off all motors. ao is a short form for alloff.

void motor(int m, int p)

Turns on motor m at power level p. Power levels range from 100 for
full on forward to -100 for full on backward.

Servo Motor A library routine allows control of a single servo motor,
using digital input 9, which is actually the 6811’s Port A bit 7 (PA7),
a bidirectional control pin. Loading the servo library files causes this
pin to be employed as a digital output suitable for driving the control
wire of the servo motor.

The servo motor has a three-wire connection: power, ground, and
control. These wires are often color-coded red, black, and white, re-
spectively. The control wire is connected to PA7; the ground wire, to
board ground; the power wire, to a +5 volt source. The Handy Board’s
regulated +5v supply may be used, though this is not an ideal solution

27

because it will tax the regulator. A better solution is a separate bat-
tery with a common ground to the Handy Board or a tap at the +6v
position of the Handy Board’s battery back.

The position of the servo motor shaft is controlled by a rectangular
waveform that is generated on the PA7 pin. The duration of the positive
pulse of the waveform determines the position of the shaft. This pulse
repeats every 20 milliseconds.

The length of the pulse is set by the library function servo, or by
functions calibrated to set the position of the servo by angle.

void servo on()

Enables PA7 servo output waveform.

void servo on()

Disables PA7 servo output waveform.

int servo(int period)

Sets length of servo control pulse. Value is the time in half-microseconds
of the positive portion of a rectangular wave that is generated on the
PA7 pin for use in controlling a servo motor. Minimum allowable value
is 1400 (i.e., 700 µsec); maximum is 4860.

Function return value is actual period set by driver software.

int servo rad(float angle)

Sets servo angle in radians.

int servo deg(float angle)

Sets servo angle in degrees.
In order to use the servo motor functions, the files servo.icb and

servo.c must be loaded.

4.7.2 Sensor Input

int digital(int p)

Returns the value of the sensor in sensor port p, as a true/false value
(1 for true and 0 for false).

28

Sensors are expected to be active low, meaning that they are valued
at zero volts in the active, or true, state. Thus the library function
returns the inverse of the actual reading from the digital hardware: if
the reading is zero volts or logic zero, the digital() function will return
true.

If the digital() function is applied to port that is implemented in
hardware as an analog input, the result is true if the analog measure-
ment is less than 127, and false if the reading is greater than or equal
to 127.

Ports are numbered as marked on the Handy Board.

int analog(int p)

Returns value of sensor port numbered p. Result is integer between
0 and 255.

If the analog() function is applied to a port that is implemented
digitally in hardware, then the value 0 is returned if the digital reading
is 0, and the value 255 is returned if the digital reading is 1.

Ports are numbered as marked on the Handy Board.

User Buttons and Knob The Handy Board has two buttons and
a knob whose value can be read by user programs.

int stop button()

Returns value of button labelled Stop: 1 if pressed and 0 if released.
Example:

/* wait until stop button pressed */
while (!stop_button()) {}

int start button()

Returns value of button labelled Start.

void stop press()

Waits for Stop button to be pressed, then released. Then issues a
short beep and returns.

The code for stop press is as follows:

29

while (!stop_button());
while (stop_button());
beep();

void start press()

Like stop press, but for the Start button.

int knob()

Returns the position of a knob as a value from 0 to 255.

Infrared Subsystem The Handy Board provides an on-board in-
frared receiver (the Sharp IS1U60), for infrared input, and a 40 kHz
modulation and power drive circuit, for infrared output. The output
circuit requires an external infrared LED.

As of this writing, only the infrared receive function is officially sup-
ported. On the Handy Board web site, contributed software to extend
the infrared functionality is available.

To use the infrared reception function, the file sony-ir.icb must
be loaded into Interactive C. This file may be added to the Handy
Board default library file, lib hb.lis. Please make sure that the file
r22 ir.lis is not present in the lib hb.lis file.

The sony-ir.icb file adds the capability of receiving infrared codes
transmitted by a Sony remote, or a universal remote programmed to
transmit Sony infrared codes.

int sony init(1)

Enables the infrared driver.

int sony init(0)

Disables the infrared driver.

int ir data(int dummy)

Returns the data byte last received by the driver, or zero if no data
has been received since the last call. A value must be provided for the
dummy argument, but its value is ignored.

The infrared sensor is the dark green component in the Handy Board’s
lower right hand corner.

30

4.7.3 Time Commands

System code keeps track of time passage in milliseconds. The time
variables are implemented using the long integer data type. Standard
functions allow use floating point variables when using the timing func-
tions.

void reset system time()

Resets the count of system time to zero milliseconds.

long mseconds()

Returns the count of system time in milliseconds. Time count is reset
by hardware reset (i.e., turning the board off and on) or the function
reset system time(). mseconds() is implemented as a C primitive (not
as a library function).

float seconds()

Returns the count of system time in seconds, as a floating point
number. Resolution is one millisecond.

void sleep(float sec)

Waits for an amount of time equal to or slightly greater than sec

seconds. sec is a floating point number.
Example:

/* wait for 1.5 seconds */
sleep(1.5);

void msleep(long msec)

Waits for an amount of time equal to or greater than msec millisec-
onds. msec is a long integer.

Example:

/* wait for 1.5 seconds */
msleep(1500L);

4.7.4 Tone Functions

Several commands are provided for producing tones on the standard
beeper.

31

void beep()

Produces a tone of 500 Hertz for a period of 0.3 seconds.

void tone(float frequency, float length)

Produces a tone at pitch frequency Hertz for length seconds. Both
frequency and length are floats.

void set beeper pitch(float frequency)

Sets the beeper tone to be frequency Hz. The subsequent function
is then used to turn the beeper on.

void beeper on()

Turns on the beeper at last frequency selected by the former function.

void beeper off()

Turns off the beeper.

4.8 Multi-Tasking

4.8.1 Overview

One of the most powerful features of IC is its multi-tasking facility.
Processes can be created and destroyed dynamically during run-time.

Any C function can be spawned as a separate task. Multiple tasks
running the same code, but with their own local variables, can be cre-
ated.

Processes communicate through global variables: one process can set
a global to some value, and another process can read the value of that
global.

Each time a process runs, it executes for a certain number of ticks,
defined in milliseconds. This value is determined for each process at
the time it is created. The default number of ticks is five; therefore, a
default process will run for 5 milliseconds until its “turn” ends and the
next process is run. All processes are kept track of in a process table;
each time through the table, each process runs once (for an amount of
time equal to its number of ticks).

32

Each process has its own program stack. The stack is used to pass
arguments for function calls, store local variables, and store return
addresses from function calls. The size of this stack is defined at the
time a process is created. The default size of a process stack is 256
bytes.

Processes that make extensive use of recursion or use large local
arrays will probably require a stack size larger than the default. Each
function call requires two stack bytes (for the return address) plus the
number of argument bytes; if the function that is called creates local
variables, then they also use up stack space. In addition, C expressions
create intermediate values that are stored on the stack.

It is up to the programmer to determine if a particular process re-
quires a stack size larger than the default. A process may also be
created with a stack size smaller than the default, in order to save
stack memory space, if it is known that the process will not require the
full default amount.

When a process is created, it is assigned a unique process identifica-
tion number or pid. This number can be used to kill a process.

4.8.2 Creating New Processes

The function to create a new process is start process. start process

takes one mandatory argument—the function call to be started as a
process. There are two optional arguments: the process’s number of
ticks and stack size. (If only one optional argument is given, it is
assumed to be the ticks number, and the default stack size is used.)

start process has the following syntax:

int start process(function-call(. . .) , [TICKS] , [STACK-SIZE]
)

start process returns an integer, which is the process ID assigned to
the new process.

The function call may be any valid call of the function used. The
following code shows the function main creating a process:

void check_sensor(int n)
{
while (1)

33

printf("Sensor %d is %d\n", n, digital(n));
}

void main()
{
start_process(check_sensor(2));

}

Normally when a C functions ends, it exits with a return value or
the “void” value. If a function invoked as a process ends, it “dies,”
letting its return value (if there was one) disappear. (This is okay,
because processes communicate results by storing them in globals, not
by returning them as return values.) Hence in the above example, the
check sensor function is defined as an infinite loop, so as to run forever
(until the board is reset or a kill process is executed).

Creating a process with a non-default number of ticks or a non-
default stack size is simply a matter of using start process with op-
tional arguments; e.g.

start_process(check_sensor(2), 1, 50);

will create a check sensor process that runs for 1 milliseconds per in-
vocation and has a stack size of 50 bytes (for the given definition of
check sensor, a small stack space would be sufficient).

4.8.3 Destroying Processes

The kill process function is used to destroy processes. Processes are
destroyed by passing their process ID number to kill process, accord-
ing to the following syntax:

int kill process(int pid)

kill process returns a value indicating if the operation was successful.
If the return value is 0, then the process was destroyed. If the return
value is 1, then the process was not found.

The following code shows the main process creating a check sensor

process, and then destroying it one second later:

34

void main()
{
int pid;

pid= start_process(check_sensor(2));
sleep(1.0);
kill_process(pid);

}

4.8.4 Process Management Commands

IC has two commands to help with process management. The com-
mands only work when used at the IC command line. They are not C
functions that can be used in code.

kill all

kills all currently running processes.

ps

prints out a list of the process status.
The following information is presented: process ID, status code, pro-

gram counter, stack pointer, stack pointer origin, number of ticks, and
name of function that is currently executing.

4.8.5 Process Management Library Functions

The following functions are implemented in the standard C library.

void hog processor()

Allocates an additional 256 milliseconds of execution to the currently
running process. If this function is called repeatedly, the system will
wedge and only execute the process that is calling hog processor().
Only a system reset will unwedge from this state. Needless to say, this
function should be used with extreme care, and should not be placed
in a loop, unless wedging the machine is the desired outcome.

void defer()

Makes a process swap out immediately after the function is called.
Useful if a process knows that it will not need to do any work until the

35

next time around the scheduler loop. defer() is implemented as a C
built-in function.

4.9 Floating Point Functions

In addition to basic floating point arithmetic (addition, subtraction,
multiplication, and division) and floating point comparisons, a number
of exponential and transcendental functions are built in to IC. These
are implemented with a public domain library of routines provided by
Motorola.

Keep in mind that all floating point operations are quite slow; each
takes one to several milliseconds to complete. If Interactive C’s speed
seems to be poor, extensive use of floating point operations is a likely
cause.

float sin(float angle)

Returns sine of angle. Angle is specified in radians; result is in
radians.

float cos(float angle)

Returns cosine of angle. Angle is specified in radians; result is in
radians.

float tan(float angle)

Returns tangent of angle. Angle is specified in radians; result is in
radians.

float atan(float angle)

Returns arc tangent of angle. Angle is specified in radians; result is
in radians.

float sqrt(float num)

Returns square root of num.

float log10(float num)

Returns logarithm of num to the base 10.

float log(float num)

Returns natural logarithm of num.

36

float exp10(float num)

Returns 10 to the num power.

float exp(float num)

Returns e to the num power.

(float) a ^ (float) b

Returns a to the b power.

4.10 Memory Access Functions

IC has primitives for directly examining and modifying memory con-
tents. These should be used with care as it would be easy to corrupt
memory and crash the system using these functions.

There should be little need to use these functions. Most interaction
with system memory should be done with arrays and/or globals.

int peek(int loc)

Returns the byte located at address loc.

int peekword(int loc)

Returns the 16-bit value located at address loc and loc+1. loc has
the most significant byte, as per the 6811 16-bit addressing standard.

void poke(int loc, int byte)

Stores the 8-bit value byte at memory address loc.

void pokeword(int loc, int word)

Stores the 16-bit value word at memory addresses loc and loc+1.

void bit set(int loc, int mask)

Sets bits that are set in mask at memory address loc.

void bit clear(int loc, int mask)

Clears bits that are set in mask at memory address loc.

37

Error Code Description

1 no stack space for start process()

2 no process slots remaining
3 array reference out of bounds
4 stack overflow error in running process
5 operation with invalid pointer
6 floating point underflow
7 floating point overflow
8 floating point divide-by-zero
9 number too small or large to convert to integer
10 tried to take square root of negative number
11 tangent of 90 degrees attempted
12 log or ln of negative number or zero
15 floating point format error in printf
16 integer divide-by-zero

Figure 3. Interactive C Run-Time Error Codes

4.11 Error Handling

There are two types of errors that can happen when working with
IC: compile-time errors and run-time errors.

Compile-time errors occur during the compilation of the source file.
They are indicative of mistakes in the C source code. Typical compile-
time errors result from incorrect syntax or mis-matching of data types.

Run-time errors occur while a program is running on the board. They
indicate problems with a valid C form when it is running. A simple
example would be a divide-by-zero error. Another example might be
running out of stack space, if a recursive procedure goes too deep in
recursion.

These types of errors are handled differently, as is explained below.

4.11.1 Compile-Time Errors

When compiler errors occur, an error message is printed to the screen.
All compile-time errors must be fixed before a file can be downloaded

38

to the board.

4.11.2 Run-Time Errors

When a run-time error occurs, an error message is displayed on the
LCD screen indicating the error number. If the board is hooked up to
ICwhen the error occurs, a more verbose error message is printed on
the terminal.

Figure 3 shows the run-time error codes.

39

5 Sensors and Motors

This section explains how to interface a variety of devices to the
Handy Board:

• A DC motor.

• A microswitch touch sensor.

• A photocell-based light sensor.

• An infrared reflectance sensor.

First, proper connector wiring technique, applicable to all devices is
explained. Then individual wiring diagrams for each of the devices are
presented.

5.1 Connector Wiring Technique

Connectors are the bane of existence of all electronics. If there is
one weak link in the reliable performance of any electronic system, it
is its connectors. With this in mind, the importance of patiently and
neatly built robot connectors cannot be overemphasized. Particularly
since a robot is a mobile system subjected to various jolts and shocks,
care taken in the construction of the robot’s connectors will always pay
off in the long run.

The Handy Board uses 0.1 inch male header as its connector for both
motors and sensors. These are not the easiest connectors to work with,
but they have a very compact footprint, allowing a large number of
devices to be individually connected to the Handy Board.

The technique presented here has been time-tested to yield reliable
results. There are four basic steps in the process:

1. Stripping and tinning wire ends.

2. Inserting heat shrink tubing on the individual wires.

3. Soldering wire ends to male header connector.

4. Shrinking tubing around the joints.

The remainder of this section explains the technique, showing dia-
grams for building the standard DC motor connector.

40

5.1.1 Wire Type

It is important to use stranded, not solid, wire cable. Each length of
stranded wire consists of a twisted bundle of very thin thread-like wires.
Solid wire, on the other hand, is a single thick wire segment.

The advantage of stranded wire is that it is much more flexible than
solid wire, and also less susceptible to breakage. One thread of a
stranded wire lengths can break without affecting the performance of
the connection, but if a solid wire breaks the connection is lost.

An ideal wire for building sensor and motor cables is 28 gauge ribbon
cable. Ribbon cable is stranded; the 28 gauge is the right weight to
carry the current required to drive motors while still providing excellent
flexibility. Ribbon cable also “zips” easily, so that sets of two or three
wires can easily be made. Finally, rainbow ribbon cable is brightly
colored in a ten-color sequence, making it easy to keep track of which
wire connects where.

5.1.2 Stripping and Tinning Wire Ends

Soldering Iron

Solder

Stripped Wire Ends

The first step is to strip insulation from the wire cable and tin the wire
ends. “Tinning” is the process of infusing the stranded wire end with
solder.

Remove between 1/8 and 1/4 inch of insulation from the end of each
wire. With your fingertips, individually twist the threads of each wire

41

end tightly (follow the existing weave of the stranded wire bundle).
Then, put a dab of solder onto the soldering iron, hold it to the wire
end, and add some solder to the wire end. Draw the iron tip along the
wire end to evenly distribute solder into the wire end.

5.1.3 Installing Heat Shrink Tubing

1/4� Lengths
Heat Shrink Tubing

Sensor Connector

Cut a 1/4 inch length of heat shrink tubing for each connection, and
feed a tubing segment onto each wire.

In preparation for soldering, align the wires with the male header
pins as indicated in the diagram. If necessary, zip back the individual
wires so that the tubing does not get in the way of the connection. (The
use of a “helping hands” tool is helpful here—a tool with two alligator
clips on flexible arms.)

42

5.1.4 Soldering to Male Header

Soldering Iron

Solder

Line up the wire ends with the male header pins and solder. Make sure
that the heat shrink tubing is far enough away from the joint that the
tubing does not shrink prematurely.

43

5.1.5 Shrinking the Tubing

Gently apply heat from heat gun to shrink the tubing over the joints.

Slide the heat shrink tubing over the joints, and apply heat from a heat
gun. If a heat gun is not available, the open flame from a match or
butane lighter may be used. Hold the joint so the heat shrink tubing
is at least 1 inch above the tip of the flame.

That’s it! The connector end that plugs into the Handy Board is
now complete.

44

5.2 Motors

DC Motor
The DC motor connector uses two male pins on 0.2 inch spacing; i.e.,

the outer two of three pins. The center pin can be clipped away from
the assembly.

Motors used with the Handy Board should be rated for 9 volt oper-
ation with a maximum current draw of about 600 mA.

5.3 Sensors

5.3.1 Basic Sensor Connector

sensor signal

+5v supply

ground

The Handy Board uses a three-conductor connector for plugging in
sensor devices. As indicated in the diagram, the connector is formed
from 4–prong male header pins, with one pin clipped away to polarize
the connector (i.e., prevent it from being plugged in improperly).

The pin labelled “+5v supply” may be used to power an active sensor
(e.g., the transmitter LED of a reflective optosensor). The pin labelled
“sensor signal” is the input to the Handy Board circuitry; this must be

45

in the range of 0 to 5 volts. The pin labelled “ground” is the system
ground.

The Handy Board includes a 47K pullup resistor that is wired be-
tween the sensor signal line and the +5v supply on all of its inputs, both
analog and digital. This simplifies sensor design in several regards:

• All sensors have a default level of +5v when nothing is plugged
in.

• For switch-type or resistive-type sensors, the sensor device just
needs to be wired from the sensor signal pin to ground. Thus
many sensor devices reduce to a simple two-wire connection.

5.3.2 Switch Sensor

signal

+5v

ground

Microswitch–style�
sensor

Wire to switch terminals labelled
C (common) and NO (normally open)

CNONC

The above diagram shows how to wire a microswitch-style sensor to
the Handy Board. As indicated in the diagram, the switch terminals
labelled “C” (common) and “NO” (normally open) should be connected
to the sensor plug.

46

This wiring creates a switch sensor that is normally open, or dis-
connected, except when the switch is pressed. The normally open case
means that the sensor line is pulled high by the 47K resistor on the
Handy Board. The standard software for reading the state of a switch
interprets this logic high value as “not pressed” or false. When the
switch is closed, the sensor line is connected to ground, and the soft-
ware reads a logic low value, which is interpreted as “pressed” or true.

A pushbutton-style switch, or any simple switch, may be wired in
the same fashion.

5.3.3 Photocell Sensor

CdS photocell�
(or other resistive�

sensor)

signal

+5v

ground

The photocell sensor wiring also makes use of the on-board 47K resistor
that connects the sensor signal line to +5v. When wired from the signal
line to ground, the photocell becomes part of a voltage divider circuit
as indicated in the schematic to the right. The output voltage Vout in
the circuit is the sensor signal line.

Vout varies as to the ratio between the two resistances (the fixed
47K resistance and the varying Rphoto resistance. When the photocell
resistance is small (as when brightly illuminated), the Vout signal is
close to zero volts; when the photocell resistance is large (as in the
dark), Vout is close to +5 volts, with a continuously varying range
between the extremes.

This means that the sensor will report small values when brightly
illuminated and large values in the dark.

47

5.3.4 Infrared Reflectance Sensor

signal

+5v

ground

330‰ resistor

Quality Technologies QRD1114
Infrared Reflective Optosensor

The infrared reflectance sensor consists of two discrete devices: an in-
frared LED emitter and an infrared phototransistor receiver. The re-
ceiver and emitter are matched, so that the peak sensitivity of the
receiver is at the same wavelength of the emissions of the emitter. In
the example Quality Technologies QRD1114 sensor diagram, the
detector LED is on the left and the emitter is on the right.

The wiring for the reflectance sensor is straightforward. The emitter
LED is powered by the Handy Board’s +5v supply, with a 330 ohm
resistor in series to limit the current through the LED to an appropriate
value. The detector transistor is pulled high with the Handy Board’s
internal 47K resistor.

When increasing amounts of light from the emitter LED is reflected
back into the receiver, increasing amounts of current flow through the
receiver transistor and hence the internal 47K resistor. The voltage
drop across this resistor results in a lower voltage presented to the
Handy Board’s analog input.

Different varieties of phototransistor may perform better with a smaller

48

resistor value than the on-board 47K resistor. If the sensitivity of the
device is poor, try connecting the signal line to the +5v supply through
10K, 4.7K, or 2.2K resistors to determine the best response. For the
QRD1114 device, however, the default 47K value is ideal.

Special note for working with infrared light: Infrared light
is indeed invisible (unless you are a bumblebee), making
it hard to ascertain that a given infrared emitter LED is
indeed working. Here are two methods that may be used to
visualize its presence: (1) Look at the IR LED through a
video-camera that has a viewfinder CRT screen. The CCD
lens of a standard video-camera is sensitive to infrared light,
and it will be visible on its display. (2) Purchase an infrared
detector card (Radio Shack 276–099 or MCM 72–003 and
72–005), which contains a phosphorescent panel that glows
visibly under infrared illumination.

49

QRB1114

E
S

signal

+5v

ground

330‰ resistor

Quality Technologies QRB1114
Infrared Reflective Optosensor

The Quality Technologies QRB1114 sensor, above, is another
good reflective optosensor. In the diagram, the left-hand component,
marked “E” on the device package, is the infrared emitter, and the
right-hand component, marked “S,” is the infrared sensor.

50

6 Battery Maintenance

The Handy Board has a 9.6v, 600 mA battery pack consisting of
eight AA-cell nickel-cadmium rechargeable batteries.

6.1 Battery Charging

There are three ways to charge the internal battery:

1. Adapter plugged directly into the HB. Just plug the adapter into
the power jack on the HB, and the yellow “CHARGE” LED on
the HB will light. This is a trickle-charge mode, which means that
(1) the Handy Board will fully charge in about 12 to 14 hours,
and (2) the HB may be left in this mode indefinitely.

2. Adapter plugged into the Serial Interface/Battery Charger board;
HB connected via telephone wire; “NORMAL CHARGE” mode
selected. The yellow “CHARGE” LED on the interface board
will light. This is a trickle-charge mode, which means that (1)
the Handy Board will fully charge in about 12 to 14 hours, and
(2) the HB may be left in this mode indefinitely.

3. Adapter plugged into the Serial Interface/Battery Charger board;
HB connected via telephone wire; “ZAP CHARGE” mode se-
lected. The yellow “CHARGE” LED on the interface board will
not light. The ZAP CHARGE will fully charge the HB’s battery
in just 3 hours, after which time the battery will become warm and
it should be removed from charge or placed into either of the two
trickle-charge modes.

When using one of the trickle-charge modes, the Handy Board itself
should be turned off so that the charge current goes toward charging
the battery and not simply running the board. In Zap charge, there is
enough charge current to operate the board and charge the batteries at
the same time (assuming that the board is not driving motors or other
external loads).

51

6.2 Adapter Specifications

The specifications of the Handy Board’s DC adapter are as follows:

• 12 volt, 500 mA DC output

• 2.1 mm inside, 5.5 mm outside diameter barrel-type plug

• center conductor negative

Most “universal” type adapters will work properly at one of their
settings. Look for the yellow charge LED to light up indicating proper
charge (make sure the Charge Rate switch is set to “Normal” mode).

Please be careful not to get an adapter that is overpowered. Problems
have been reported using adapters that are rated for 1 to 2 amps.

Also, do not use an adapter that is underpowered or undervoltage.
A 9 volt adapter will appear to work—the charge LED will light—but
it won’t be able to charge the battery for more than a few minutes’
worth of power.

52

7 Part Listing

Circuit: hbsch12
Date: Thursday, November 30, 1995 - 9:58 AM

Device Type Num. Value References Price Ea. Catalog No. Supplier

8 cell AA nicad pack 1 BAT1 19.28 P227-L024-ND Digikey
2% polyprop cap 1 0.0068 uF C6 0.49 P3682-ND Digikey
monolithic cer cap 4 0.1 uF C5 C7 C9 C14 0.21 P4917-ND Digikey
mini radial ’lytic 4 10uF C10 C11 C12 C13 0.08 P6248-ND Digikey
monolithic cer cap 2 22 pF C1 C2 0.18 P4841-ND Digikey
telephone cable 1 4-wire CAB1 1.60 17MP007 Mouser
tantalum 2 4.7 uF C4 C8 0.29 P2011-ND Digikey
mini axial ’lytic 2 47 uF C15 C16 0.29 P5972-ND Digikey
mini axial ’lytic 1 470 uF C3 0.65 P6305-ND Digikey
power diode 1 1N4001 D3 0.15 333-1N4001 Mouser
signal diode 1 1N914 D1 0.15 333-1N914 Mouser
bridge rectifier 1 DB101 D2 0.62 DB101-ND Digikey
AC or DC adapter 1 12v, 500mA DC1 3.95 100087 Jameco
CPU board enclosure 1 ENCL1 5.12 537-402-RD Mouser
interface enclosure 1 ENCL2 1.94 400-5043 Mouser
PolySwitch fuse 1 F1 1.32 RUE250-ND Digikey
Coax Power Jack 2 2.1mm ID J11 J12 0.34 CP-002A-ND Digikey
RJ11 top entry 1 6/4 J5 1.08 154-UL6642 Mouser
RJ12 side entry 1 6/6 J10 1.28 154-UL6661 Mouser
10-pin female header 1 J3
12-pin female header 1 J4
14-pin female header 1 J14
14-pin male header 1 J15
3 pcs 9-pin female hdr 1 J2 [FEMALE HEADER IS CUT
3 pcs. 7-pin female hdr 1 J1 FROM 36-PIN HEADER
3-pin female header 1 J7 LISTED AT END OF PAGE]
4-pin header 2 J8 J13
4x2 header, female 1 J6
DB-25 female connector 1 J9 1.54 152-3425 Mouser
iron core inductor 1 1 uH L1 0.84 M7010-ND Digikey
high-eff red LED 7 HLMP1700 LED1 LED2 LED3 LED4 0.282 HLMP-1700QT-ND Digikey

LED9 LED11 LED13
hi-eff yellow LED 2 HLMP1719 LED14 LED15 0.282 HLMP-1719QT-ND Digikey
hi-eff green LED 6 HLMP1790 LED5 LED6 LED7 LED8 0.282 HLMP-1790QT-ND Digikey

LED10 LED12
NPN darlington 1 ZTX614 Q1 0.59 ZTX614-ND Digikey

2 10K R3 R7 0.0235 10KEBK-ND Digikey
3 1K R2 R5 R10 0.0235 1KEBK-ND Digikey
1 2.2K R9 0.0235 2.2KEBK-ND Digikey
1 2.2M R1 0.0235 2.2MEBK-ND Digikey

1% precision res 1 3.83K R4 0.11 3.83KXBK-ND Digikey
trimpot 1 20K VR1 0.72 569-91AR-20K Mouser

3 47K R6 R8 R15 0.0235 47KEBK-ND Digikey
1 47, 5W R11 0.41 47W-5-ND Digikey
2 47 R12 R13 0.0235 47EBK-ND Digikey
2 47, 1/2W R14 0.06 47H-ND Digikey
1 1Kx4 RP4 0.21 592-8A-1K Mouser

RPACK6 1 1Kx5 RP2 0.16 592-6S-1K Mouser
RPACK9 2 47Kx9 RP1 RP3 0.27 592-10S-47K Mouser
14-pin DIP socket 2 DIP4 DIP5 0.57 ED3114-ND Digikey
16-pin DIP socket 4 DIP6 DIP7 DIP8 DIP9 0.65 ED3116-ND Digikey
20-pin DIP socket 2 DIP1 DIP2 0.81 ED3120-ND Digikey
28-pin DIP socket 1 DIP3 1.13 ED3728-ND Digikey
52-pin PLCC socket 1 PLCC 2.03 A2123-ND Digikey
piezo beeper 1 SPKR1 1.90 P9957-ND Digikey
SPDT slide switch 1 SW1 4.47 CKN5006-ND Digikey
SPDT switch 1 SW4 1.10 SW101-ND Digikey
pushbutton switch 2 SW2 SW3 0.20 P8006S-ND Digikey
32K static CMOS RAM 1 62256-100LP U2 3.95 42833 Jameco
hex inverters 1 74HC04 U9 0.29 570-CD74HC04E Mouser
quad Schmitt NANDs 1 74HC132 U7 0.46 511-M74HC132 Mouser
3-to-8 decoder 1 74HC138 U6 0.46 570-CD74HC138E Mouser
tristate bus driver 1 74HC244 U5 0.70 570-CD74HC244E Mouser

53

transparent octal latch 1 74HC373 U3 0.68 570-CD74HC373E Mouser
octal latch 1 74HC374 U8 0.61 570-CD74HC374E Mouser
voltage monitor 1 DS1233-10 U12 1.25 manufacturer Dallas Semi
infrared demodulator 1 IS1U60 U15 3.00 manufacturer Sharp
motor driver 2 L293D U10 U11 3.00 manufacturer SGS-Thomson
voltage regulator 2 LM2931Z-5.0 U14 U17 0.90 LM2931Z-5.0-ND Digikey
voltage regulator 1 LM7805CTB U13 0.53 NJM7805FA-ND Digikey
RS232 converter 1 MAX232CPE U16 1.95 24811 Jameco
6811 microprocessor 1 MC68HC11A1FN U1 8.00 manufacturer Motorola
16x2 LCD 1 Hitachi U4 8.00 LM052L Timeline
microproc crystal 1 8 MHz X1 2.32 332-5080 Mouser
female strip header 4 1.10 929974-01-36-ND Digikey
male strip header 1 0.76 929834-01-36-ND Digikey

54

8 Schematic Drawings

8.1 CPU and Memory
H

an
dy

 B
oa

rd
 v

er
si

on
 1

.2
 C

P
U

 B
oa

rd
:

 C
P

U
 a

nd
 M

em
or

y
C

irc
ui

t

E
xp

an
si

on
 B

us

m
o

to
r

o
u

tp
u

t
se

le
ct

d
ig

in

p
u

t
se

le
ct

IR

re
ce

iv
e

r

IR

tr
a

n
sm

it
te

r

L
C

D
 c

o
n

tr
o

l

p
ie

zo

o
u

tp
u

t

d
ig

it
a

l
in

p
u

ts

A
n

a
lo

g
In

p
u

ts
/O

C
C 1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D

1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q

1
1

1 3 4 7 8
1

3
1

4
1

7
1

8

2 5 6 9 1
2

1
5

1
6

1
9

7
4

H
C

3
7

3

U
3

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

P
D

0/
R

xD
IR

Q
X

IR
Q

R
E

S
E

T
P

C
7/

A
D

7
P

C
6/

A
D

6
P

C
5/

A
D

5
P

C
4/

A
D

4
P

C
3/

A
D

3
P

C
2/

A
D

2
P

C
1/

A
D

1
P

C
0/

A
D

0
X

T
A

L

P
A

0/
IC

3
P

B
7/

A
15

P
B

6/
A

14
P

B
5/

A
13

P
B

4/
A

12
P

B
3/

A
11

P
B

2/
A

10
P

B
1/

A
9

P
B

0/
A

8
P

E
0/

A
N

0
P

E
4/

A
N

4
P

E
1/

A
N

1
P

E
5/

A
N

5

P E 2 / A N 2

P E 6 / A N 6

P E 3 / A N 3

P E 7 / A N 7

V r l

V r h

V s s

M O D B

M O D A

A S
E

R / W

E X T A L

P A 1 / I C 2

P A 2 / I C 1

P A 3 / O C 5

P A 4 / O C 4

P A 5 / O C 3

P A 6 / O C 2

P A 7 / P A I

V d d

P D 5 / S S

P D 4 / S C K

P D 3 / M O S I

P D 2 / M I S O

P D 1 / T x D

68
H

C
11

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
098

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

1
2

3
4

5
6

7

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

U
1

A
1

4
A

1
3

A
1

2
A

1
1

A
1

0
A

9
A

8

A
1

4
A

1
3

A
1

2
A

1
1

A
1

0
A

9
A

8

d 7
d 6

d 5
d 4

d 3
d 2

d 1
d 0

c l k
m 0

m 1

d i s p

p w r

g n d

L
C

D

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3
2

1

16
x2

 L
C

D

U
4

D7
D6
D5
D4
D3
D2
D1
D0

ABC

G
1

/G
2

A
/G

2
B

Y
0

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

123645

1
5

1
4

1
3

1
2

1
1

1
097

7
4

H
C

1
3

8

U
6

Y5
Y4
Y3
Y2
Y1
Y0

Y
5

Y
4

Y
3

Y
2

Y
1

Y
0

8
M

H
z

X
1

2
.2

M

R
1

1
2

1
3

1
1

U
7d

7
4

H
C

1
3

2

V
in

re
s

e
t

D
S

1
2

3
3

gn
d

3
2

1 D
S

1
2

3
3

-1
0

U
1

2

1 2 3 4 5 6 R
J1

1
 t

o
p

 e
n

tr
y

J
5

+
5

V

+
5

V

/E /W /G A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
1

0
A

1
1

A
1

2
A

1
3

A
1

4

D
Q

0
D

Q
1

D
Q

2
D

Q
3

D
Q

4
D

Q
5

D
Q

6
D

Q
7

PW
R

2
0

2
7

2
2

1
0 9 8 7 6 5 4 3

2
5

2
4

2
1

2
3 2

2
6 1

1
1

1
2

1
3

1
5

1
6

1
7

1
8

1
9

2
8 6

2
2

5
6

-1
0

0
L

P

U
2

91
0

8

1
4

U
7c7
4

H
C

1
3

2

pi
ez

o
be

ep
er

S
P

K
R

1

A
N

7
A

N
6

A
N

5
A

N
4

A
N

3
A

N
2

A
N

1
A

N
0

+
5

V

M
O

D
A

P
A

I
+

5
V

1
2

3
4

5
6

7
8

R
P

4
1

K
x

4

IR
Q

/X
IR

Q

Y
6

M
E

M
-P

W
R

U
N

S
W

P
W

R

22
 p

F

C
1

22
 p

F

C
2

HLMP1790
LED10

H
L

M
P

1
7

0
0

LE
D

11

R
2 1
K

+
5

V

+
5

V

1 2 3 4 5 6 7 8

4
x2

 h
e

a
d

e
r,

 f
e

m
a

le

J
6

4 5
6

U
7b

7
4

H
C

1
3

2

R15

47K

1
2

3
4

5
6

7
8

9
1

0

J
3

1
3

1
2

U
9

f

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
1

0
A

1
1

A
1

2

A
1

2

A
1

3

A
1

3

T
IC

3

T
IC

2

TO
C

2

TO
C

4

TO
C

4

A
8

A
8

A
9

A
9

TO
C

3

TO
C

3

E

E

E

R
xD

R
xD

S
C

K

S
C

K

M
IS

O

M
IS

O
TO

C
5

TO
C

5

M
O

S
I

M
O

S
I

T
IC

1

Y
7

T
xD

T
xD

~R
E

S
E

T

~R
E

S
E

T

S
S

S
S

A
1

4

A
1

4

A
S

A
S

A
S

A
1

5

A
1

5

A
1

5

A
1

5

R
/W

R
/W

R
/W

M
E

M
-P

W
R

A
N

7
..

0

D
0

..
7

55

8.2 Motor Outputs
H

an
dy

 B
oa

rd
 v

er
si

on
 1

.2
 C

P
U

 B
oa

rd
:

 M
ot

or
 O

ut
pu

t
C

ir
cu

it

/O
C

C
LK

1D 2D 3D 4D 5D 6D 7D 8D

1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q

1 1
1

1
3

8 7 1
4

1
7

4 3 1
8

1
2 9 6

1
5

1
6 5 2

1
9

7
4

H
C

3
7

4

U
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

3
4

b
U

9

7
4

H
C

0
4

5
6

c
U

9

7
4

H
C

0
4

9
8

d
U

9

7
4

H
C

0
4

1
1

1
0

e
U

9

7
4

H
C

0
4

o
u

t4

o
u

t3

o
u

t2

o
u

t1

in
4

in
3

in
2

in
1

cs
2

cs
1

L
2

9
3

D

gn
d

V
s

V
ss

1
4

1
163

1
6

8

1
5

1
0

72 91

1
3

1
2

5
4U

1
0

o
u

t4

o
u

t3

o
u

t2

o
u

t1

in
4

in
3

in
2

in
1

cs
2

cs
1

L
2

9
3

D

gn
d

V
s

V
ss

1
4

1
163

1
6

8

1
5

1
0

72 91

1
3

1
2

5
4U

1
1

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

12
-p

in
 f

em
al

e
he

ad
er

J
4

HLMP1790
LED5

1
2

3
4

5
6

1
K

x
5

R
P

2

+
5

V

+
5

V

+
5

V

D
0

..
7

Y
6

HLMP1700
LED2

HLMP1700
LED3

HLMP1700
LED4

HLMP1790
LED6

HLMP1790
LED7

HLMP1790
LED8

HLMP1700
LED1

M
o

to
r•

G
N

D

M
o

to
r•

G
N

D

M
O

TO
R

P
W

R

M
O

TO
R

P
W

R

S
T

A
R

T
-S

W

56

8.3 Digital Inputs

Handy Board version 1.2 CPU Board: Digital Input Circuit

“S top ”

“ S t a r t ”

Digital Inputs

1 / G

1A1
1A2
1A3
1A4

2 / G

2A1
2A2
2A3
2A4

1Y1
1Y2
1Y3
1Y4

2Y1
2Y2
2Y3
2Y4

1

1 7
2

1 5
4

1 9

6
1 3

8
1 1

3
1 8
5
1 6

1 4
7
1 2
9

74HC244

U5

D0
D1
D2
D3

D4
D5
D6
D7

+5V
1
2
3
4
5
6
7
8
9

1 0

RP1

47Kx9

SW2

SW3

MODA

47K

R8

+5V

1N914

D1

123456789

J 2

PAI

START-SW

TIC3

TIC2

Y7

~RESET

D0..7

57

8.4 Analog Inputs

Handy Board version 1.2 CPU Board: Analog Input Circuit

Analog Inputs

AN7..0

A
N

7
A

N
6

A
N

5
A

N
4

A
N

3
A

N
2

A
N

1
A

N
0

20K
VR1

+5V

1
2
3
4
5
6
7
8
9

1 0

RP3

47Kx9

+5V

TIC3

IRQ/XIRQ

1234567

J 1

1234

J 8

58

8.5 Infrared Transmission

Handy Board version 1.2 CPU Board: Infrared Transmission Circuit

1

2
3

U7a
74HC132

0.0068 uF
2% polyprop cap

C6

3.83K
R4

TOC2 1 2

U9a

74HC04
NPN darlington

ZTX614

Q1
R3

10K

R5 1K

+5V

R7

10K

1
2
3

3-pin female header

J 7

HLMP1700
LED9

8.6 Power Supply

Handy Board version 1.2 CPU Board: Power Supply Circuit

Motor Power
 Header

Charge
 Jack

8 cell AA nicad pack

BAT1

Motor•GND

PolySwitch® fuse

F1

SPDT slide switch

SW1 +5V

+

47
0

uF

C
3

1 uH

L1L1 +

4.
7

uF

C
4

0.
1

uF

C
5

MEM-PWR

UNSWPWR
0.

1
uF

C
7 +

4.
7

uF

C
8

1

2

3

LM7805CTB
U13

1

2

3

LM2931Z-5.0
U14

0.
1

uF

C
9

1

2

J 1 2

Coax Power Jack
2.1mm ID

LED15
HLMP1719

R13
47Ω

R14

47Ω, 1/2W power diode
1N4001

D3

1 2 3 4

J 1 3

MOTORPWR

59

8.7 Infrared Reception

Handy Board version 1.2 CPU Board: Infrared Input Circuit

Sharp IS1U60

1 2 3

U15

+5V

R
6

4
7

K +5V

TIC1

60

8.8 Serial Interface and Battery Charger

MAX232:
pin 16 = +5v
pin 15 = gnd

Handy Board Interface/Charger Unit, version 1.0

“PWR”

“CHARGE”

“SER”

0.1 uF
C14

+5V

T1inT1out

T2inT2out

R1in R1out

R2in R2out

C1+

C1-

C2+

C2-

V+

V -

1 11 4

1 07

1 2

9

1 3

8

5

4

3

1

6

2

MAX232CPE

U16+5V

HLMP1790
LED12

R9
2.2K

1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5

J 9

DB-25 female connector

1
2
3
4
5
6

RJ12 side entry

J 1 0

1

2

J 1 1

Coax Power Jack
2.1mm ID

+C15
47 uF

+C16
47 uF

R10
1K

HLMP1700
LED13

+5V

R11

47Ω, 1/2W

R12

47Ω LED14
HLMP1719

SW4SW4SW4

SPDT switch

1

23

4

DB101

D2

+

C10

10uF

+

C11

10uF

+

C12

10uF

+

C13

10uF

1

2

3

LM2931Z-5.0
U17

ZAP!

61

9 Printed Circuit Board Layouts

9.1 Handy Board Component Side

62

9.2 Handy Board Solder Side

63

9.3 Handy Board Silkscreen

64

9.4 Interface/Charger Board Component Side

9.5 Interface/Charger Board Solder Side

65

9.6 Interface/Charger Board Silkscreen

66

10 Pin-Out Detail

..

GND
+5V
VR
A9
A8

TOC4/PA4
D0
D1
D2
D3
D4
D5
D6
D7

Y0
Y1
Y2
Y3
Y4
Y5

TOC3/PA5
AS
A15

MEM-PWR

D
i
g
i
t
a
l
 I
n

A
n
a
l
o
g
 I
n

Analog0
Analog1
Analog2
Analog3
Analog4
Analog5
Analog6

PAI/PA7
TIC2/PA1
TIC3/PA0

Bit0
Bit1
Bit2
Bit3
Bit4
Bit5

PE0
PE1
PE2
PE3

M
C
6
8
H
C
1
1
A
1
F
N

S
P
I

+
5
V

M
I
S
O
/
P
D
2

M
O
S
I
/
P
D
3

N
.
C
.

G
N
D

S
S
/
P
D
5

S
C
K
/
P
D
4

N
.
C
.

BAT+
BAT+
BAT-
BAT-

S
T
A
R
T
/
B
I
T
7

S
T
O
P
/
B
I
T
6

M
O
T
 0
+

N
.
C
.

M
O
T
 0
-

M
O
T
 1
+

N
.
C
.

M
O
T
 1
-

M
O
T
 2
+

N
.
C
.

M
O
T
 2
-

M
O
T
 3
+

N
.
C
.

M
O
T
 3
-

-

++++

I
R
 O
U
T

N
.
C
.

+-

B
a
t
t
e
r
y

P
o
w
e
r

M
o
t
o
r
 P
o
r
t
s

N
o
t
e
s
:

T
h
e
 '
B
i
t
 X
'
 o
n
 t
h
e

b
u
t
t
o
n
s
 a
n
d
 D
i
g
i
t
a
l

I
n
 a
r
e
 b
i
t
s
 o
f
 a

r
e
a
d
 t
o
 0
x
7
F
F
F
.

W
r
i
t
e
 0
x
4
0
0
0
 =
 Y
0

R
e
a
d
 0

x
4
0
0
0
 =
 Y
1

W
r
i
t
e
 0
x
5
0
0
0
 =
 Y
2

R
e
a
d
 0

x
5
0
0
0
 =
 Y
3

W
r
i
t
e
 0
x
6
0
0
0
 =
 Y
4

R
e
a
d
 0

x
6
0
0
0
 =
 Y
5

Y
0
 t
h
r
o
u
g
h
 Y
5
 a
r
e
 a
c
t
i
v
e

l
o
w
s
.
 T
h
i
s
 t
a
b
l
e
 s
h
o
w
s

w
h
a
t
 t
o
 d
o
 t
o
 f
o
r
c
e
 t
h
e
m

l
o
w
 f
o
r
 a
 c
y
c
l
e
.

This diagram was contributed by Brian Schmalz.

67

11 Handy Board Community

In order to support everyone who wants to use a Handy Board, it
is crucial that all users help each other in troubleshooting problems,
exchanging ideas and techniques, and sharing code.

The Handy Board discussion group is the main way that Handy
Board users communicate with each other. All active Handy Board
users are encouraged to seek technical support, advise, and ideas from
the discussion group community.

For information, see http://tech.groups.yahoo.com/group/handyboard/.

12 Licensing

The Handy Board technology, including the printed circuit board
layout and supplied code libraries, is distributed under a free licens-
ing policy. This agreement allows any party to use the Handy Board
technology for any purpose without having to pay a licensing fee.

The technology is not public domain. The Massachusetts Institute
of Technology reserves the copyright to the artwork and code. Any
commercial use of the technology must include a reproduction of the
copyright notice on the board itself, and must acknowledge the institu-
tional source (MIT) and author (Fred Martin) of the technology in an
appropriate fashion in any accompanying product documentation.

A copy of the documentation authorizing this usage is available from
the Handy Board web site,
http://handyboard.com/howtoget/license.html.

68

