
“DYNAMIC LINKED LIBRARIES”:

 Paradigms of the GPL license

 in contemporary software

 LUIS ENRIQUEZ A.

 LICENSE

COPYRIGHT HOLDER: Luis Enríquez

“ As the only copyright holder of this work, I license this work under the
Creative Commons Attribution 3.0 Unported License. Follow the link
below for terms and conditions:
http://creativecommons.org/licenses/by/3.0/legalcode”

FIRST EDITION

ACKNOWLEDGMENTS

I would like to thank Dr. Till Jaeger for his important remarks, Dr. Axel Metzger and

the IRI institute at the University of Hannover for all the support.

DEDICATION

Dedicated to Séverine and Tabata.

http://creativecommons.org/licenses/by/3.0/legalcode

PREFACE

Free Software has transformed life on the planet. Since the appearance of the General

Public License in 1989, traditional copyright theories have been challenged by the

famous copyleft. These changes have become very important in the last years, because

of the exponential increase of free software use in all developmental areas. However,

there are still some gray areas of the GPL license and one of them is dynamic linked

libraries.

License compatibility has become a real challenge because of the GPL license copyleft

restrictions. The Free Software Foundation provides an interpretation of the GPL license

in the field of linking program libraries applying different criteria such as modification,

dependency, interaction, distribution medium, and location. These criteria goes beyond

the traditional derivative works framework established in national copyright laws, and

international copyright conventions. However, the GPL license as a copyright license

has to be interpreted by Judges of different jurisdictions and different legal traditions.

The GPL FAQ interpretation might not be clear enough, and has created a lot

uncertainty between developer communities and users. The practical relevance of this

topic is huge, considering that the GPL license is the most popular FOSS license, and in

contemporary software, computer programs use many dynamic libraries with the

purpose of obtain or extend their functionality. Thus, license compatibility has become a

real challenge because of the GPL license copyleft restrictions.

The answer is not black or white. The key should be to understand the GPL provisions

in the light of a technical and legal analysis, and confront them to legal precedents and

developer community disputes. Some of those controversies have been included in this

work, with the purpose of applying the GPL interpretations over real cases.

What is the relation between copyleft and derivative works? How does the GPL FAQ

interpret them? Are these prescriptions regulated by applicable copyright law? Should

copyright law be updated? Is copyright law prepared to regulate generic purpose

licenses? How do we apply linking exceptions? Are the GPL prescriptions proportional?

How would they fall into fair use exceptions? Should the Free Software Foundation be

more flexible about their dynamic libraries linking interpretations? These and other

questions will be covered in this work.

CONTENTS

CHAPTER ONE: DERIVATIVE WORKS LEGAL FRAMEWORK

1.1. INTERNATIONAL CONVENTIONS AND DERIVATIVE WORKS......................................1

1.2. EUROPEAN UNION LAW.. 4

1.3. NATIONAL COPYRIGHT LAW...6

1.4. BRIEF GNU AND GPL HISTORY …...9

1.5. GPL v2 AND DERIVATIVE WORKS..12

1.6. GPL v3 AND DERIVATIVE WORKS..14

1.7. THE LINKING EXCEPTIONS...16

CHAPTER TWO: TECHNICAL DESCRIPTION OF PROGRAM LIBRARIES

LINKING

2.1. PROGRAM LIBRARIES …..20

2.2. STATIC LIBRARIES …..22

2.3. DYNAMIC LIBRARIES..24

2.4. DYNAMIC LOADED LIBRARIES ..28

2.5. COMBINING LIBRARIES AND BUILDING PROJECTS...31

2.6. OBJECT ORIENTED PROGRAMMING...33

2.7. NETWORK SOFTWARE..39

2.8. COMPUTER MEMORY SPACE...43

2.9. VOLUMES, PARTITIONS AND MULTIDISKS..46

CHAPTER THREE: THE GPL FAQ INTERPRETATION OF LINKED

LIBRARIES

3.1. MODIFICATION..49

3.2. DEPENDENCY...52

3.3. INTERACTION..55

3.4. DISTRIBUTION MEDIUM...59

3.5. LOCATION (ALLOCATION)...60

CHAPTER FOUR: DYNAMIC LINKING CONTROVERSIES

4.1. THE SOLUTION: PERMISSION OF THE COPYRIGHT HOLDER..63

(1) General Permission of the Copyright Holder: Android v Linux..65

(2) Particular Permission for FOSS Software: MySQL v PHP.. 68

4.2. WHITOUT THE PERMISSION OF THE COPYRIGHT HOLDER...71

(1) The Split License Solution: Wordpress v Thesis..72

(2) Complete License Change: Hyper-V v Linux Drivers..76

4.3. COURT CASES: NON COPYRIGHT SUBJECT AND FAIR USE..78

(1) Oracle v Google..79

(2) SAS v WPL...83

4.4. AND THE FUTURE..85

CONCLUSIONS..87

BIBLIOGRAPHY..91

LIST OF ABBREVIATIONS..94

ABOUT THE AUTHOR..95

CHAPTER ONE: DERIVATIVE WORKS LEGAL
FRAMEWORK

This is an introductory chapter about the legal framework of derivative works. From a

general perspective we must understand the dynamic linked libraries controversy as a

derivative works controversy. The scope of derivative works is defined in different legal

sources such as International Conventions, European Directives, and National Copyright

Laws. Other relevant legal features such as computer programs interaction, and fair use

exceptions, will also be covered here. Other GPL legal controversies outside the scope

of derivative works, such as license distribution1 or license enforcement2, will not be

covered here.

 This chapter should provide a good legal background knowledge in the field of the

derivative works, which is fundamental in order to understand the next chapters.

1.1. INTERNATIONAL CONVENTIONS AND DERIVATIVE WORKS

What is a derivative work? In order to answer this question we must refer to legal

definitions under relevant Copyright International Conventions and Treaties3. The most

relevant are The Revised Berne Convention4, and the WIPO Copyright Treaty5.

(1) The Revised Berne Convention. The most relevant international copyright

convention is still the Berne Convention for literary and artistic works of 1886. This

1 Restrictions such as source code distribution and distribution of the license within the software are big legal issues by
themselves, and that is why they are out of the scope of this work. This work is focused on derivative works and
dynamic linked libraries paradigms.

2 License enforcement is another huge legal issue that won't be covered in this work. Nevertheless, sometimes it will be
necessary to superficially refer to license enforcement when those are connected to the dynamic linking libraries
paradigms.

3 International Treaties and Conventions have to be ratified by national parliaments in order to become a primary source
of law. Treaties and Conventions have the same legal effect under International Law. The United Nations Viena
Convention on the Law of Treaties of 1969 constitutes an important source of Treaty Law in our days. For more
information about Treaty Law, see: http://www.treatylaw.org/whatisatreaty.asp.

4 See, http://www.wipo.int/treaties/en/ip/berne/trtdocs_wo001.html.
5 See, http://www.wipo.int/treaties/en/ip/wct/.

1

http://www.wipo.int/treaties/en/ip/wct/
http://www.wipo.int/treaties/en/ip/berne/trtdocs_wo001.html
http://www.treatylaw.org/whatisatreaty.asp

Convention has been signed and ratified by 166 countries6, and has influenced most

national copyright laws around the planet. Certainly there were not computer programs

in 1886, and the original version of 1886 did not include scientific works7. The notion of

digital copying and publishing was certainly not yet understood. But the Convention

was revised a few times, and finally amended in 19798. The last amended version of the

Berne Convention included scientific works as subject of copyright protection:

“The expression “literary and artistic works” shall include every production in the
literary, scientific and artistic domain, whatever may be the mode or form of its
expression, such as books, pamphlets and other writings; lectures, addresses, sermons
and other works of the same nature; dramatic or dramatico-musical works;
choreographic works and entertainments in dumb show; musical compositions with or
without words; cinematographic works to which are assimilated works expressed by a
process analogous to cinematography; works of drawing, painting, architecture,
sculpture, engraving and lithography; photographic works to which are assimilated
works expressed by a process analogous to photography; works of applied art;
illustrations, maps, plans, sketches and three-dimensional works relative to geography,
topography, architecture or science”9.

As we can see, computer programs are not directly described, but they are included,

because computer programs are scientific productions. The first computer appeared in

194610, and the term software appeared in the late 1950s11, but the notion of software as

a copyright subject came later. In the first computer years, a computer program was

considered part of a hardware, and they were very few software producers. Between the

late 1970s and the early 1980s, due to the spread of software production as an

independent component of hardware, software was included by most legislations as

subject of copyright law12.

6 See, http://www.wipo.int/treaties/en/ShowResults.jsp?treaty_id=15.
7 Article 4 of the Berne Convention of 1886 about scientific works as subject of copyright protection was more focused

in scientific books, rather than software: “...in fact, every production whatsoever in the literary, scientific, or artistic
domain which can be published by any mode of impression or reproduction”.

8 The original Berne Convention, the later revisions, and the amended version of 1979 are available at:
http://keionline.org/copyright/berne.

9 See, Berne Convention art 2.1. Available at http://www.wipo.int/treaties/en/ip/berne/trtdocs_wo001.html.
10 Most believe the ENIAC was the first prototype of computer. See, http://ftp.arl.mil/mike/comphist/eniac-story.html.
11 For Software history, see: http://www.randomhistory.com/2008/06/26_software.html.
12 A recommended lecture about the history of copyright in Computer Software in the United States of America is: Garren

Scott, Copyright Protection of Computer Software: History, Politics, and Technology, Massachusetts Institute of
Technology, United States, 1991.

2

http://www.randomhistory.com/2008/06/26_software.html
http://ftp.arl.mil/mike/comphist/eniac-story.html
http://www.wipo.int/treaties/en/ip/berne/trtdocs_wo001.html
http://keionline.org/copyright/berne
http://www.wipo.int/treaties/en/ShowResults.jsp?treaty_id=15

 Software and computer programs are often referred as the same, but there is a little

difference between them. A computer program is always software, but software is rather

considered as a collection of programs, procedures, algorithms, concerning with the

operation of a data processing system. Thus, the scope of software is wider than the

computer program scope13.

The Revised Berne Convention defines derivative works as: “Translations, adaptations,

arrangements of music and other alterations of a literary or artistic work shall be

protected as original works without prejudice to the copyright in the original work”14.

This definition provides some criteria about what is a derivative work. Derivative works

are allowed if they have their own expression of creativity. But when we adopt this

definition to computer programs, some environmental conditions that artistic works

don't have, might appear. For example, a restriction on the right of use: it is not

forbidden to listen a song15, but it might be forbidden to use software16. It is also possible

to create a derivative work of a song based on listening to it, but it is not possible to

create a derivative work of a computer program just by using it, without the source code.

(2) WIPO Copyright Treaty of Geneva 1996. The World Intellectual Property

Organization copyright treaty provides more protection in the field of Copyright. It was

signed in 1996 and has been contracted by 90 parties17. The Treaty does not provide a

new definition for derivative works, but it adds the category of computer programs as

subject of copyright protection.

The Treaty determines that the expression is the main criteria for copyright protection:

“Copyright protection extends to expressions and not to ideas, procedures, methods of

operation or mathematical concepts as such”18. Expression is the criteria for

13 For the purposes of this work, the terms Software and Computer Programs are used as synonyms.
14 See, Berne Convention art 2.3. Available at http://www.wipo.int/treaties/en/ip/berne/trtdocs_wo001.html#P85_10661.
15 No one can prohibit to hear or to watch. The legal issues come with distribution.
16 Such restriction is very common in proprietary software because a copy is needed for installation.
17 For more detail about contracting parties, see: http://www.wipo.int/treaties/en/ShowResults.jsp?lang=en&treaty_id=16.
18 See, WIPO art 2. Available at http://www.wipo.int/treaties/en/ip/wct/trtdocs_wo033.html#P136_19843.

3

http://www.wipo.int/treaties/en/ip/wct/trtdocs_wo033.html#P136_19843
http://www.wipo.int/treaties/en/ShowResults.jsp?lang=en&treaty_id=16
http://www.wipo.int/treaties/en/ip/berne/trtdocs_wo001.html#P85_10661

establishing what is a derivative work. For instance, computer programs can be

considered as an expression of the programmer. Programming requires creativity, and

that creativity is expressed within the program. This could be considered the limit

between computer programs and programming languages. A programming language19 is

a translator between the human programmer and the machine, so it doesn't have

expression by itself, unless the human programmer creates something with it20.

The protection for computer programs is the same as for literary works: “Computer

programs are protected as literary works within the meaning of Article 2 of the Berne

Convention. Such protection applies to computer programs, whatever may be the mode

or form of their expression”21.

As it was already mentioned, in 1886 they were not computer programs, and because of

that, the WIPO Copyright Treaty clarifies that computer programs have the same level

of protection in accordance to the ones described in article 2.1 of the Berne Convention.

1.2. EUROPEAN UNION LAW

In European secondary law22, two European Directives have been created with the

purpose of regulating the copyrights on Software, the Directive 91/250/EEC23 and the

Directive 2009/24/EC24. The latest one is a replacement of the former, which provides

important improvements in the subject.

19 “A programming language is a set of commands, instructions, and other syntax use to create a software program.
Languages that programmers use to write code are called "high-level languages." This code can be compiled into a
"low-level language," which is recognized directly by the computer hardware”. See,
http://www.techterms.com/definition/programming_language.

20 This affirmation is not absolute. Creating the basic libraries of programming languages also requires creativity.
21 See, WIPO art 4. Available at http://www.wipo.int/treaties/en/ip/wct/trtdocs_wo033.html#P136_19843.
22 “The directive forms part of the secondary law of the European Union (EU). It is therefore adopted by the European

institutions in accordance with the founding Treaties. Once adopted at European level, the directive is then transposed
by Member States into their internal law”. See,
http://europa.eu/legislation_summaries/institutional_affairs/decisionmaking_process/l14527_en.htm.

23 See, http://www.wipo.int/wipolex/en/details.jsp?id=1424.
24 For more information on the creating process, see:

http://europa.eu/legislation_summaries/internal_market/businesses/intellectual_property/mi0016_en.htm.

4

http://europa.eu/legislation_summaries/internal_market/businesses/intellectual_property/mi0016_en.htm
http://www.wipo.int/wipolex/en/details.jsp?id=1424
http://europa.eu/legislation_summaries/institutional_affairs/decisionmaking_process/l14527_en.htm
http://www.wipo.int/treaties/en/ip/wct/trtdocs_wo033.html#P136_19843
http://www.techterms.com/definition/programming_language

Directive 2009/24/EC on the legal protection of computer programs. Also known as

the Computer Program Directive, it has the purpose of regulating computer programs in

the European Union. It was written in accordance to the Berne Convention, and inspired

by the Directive 91/250/EEC25. It goes further than the Berne Convention and the WIPO

Copyright Treaty, because it regulates some particular aspects of software.

The directive does not provide a new derivative works definition, it rather follows the

Berne Convention prescriptions. However, The criterion for copyright protection is

wider than the international copyright conventions: “A computer program shall be

protected if it is original in the sense that it is the author's own intellectual creation. No

other criteria shall be applied to determine its eligibility for protection”26.

Intellectual creation is established as the only criterion for copyright protection. This

new perspective is certainly an improvement in order to avoid dealing with different

interpretations of expression. Nevertheless, there is a restriction: “...Ideas and principles

which underlie any element of a computer program, including those which underlie its

interfaces, are not protected by copyright under this Directive”27.

The copyright holder's permission is disposed as the only legal way to authorize the

creation of a derivative work: “Article 2 shall include the right to do or to authorise:

the translation, adaptation, arrangement and any other alteration of a computer

program and the reproduction of the results thereof, without prejudice to the rights of

the person who alters the program”28.

If the right holder doesn't provide the right of use and the right of modification, a

derivative work could be considered copyright infringement. This provision certainly

differs from the derivative works provision established in article 2.3 of the Berne

Convention in relation to adaptations, transformations and musical arrangements29.

25 Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:FR:HTML.
26 Art 1.3 Directive 2009/24/EC on the legal protection of computer programs.
27 Art 1.2 Directive 2009/24/EC on the legal protection of computer programs.
28 See, art 4.1(b) directive 2009/24/EC.
29 Once again, Software is different than artistic works. The article 2.3 of the Berne Convention is clearly focused on

5

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:FR:HTML

The Directive also establishes the possibility of exceptions: “In the absence of specific

contractual provisions, the acts referred... shall not require authorization by the

rightholder where they are necessary for the use of the computer program by the lawful

acquirer...”30. A lawful acquirer is someone who acquires the software with good faith

and fair purposes31.

Interaction is other relevant issue that the Directive regulates:

“The function of a computer program is to communicate and work together with other
components of a computer system.... The parts of the program which provide for such
interconnection and interaction between elements of software and hardware are
generally known as interfaces. This functional interconnection and interaction is
generally known as interoperability”32.

Interoperability is granted by the Directive. Nevertheless, the scope of interfaces is more

complicated, and it will be tackled later on, when discussing the dynamic linked

libraries paradigms.

Finally, the Directive provides an unclear exception:

“the person having a right to use a copy of a computer program shall be entitled,
without the authorization of the right holder, to observe, study or test the functioning of
the program in order to determine the ideas and principles which underlie any element
of the program if he does so while performing any of the acts of loading, displaying,
running, transmitting or storing the program which he is entitled to do”33.

In order to study the ideas and principles of the program, source code must be provided.

Software developers know that loading, displaying and running, is not always enough,

in order to study a program.

1.3. NATIONAL COPYRIGHT LAW

National Copyright Law have been widely influenced by International Conventions such

artistic works such as music.
30 See, art 5.1 directive 2009/24/EC.
31 A legal precedent in this field is UsedSoft GmbH v. Oracle Intl. Corp . Available at:

http://curia.europa.eu/juris/document/document.jsf?docid=124564&doclang=en.
32 See, Recital 10 of the directive 2009/24/EC.
33 See, art 5.3 of directive 2009/24/EC.

6

http://curia.europa.eu/juris/document/document.jsf?docid=124564&doclang=en

as the Berne Convention and the WIPO Copyright Treaty. That is the reason why

countries have adopted homogeneous legislations in many aspects such as copyright

protection and derivative works. But they are other legal issues that would change

radically the way copyright law is interpreted by different courts in different

jurisdictions such as fair use exceptions.

Making an extended comparison between different national copyright laws is not the

purpose of this work34, so just few derivative work definitions will be taken.

(1) United States of America. The Copyright Act of 1976 was widely influenced by the

Berne Convention. Derivative works are defined as:

“A “derivative work” is a work based upon one or more preexisting works, such as a
translation, musical arrangement, dramatization, fictionalization, motion picture
version, sound recording, art reproduction, abridgment, condensation, or any other
form in which a work may be recast, transformed, or adapted. A work consisting of
editorial revisions, annotations, elaborations, or other modifications which, as a whole,
represent an original work of authorship, is a derivative work”35.

The notion of a whole is provided here. In the field of computer programs, the notion of

what is a whole acquires a meaningful dimension, considering other components that

might integrate a whole, such as the program libraries.

In US law, a relevant legal doctrine applied for copyright exceptions is the fair use

doctrine: “a fair use is any copying of copyrighted material done for a limited and

transformative purpose, such as to comment upon, criticize, or parody a copyrighted

work. Such uses can be done without permission from the copyright owner...”36. The

scope of fair use is not very clear, and must be interpreted in a case by case basis.

The Copyright Act of 197637 establishes four criteria to be considered for interpretation:

“1. the purpose and character of the use, including whether such use is of a commercial
nature or is for nonprofit educational purposes;
2. the nature of the copyrighted work;
3. the amount and substantiality of the portion used in relation to the copyrighted work

34 A recommended book which compiles different aspects of national copyright laws is: Van den Branden, Coughlan,
Jaeger, The International Free and Open source Book, Open source Press, Germany, 2011.

35 See, 17 U.S.C. & 101 – Definitions. Available at http://www.law.cornell.edu/uscode/text/17/101
36 Definition transcribed from: http://fairuse.stanford.edu/Copyright_and_Fair_Use_Overview/chapter9/9-a.html
37 See, Copyright Act of 1976, 17 U.S.C., § 107.

7

http://www.law.cornell.edu/uscode/17/107.html
http://fairuse.stanford.edu/Copyright_and_Fair_Use_Overview/chapter9/9-a.html
http://www.law.cornell.edu/uscode/text/17/101

as a whole;
4. the effect of the use upon the potential market for or value of the copyrighted
work”38.

(2) Germany. The German Copyright Law was published in 1965. It contains a

definition of derivative works which also follows the Berne Convention:

“Translations and other adaptations of a work which constitute personal intellectual
creations of the adapter shall enjoy protection as independent works without prejudice
to copyright in the work that has been adapted. Insignificant adaptations of a non-
protected musical work shall not enjoy protection as independent works”39.

Insignificant adaptations of musical works are not considered independent works.

(3) France. Copyright law is regulated in France by the code de la propiété

intellectuelle. Derivative works are defined as:

“The authors of translations, adaptations, transformations or arrangements of works of
the mind shall enjoy the protection afforded by this Code, without prejudice to the rights
of the author of the original work. The same shall apply to the authors of anthologies or
collections of miscellaneous works or data, such as databases, which, by reason of the
selection or the arrangement of their contents, constitute intellectual creations...”40.

European countries also have their own fair use exceptions, but they are not fully

harmonized. Harmonizing fair use exceptions were one of the purposes of the Directive

2001/29/EC on the harmonization of certain aspects of copyright and related rights41.

Most common fair use exceptions between European countries are: “private copy or

other private use, parody, quotation, use of a work for scientific or teaching purposes,

news reporting, library privileges, needs of the administration of justice and public

policy”42. But not all European countries recognize all of them, or some European

countries have their own fair use exceptions43.

38 See, Copyright Act of 1976, 17 U.S.C., § 107.
39 See, art 3 § 69c UrhG. Translation available at: http://www.iuscomp.org/gla/statutes/UrhG.htm#3.
40 See, Art L11203 Code de la propiété intellectuelle. Translation available at: http://www.wipo.int/wipolex/en/text.jsp?

file_id=180336.
41 Exceptions and limitations are established in Article 5 of the Directive 2001/29/EC.
42 Dusollier Severine, Fair Use by design in the European Copyright Directive of 2001: An Empty Promise, University of

Namur, Belgium. 2003. Page 3.
43 This fair use scenario gets much worst in an international context. An important copyright case in this field is the

Asphalt Jungle case. The Cour de cassation of France applied a french public policy exception. See,

8

http://www.wipo.int/wipolex/en/text.jsp?file_id=180336
http://www.wipo.int/wipolex/en/text.jsp?file_id=180336
http://www.iuscomp.org/gla/statutes/UrhG.htm#3
http://www.law.cornell.edu/uscode/17/107.html

1.4. BRIEF GNU AND GPL HISTORY

The GNU44 project appeared in 1984 with the purpose to create a free operating system

which provides developers and users the freedom of using and modifying. The origin of

free software seems to be a well know tale between Richard Stallman45 and a printer at

the MIT46. The MIT was the center of attention of hacker communities at the time, and

Stallman was one of the most prominent. Stallman sent a 40 pages work to the printer,

but the printer did not work. Stallman was used to repair such kind of miss

configurations of old printers, so once again he tried to port his code in order to solve

the problem of the new Xerox laser printer machine at the MIT47.

But the operational software was distributed as binary code, and no help files were

provided with the hardware. After a long sequence of intents, Stallman found an

engineer of the Xerox Laser project at Carnegie Mellow Campus48 in Palo-Alto

California. After discussing with him, Stallman mentioned: “He told me that he had

promised not to give me a copy”49.

The GNU project was founded in 1984. GNU means GNU's not Unix, and it has

developed the GNU Operating System since then. An operating system is: “software

that communicates with the hardware and allows other programs to run”50. Well known

tools and libraries developed by GNU were the GNU Emacs editor51, the GNU C

http://www.juricaf.org/arret/FRANCE-COURDECASSATION-19910528-8919522.
44 “GNU's not Unix”. See, http://www.gnu.org/gnu/manifesto.html.
45 See, http://en.wikipedia.org/wiki/Richard_Stallman.
46 Massachusetts Institute of technology. See, http://www.mit.edu/.
47 See, Williams Sam, Free as Freedom: Richard Stallman's crussade for Free Software, Project Gutemberg eBook, 2002.

Page 6.
48 See, http://www.cmu.edu/about/visit/campus-map.shtml.
49 See, Williams Sam, Free as in Freedom: Richard Stallman's crussade for Free Software, Project Gutemberg eBook,

2002.
50 Relevant components of an operating system are: System libraries, Programming language editors, interfaces, system

utilities, device drivers, and even kernels. See, http://www.techterms.com/definition/operating_system.
51 “GNU Emacs is an extensible, customizable text editor”. See, http://www.gnu.org/software/emacs/.

9

http://www.gnu.org/software/emacs/
http://www.techterms.com/definition/operating_system
http://www.cmu.edu/about/visit/campus-map.shtml
http://www.mit.edu/
http://en.wikipedia.org/wiki/Richard_Stallman
http://www.gnu.org/gnu/manifesto.html
http://www.juricaf.org/arret/FRANCE-COURDECASSATION-19910528-8919522

library52, the GNU make53, the GNU Compiler collection GCC54, the GNU Debugger

GDB55, the GNU Binutils56, amongst many others.

The Free Software Foundation was created in 1985 as a nonprofit organization which

institutionalized the Free Software philosophy. The FSF considers that “Free software is

a matter of liberty, not price”57. Four freedoms are essential for free software58:

(0) Freedom to run the program for any purpose.

(1) Freedom to study how the program works and change it. Access to the source code is

needed.

(2) Freedom to redistribute copies.

(3) Freedom to modify the software and distribute modified versions with the source

code.

The right to produce derivative works is included in the third freedom.

The GNU General Public License was created by Richard Stallman in 1989 and it

emerges as a result of all developments of the GNU project in the eighties. An important

event that led Stallman to create the license was a conflict with Unipress59, an enterprise

which bought James Gosling's60 rights of some C libraries for Emacs61. Stallman had to

replaced them, creating the GNU Emacs. He decided to create a legal document to

52 “Any Unix-like operating system needs a C library: the library which defines the ``system calls'' and other basic
facilities such as open, malloc, printf, exit...”. See, http://www.gnu.org/software/libc/.

53 “Make is a tool which controls the generation of executables and other non-source files of a program from the
program's source files”. See, http://www.gnu.org/software/make/.

54 “The GNU Compiler Collection includes front ends for C, C++, Objective-C, Fortran, Java, Ada, and Go, as well as
libraries for these languages (libstd++, libgcj,...). GCC was originally written as the compiler for the GNU operating
system”. See, http://gcc.gnu.org/.

55 “GDB, the GNU Project debugger, allows you to see what is going on `inside' another program while it executes -- or
what another program was doing at the moment it crashed”. See, http://www.gnu.org/software/gdb/.

56 “The GNU Binutils are a collection of binary tools. The main ones are: ld - the GNU linker, as - the GNU assembler”.
See, http://www.gnu.org/software/binutils/.

57 See, http://www.fsf.org/about/.
58 See, http://www.gnu.org/philosophy/free-sw.html.
59 Unipress emacs no longer exists. It was replaced by GNU Emacs. See, http://emacswiki.org/emacs/jfm3.
60 See, http://en.wikipedia.org/wiki/James_Gosling.
61 Powerful text editor developed by Richard Stallman. See, http://gnu.org/software/emacs.

10

http://gnu.org/software/emacs
http://en.wikipedia.org/wiki/James_Gosling
http://emacswiki.org/emacs/jfm3
http://www.gnu.org/philosophy/free-sw.html
http://www.fsf.org/about/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/gdb/
http://gcc.gnu.org/
http://www.gnu.org/software/make/
http://www.gnu.org/software/libc/

prevent free code from being proprietary62. The Emacs General Public License63

establishes the idea of copyleft, and is the predecessor of the GPL license.

The GPL license came into existence as it is today in January 1989 as a revolutionary

copyright license. It was described in the the GNU bulletin, the January 1989 issue as a

new way of licensing systems. Stallman wrote:

“In the past, each copylefted program had to have its own copy of the General Public
License contained in it... To make it easier to copyleft programs, we have been
improving on the legalbol architecture of the General Public License to produce a new
version that serves as a general-purpose subroutine: it can apply to any program
without modification, no matter who is publishing it. All that's needed is a brief notice
in the program itself, to say that the General Public License applies. Directions on
doing this accompany the General Public License, so you can easily copyleft your
programs”64.

The GPL v1 license established an innovative general purpose way of controlling

derivative works, for copylefted software. In simple words, copyleft means that a

derivative work has to be licensed under the same license of its former work. This

means that any software which has been programmed using GPL licensed software,

would have to be licensed under the GPL license, as a viral effect that avoids the

possibility of licensing.

The GNU General Public License v2 was released in 1991. This version clarified some

GPL v1 issues, and has been by far the most popular of FOSS65 licenses. The Linux

kernel was released under this license in 1992 by Linus Torvalds66. This fact certainly

increased the popularity of the license, and from that point, most free software has been

released under the GPL v2.

Finally, the GNU General Public License v3 was released the 29 of June of 2007. It

62 See, http://free-soft.org/gpl_history.
63 See; http://www.free-soft.org/gpl_history/emacs_gpl.html.
64 See, http://free-soft.org/gpl_history.
65 “Free and Open Source Software”. See, http://en.wikipedia.org/wiki/Free_and_open_source_software.
66 See, http://fr.wikipedia.org/wiki/Linus_Torvalds.

11

http://fr.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://free-soft.org/gpl_history
http://www.free-soft.org/gpl_history/emacs_gpl.html
http://free-soft.org/gpl_history

added the propagate and convey definitions as replacement of the word distribute67. It

also adds some restrictions in the use of DRMs68, patents, and new definitions for

modifications and source code69.

1.5. GPL v2 AND DERIVATIVE WORKS

 The GPL is a copyright license, and because of that, it has to be understood in relation

of relevant legal issues such as jurisdiction, applicable law, and enforcement. These

legal issues are normally established in proprietary licenses, but in a generic-purpose

license such as the GPL, the establishment of these issues gets more complicated. A

generic-purpose public license need to be adapted and interpreted by different

applicable laws, jurisdictions and legal systems. If you ask a lawyer: I want to claim

copyright infringement? He will reply: Copyright under which applicable law?

The GPL v2 license does not conceive derivative works in the same manner as national

copyright laws and international copyright conventions. It rather has an independent and

particular understanding of what derivative works are, in relation to an extended criteria

such as modification, dependency, interaction, distribution medium, and location70. The

GPL v2 establishes:

“You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions... These requirements apply to the modified
work as a whole. If identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works...”71.

The GPL license establishes a new an independent derivative works framework, which

67 See, http://www.gnu.org/licenses/gpl-faq.html#WhyPropagateAndConvey.
68 Digital Rights Management. See, http://en.wikipedia.org/wiki/Digital_rights_management.
69 A recommended review on GPL v3 improvements is available at: http://www.ifross.org/en/what-difference-between-

gplv2-and-gplv3.
70 These criteria will be deeply analyzed in chapter 3 of this work.
71 See, GPL v2 section 2.0, paragraph 1, and 2.

12

http://www.ifross.org/en/what-difference-between-gplv2-and-gplv3
http://www.ifross.org/en/what-difference-between-gplv2-and-gplv3
http://en.wikipedia.org/wiki/Digital_rights_management
http://www.gnu.org/licenses/gpl-faq.html#WhyPropagateAndConvey

would have to be applied for distribution of GPL works: “Thus, it is not the intent of this

section to claim rights or contest your rights to work written entirely by you; rather, the

intent is to exercise the right to control the distribution of derivative or collective works

based on the Program”72.

The copyleft is established: “You must cause any work that you distribute or publish,

that in whole or in part contains or is derived from the Program or any part thereof, to

be licensed as a whole at no charge to all third parties under the terms of this

License”73.

This statement makes very clear that a derivative work based in a former work licensed

by GPL v2 license, must also be licensed under the GPL v2 license. If we consider that

in software, everything is usually built on top of other software, the copyleft requirement

gets somehow difficult to determine. Therefore, it is precise to determine from a general

perspective the kind of derivative works that are or not affected by the copyleft:

(1) Artistic Works v Computer programs. If you use GPL licensed software to create

an artistic work such as music, video, or graphics, the artistic product is not considered a

derivative work of that software. The copyleft only affects software. The FSF

establishes: “You can apply the GPL to any kind of work, as long as it is clear what

constitutes the “source code” for the work”74. This interpretation also applies to the

GPL v3 license75.

(2) Computer Programs v Computer Programs. If you modify a computer program,

or make a program using a former program source code, the result must be licensed

under GPL. But what about just using or interacting with GPL programs? GPL v2

72 See, GPL v2, section 2.0, paragraph 3.
73 See, GPL v2 section 2.b.
74 See, http://gnu.org/licenses/gpl-faq.html#GPLOtherThanSoftware.
75 Nevertheless, in some particular cases a work can be protected as a computer program and as an artistic work at the

same time. That is the border line case of Algorithm composition in which, the code is the artistic work. See,
https://ccrma.stanford.edu/~blackrse/algorithm.html.

13

https://ccrma.stanford.edu/~blackrse/algorithm.html
http://gnu.org/licenses/gpl-faq.html#GPLOtherThanSoftware

establishes:

“These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works”76.

Under this provision, If the programs are separate works, interacting is not an issue. But

first, the derivative work will have to pass some criteria such as dependency, interaction

and location, in order to be considered as independent and separate. Such criteria will be

deeply analyzed in the next chapters.

(3) Computer Programs v Program Libraries. Program libraries77 are small programs,

which purpose is to provide functionalities to another program when invoked. Program

libraries are everywhere, at the lowest level of the operating system working with the

kernel, or at the highest level of a computer program interacting with the user interface.

The GPL license derivative works provisions are not clearly applicable to program

libraries. The GPL license has a general perspective, and this fact leads to unclear

interpretations of linking program libraries. Program libraries are the core of this

investigation, so they will be widely discussed in the next chapters.

1.6. GPL v3 AND DERIVATIVE WORKS

In the derivative works field, the GPL v3 does not change the GPL v2 perspective.

Derivative works follow the same independent and particular understanding of what

derivative works are, but adding some definitions, and considerations about applicable

copyright law.

It defines the term modify: “To “modify” a work means to copy from or adapt all or

part of the work in a fashion requiring copyright permission, other than the making of

an exact copy. The resulting work is called a “modified version” of the earlier work or

76 See, GPL v2 Section 2.
77 “A program library is simply a file containing compiled code (and data) that is to be incorporated later into a

program”. See, Wheeler David, Program Library HowTo, version 1.36, United States, 2010. Page 3.

14

a work “based on” the earlier work”78.

The copyleft mechanism is established as:

 “You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable
section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it”79.

Derivative works must be licensed under GPL v3 to the whole work, including all parts.

But it establishes the possibility of changing such provisions according to the additional

terms described in Section 7, and regarding if they are valid under applicable copyright

law:

“Additional permissions” are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law... All other non-
permissive additional terms are considered “further restrictions” within the meaning of
section 10...”80.

(1) Artistic Works v Computer Programs. There is not change. Artistic works are

never considered as derivative works81.

(2) Computer programs v Computer Programs. There is not change. The same

perspective already discussed in the GPL v2 license.

(3) Computer programs v Program Libraries. In the specific field of libraries, GPL

v3 also establishes that System libraries are not part of major components, because they

are necessary for the normal functioning of the operating system, so they are not forced

to be licensed under the GPL license, or have GPL license compatibility. System

libraries which operate with the operating system basic components are not considered

as part of the whole82. However, libraries that are not considered system libraries, have

78 See, GPL v3 Section 0. Definitions. Available at: http://www.gnu.org/licenses/gpl.html.
79 See, GPL v3.0, Section 5(c). Conveying Modified.
80 See, Section 7. Available at: http://www.gnu.org/licenses/gpl.html.
81 See, http://gnu.org/licenses/gpl-faq.html#GPLOtherThanSoftware.
82 See GPL v3, Section 1. Source Code. Paragraph 3.

15

http://gnu.org/licenses/gpl-faq.html#GPLOtherThanSoftware
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

still considered part of the whole:

“...For example, Corresponding Source includes interface definition files associated
with source files for the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require, such as by
intimate data communication or control flow between those subprograms and other
parts of the work”83.

This disposition proposes that dynamic shared library source code should be considered

as source code of the work when there is a dependency of the work towards the libraries.

In contemporary software, a computer program uses many shared libraries. Thus, the

library's source code delivery is an important issue to consider.

1.7. THE LINKING EXCEPTIONS

Richard Stallman and the GNU have always been aware about the computer libraries

nature and their purposes. That is why they created a particular library generic public

license with a weaker copyleft, the LGPL license. However, they still recommend the

use of the GPL license for libraries, for developers who prefer strong copyleft on

derivative works:

“The GNU Project has two principal licenses to use for libraries. One is the GNU
Lesser GPL; the other is the ordinary GNU GPL. The choice of license makes a big
difference: using the Lesser GPL permits use of the library in proprietary programs;
using the ordinary GPL for a library makes it available only for free programs”84.

But this provision is not absolute, there is also the system library exception, and in

general, there is always the possibility of making exceptions by the copyright holder.

There are some historical exceptions to the use of the GPL license that show practical

solutions to avoid undesired conflicts.

(1) Lesser GNU General Public License. The GNU project published in the June 1990

issue of:

"New library license We should by now have finished a new alternative General Public
License for certain GNU libraries. This license permits linking the libraries into
proprietary executables under certain conditions. The new library license actually

83 See GPL v3, Section 1. Source Code. Paragraph 4.
84 See, http://www.gnu.org/philosophy/why-not-lgpl.html.

16

http://www.gnu.org/philosophy/why-not-lgpl.html

represents a strategic retreat. We would prefer to insist as much as possible that
programs based on GNU software must themselves be free. However, in the case of
libraries, we found that insisting they be used only in free software tended to discourage
use of the libraries, rather than encourage free applications”85.

The GNU Library General Public License was created and released in June 1990. This

license was the predecessor of the GNU Lesser General Public License (LGPL),

released in 1999. In the LGPL license, libraries are defined as: “A library means a

collection of software functions and/or data prepared so as to be conveniently linked

with application programs (which use some of those functions and data) to form

executables”86.

A combined work would not be considered a derivative work under this license,

therefore if would be possible to use or modify LGPL libraries into a derivative work

with another license:

“You may convey a Combined Work under terms of your choice that, taken together,
effectively do not restrict modification of the portions of the Library contained in the
Combined Work and reverse engineering for debugging such modifications...”87.

But there are some obligations for combined works such as:

(a) “Give prominent notice with each copy of the Combined Work that the Library is
used...”.
(b) “Accompany the Combined Work with a copy of the GNU GPL and this license
document”.
(c) “For a Combined Work that displays copyright notices during execution, include the
copyright notice for the Library”.
(d) “Convey the Minimal Corresponding Source under the terms of this License...” or
“Use a suitable shared library mechanism for linking with the Library”.
(e) “Provide Installation Information...”88.

Despite the fact that the FSF does not recommend the use of the LGPL license, and

promotes the use of the GPL license instead89, a nice solution has been to combine the

LGPL v3 license with the GPL v3 license. The LPGL v3 license establishes: “This

version of the GNU Lesser General Public License incorporates the terms and

85 See, The June 1990 issue, http://free-soft.org/gpl_history/.
86 See, LGPL v3, section 0, paragraph 2.
87 See, LGPL v3, section 4.
88 See, LGPL v3, section 4.
89 See, http://gnu.org/licenses/why-not-lgpl.html.

17

http://gnu.org/licenses/why-not-lgpl.html
http://free-soft.org/gpl_history/

conditions of version 3 of the GNU General Public License, supplemented by the

additional permissions listed below”90.

This was a very nice solution because the LGPLv3 includes all the copyleft conditions of

the GPL v3, but provides flexibility for the specific use of program libraries. The LGPL

v3 includes all the GPL v3 license provisions, but adding a more suitable environment

for program libraries.

(2) The System Library Exception. GPL v3 establishes: “The System Libraries of an

executable work include anything, other than the work as a whole, that (a) is included

in the normal form of packaging a Major Component, but which is not part of that

Major Component...”91. System libraries are not considered part of a whole, because

they are necessary for the normal functioning of the operating system. System libraries

are the essential components of an operating system, and they are not obligated to be

licensed under the GPL license, or a GPL compatible license.

(3) The GNU ClassPath Exception. This is a truly GPL linking exception based on the

permission of the copyright holder. The GNU ClassPath was a project with the purpose

of creating a free software implementation of the standard class library for the Java

programming language92. This exception consists of a statement distributed within the

GPL v2 license:

“Linking this library statically or dynamically with other modules is making a combined
work based on this library. Thus, the terms and conditions of the GNU General Public
License cover the whole combination. As a special exception, the copyright holders of
this library give you permission to link this library with independent modules to
produce an executable, regardless of the license terms of these independent modules,
and to copy and distribute the resulting executable under terms of your choice, provided
that you also meet, for each linked independent module, the terms and conditions of the
license of that module. An independent module is a module which is not derived from or
based on this library. If you modify this library, you may extend this exception to your
version of the library, but you are not obliged to do so. If you do not wish to do so,
delete this exception statement from your version”93.

90 See, https://www.gnu.org/licenses/lgpl.html
91 See, GPL v3 section 1. System libraries definition.
92 See, http://en.wikipedia.org/wiki/GNU_Classpath.
93 See, http://gnu.org/software/classpath/license.html.

18

http://gnu.org/software/classpath/license.html
https://www.gnu.org/licenses/lgpl.html

In this case, the copyright holder of the classPath implementation is the FSF itself. The

key factor here was the interoperability with the Java Programming language94. It was

previously said in chapter 1.2(b) that a programming language is not considered subject

of copyright, but Java is an Object Object Programming language, category that can test

that assumption as we will see later on.

There were other projects that also apply exceptions to GPL like the gcc Run time

library exception95, the Font exception96, or the GNU Guile97. All of them are based on

the GNU permission as copyright holder. In the same way, any copyright holder could

add a permission and distribute it within the GPL license.

94 It was previously said in chapter 1.2(b) that a programming language is not considered subject of copyright, but Java is
an Object Object Programming language, category that can test that assumption as we will see later on.

95 See, http://www.gnu.org/licenses/gcc-exception-3.1.html.
96 See, http://spdx.org/licenses/GPL-2.0-with-font-exception.
97 See, http://www.gnu.org/software/guile/docs/docs-1.6/guile-ref/Guile-License.html.

19

http://www.gnu.org/software/guile/docs/docs-1.6/guile-ref/Guile-License.html
http://spdx.org/licenses/GPL-2.0-with-font-exception
http://www.gnu.org/licenses/gcc-exception-3.1.html

CHAPTER TWO: TECHNICAL DESCRIPTION OF
PROGRAM LIBRARIES LINKING

The purpose of this chapter is to make a short but comprehensive description about

program libraries linking. But this chapter is not only about program libraries, as it also

exposes relevant technical areas which are connected to the field of program libraries

such as Object Oriented Programming98, Computer Memory Address Space99, Multiple

Disk Volumes100, and Networked101 Systems. Thus, the structure includes each relevant

technical topic in a different sub-chapter.

In order to understand how program libraries work, it is necessary to analyze them under

different derivative works criteria, such as: modification, dependency, interaction, time

of linking, distribution medium, and location. Understanding the process of linking is

essential, because the FSF102 interpretation of dynamic linking libraries is mostly based

on technical facts.

For the readers with basic programming experience, some simple examples will be

included. If the reader has not programming experience, this section might still be useful

because the important facts of the examples will be analyzed in a Resume at the end of

each section.

2.1. PROGRAM LIBRARIES

Program libraries can be defined as: “the contained and compiled code(and data) that

98 “programming methodology based on objects, instead of just functions and procedures. These objects are organized
into classes, which allow individual objects to be group together”. See, http://www.techterms.com/definition/oop.

99 “A computer's address space is the total amount of memory that can be addressed by the computer”. See,
http://www.pcmag.com/encyclopedia/term/37527/address-space.

100 “In many critical servers, multiple disks are used for performance, reliability, or scalability.
The disks are merged and processed so that they look normal but they are not”. See Page 111, Carrier Brian, File System

Analysis, Addison Weshley Professional, United States, 2005.
101 “The purpose of a network is to enable the sharing of files and information between multiple systems”. See,

http://www.techterms.com/definition/network.
102 Free Software Foundation.

20

http://www.techterms.com/definition/network
http://www.pcmag.com/encyclopedia/term/37527/address-space
http://www.techterms.com/definition/oop

is to be incorporated later into a program”103. Libraries contain compiled code ready to

interact with a program. The linking process is done by a linker which binds the libraries

to an executable104.

We must understand contained and compiled code and data, as code that has been

programmed in a programming language such as C105, and then converted to object

code106 with the purpose of linking to an executable. To make it more concrete, imagine

that a computer program is a material object such as a Car. If you want to build a car

you need several parts such as an engine, wheels, lights, windows, the coach work, the

radio, the GPS107, and so forth.

The components form together the Car, and each component of the car which adds a

specific functionality such as the Wheels, might be considered a library. These

functionalities need to link to the car with the purpose of making the car work. We can

analyze the wheel's role under different criteria:

MODIFICATION: Have the wheels been modified with the purpose of creating the

car? Does the car exist without wheels? Or perhaps, Is the union of both which generates

the mechanical process?

DEPENDENCY: Are the wheels depending on the car? Is the car dependent on the

wheels? Or perhaps, are they interdependent?

INTERACTION: How are the wheels connected to the car? Are they linked by bolts

and electric cables? Are they wireless?

TIME OF LINKING: Were the wheels linked to the car at build time? Or perhaps they

103 See, Wheeler David, Program Library HowTo, version 1.36, United States, 2010. Page 1.
104 “An executable file is a type of computer file that runs a program when it is opened. This means it executes code or a

series of instructions contained in the file”. See, http://www.techterms.com/definition/executable_file.
105 “C is a high-level programming language that was developed in the mid-1970s. It was originally used for writing Unix

programs, but is now used to write applications for nearly every available platform”. See,
http://www.techterms.com/definition/cplusplus.

106 “Programming languages such as C and Java are high level languages that require the source code entered by the
programmer to be compiled. Once the compiler has processed the code, it produces a set of object code that can be
passed to other programs or run on a computer system”. See, http://www.wisegeek.com/what-is-object-code.htm.

107 Global Positioning System.

21

http://www.wisegeek.com/what-is-object-code.htm
http://www.techterms.com/definition/cplusplus
http://www.techterms.com/definition/executable_file

link at runtime, when the car turns on.

DISTRIBUTION MEDIUM: Are the wheels sold with the car as a whole? Is it

possible to buy the wheels in another store?

LOCATION: Are the wheels at the same physical space than the car?

This car example introduces a methodology of analysis based on six relevant criteria

that are necessary in order to make a dissection of the GNU derivative work's

interpretation in the field of dynamic libraries. These criteria have been considered

relevant for the task, and extracted from the GPL v2 license, the GPL v3 license, and the

Free Software Foundation interpretations of both108.

By convention, libraries start with the prefix109 lib. Their suffix110 is platform dependent.

Because the core of this work is based on the GPL license and the GNU, all examples

will be provided in a GNU/Linux environment, with little references to other operating

systems. There are three prevalent types of computer program libraries: Static Libraries,

Dynamic or Shared Libraries, and Dynamic Loaded Libraries.

2.2. STATIC LIBRARIES

Static libraries are collections of object files111 that links to the source code of the

program, generating an executable at compile time. We can recognize them by the suffix

.a in Linux, and .lib on Windows. Static libraries follow the traditional way of linking

libraries within a program, and come from a time when machines had considerable less

computing power.

108 These criteria will also help to create an easy to understand structure for such complex analysis.
109 “A prefix is an affix which is placed before the root of a word”. See, http://en.wikipedia.org/wiki/Prefix.
110 “A suffix (also sometimes called a postfix or ending) is an affix which is placed after the stem of a word”.

http://en.wikipedia.org/wiki/Suffix.
111 See, Wheeler David, Program Library HowTo , version 1.36, United States, 2010. Page 6.

22

http://en.wikipedia.org/wiki/Suffix
http://en.wikipedia.org/wiki/Prefix

EXAMPLE

Build a library with two C files: number1.c and number2.c112:

 number1.c113

void number1(int *a)
{
 a=10; / In this function we define that arg a is equal to 10*/
}

number2.c

void number2(int *b) /*Here we define that argument b is equal to 5*/
{
 *b=5;
}

FIRST: Compile these files into object code, and include them in the static library

libnumbers.a:

~# gcc -c number1.c number2.c /*Compile source code into object code using gcc114.*/
~# ar libnumbers.a number1.o number2.o /*Insert object codes into the static library using ar115.*/

SECOND: Create the source code of the program program.c:

program.c

#include <stdio.h>
void number1(int *); /*calling function to libnumbers.a(number1.o)*/
void number2(int *); /*calling function to libnumbers.a(number2.o)*/
main()
{
int a; int b;
number1(&a);
number2(&b);
printf("Number1 is %d , number2 is %d\n", a,b);
return 0;
}

112 There are much practical ways to building libraries such as using Cmake, or the GNU libtool. But these non practical
examples show a step by step library creating process. Better ways will be described in chapter 2.5.

113 This, and some other examples in this chapter have been inspired from the ones contained in the book Wheeler David,
Program Library HowTo , version 1.36, 2010. Other Linux tutorials have also influenced these examples, such as:
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html.

114 GNU compiler collection. See, http://gcc.gnu.org/.
115 See, http://linux.about.com/library/cmd/blcmdl1_ar.htm.

23

http://linux.about.com/library/cmd/blcmdl1_ar.htm
http://gcc.gnu.org/
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html

THIRD: Generate the binary executable, by compiling the program program.c, and

linking it to the static library libnumbers.a :

~# gcc -o executable program.c libnumbers.a /*compile program.c and link it to
 libnumbers.a*/

RESUME

MODIFICATION: When program.c is linked to libnumbers.a, together they generate

the binary executable. The executable is a common descendant of both.

DEPENDENCY: At compile time, program.c and libnumbers.a become

interdependent. They cannot work separately because they are mixed in the binary

executable.

INTERACTION: Program.c interacts with libnumbers.a by making function calls

such as “void number1(int *)”. But these function calls are part of the binary executable,

so they are glued.

TIME OF LINKING: Static library libnumbers.a is linked to the program program.c at

compile time. The result is the binary executable.

DISTRIBUTION MEDIUM: The program program.c and the library libnumbers.c are

transformed into the binary executable. Therefore they will be distributed as a whole.

LOCATION: The library and the program generate the executable. Therefore, they will

be located in the same sectors in the storage device, and they will be loaded as a whole

into the memory address space when executed.

2.3. DYNAMIC LIBRARIES

Dynamic libraries are also known as shared libraries116. “Shared libraries are libraries

that are loaded by programs when they start. When a shared library is installed

properly, all programs that start afterwards automatically use the new shared

library”117.

116 For the purposes of this work, they might be called either as Dynamic Libraries or Shared Libraries.
117 See, Wheeler David, Program Library HowTo , version 1.36, United States, 2010. Page 7.

24

They have the suffix .so in Linux, and .dll118 in Windows systems. Their prefix by

convention is also lib. Dynamic libraries have advantages in comparison to static

libraries. The program is lighter, and the dynamic libraries can be updated separately.

Dynamic libraries link to the executable at running time by a linker. The executable

binary contents the information about the functions119 contained in the dynamic libraries

required by the program in order to run. There is a dependency list of the dynamic

libraries that are meant to link with the executable at runtime.

In GNU/Linux the GNU Linker ld120 is used.

We can easily generate a dynamic library with the previous example files number1.c and

number2.c.

 EXAMPLE

The same files number1.c and number2.c will be used. This is a simulation of common

program libraries121.

FIRST: Compile the files number1.c and number2.c into object code. The option -fPIC

means enable position independent code122:

 ~# gcc -Wall -fPIC -c numbers1.c numbers2.c //compile C files into object code

SECOND: Create the shared library libnumbers.so.1.0123 and put our object files into it.

The -shared option tells the compiler that is a shared library. The -Wl option passes

options along the linker124:

118 "Dynamic Link Library." A DLL (.dll) file contains a library of functions and other information that can be accessed by
a Windows program.”. See, http://www.techterms.com/definition/dll.

119 In Dynamic linking, these functions remain as undefined symbols until they are linked to the dynamic library. “After
all of the input files have been read and all symbol resolution is complete, the link-editor searches the internal symbol
table for any symbol references that have not been bound to symbol definitions. These symbol references are referred to
as undefined symbols”. See, http://docs.oracle.com/cd/E19082-01/819-0690/6n33n7f65/index.html.

120 “ld combines a number of object and archive files, relocates their data and ties up symbol references. Usually the last
step in compiling a program is to run ld”. See, http://linux.die.net/man/1/ld.

121 In this example, the Program needs the library in order to function. But it could also be the case that the the Dynamic
Library needs the program to function. Such case discuss in the next chapter, when dealing with plug-ins.

122 See, Wheeler David, Program Library HowTo , version 1.36, United States, 2010. Page 13.
123 This is the real name of the library. Don't confuse with the soname and the linker name.
124 See, Wheeler David, Program Library HowTo , version 1.36, United States, 2010. Page 13.

25

http://linux.die.net/man/1/ld
http://docs.oracle.com/cd/E19082-01/819-0690/6n33n7f65/index.html
http://www.techterms.com/definition/dll

 ~# gcc -shared -Wl,-soname,libnumbers.so.1 -o libnumbers.so.1.0 *.o

The soname125 is libnumbers.so.1 and links to the library real name libnumbers.so.1.0126.

For purposes of updating and selecting convenience, the real name adds a 0 at the end,

indicating the library's version number.

Dynamic libraries are usually installed in two special system directories: /lib/ and

/usr/lib/. The reason is that if libraries are shared by several programs, it would be very

inconvenient to place them in other directories. However, it is also possible to change

the LD_LIBRARY_PATH127 environment variable, in order to execute the libraries in

any directory.

THIRD: Move the new library libnumbers.so.1 to the library directory:

 ~# mv libnumbers.so.1.0 /usr/lib /*move dynamic library into another library directory*/

FOURTH: Create symbolic links to the soname and a linker name128:

~# ln -sf /usr/lib/libnumbers.so.1.0 /usr/lib/libnumbers.so.1 /*Create a symbolic link to the soname
 with ln129*/

~# ln -sf /usr/liblibnumbers.so.1.0 /usr/lib/libnumbers.so /*Create a symbolic link to the linker*/

FIFTH: Generate the binary executable and link it to the Library:

~# gcc -Wall -L/usr/lib/libnumbers.so.1.0 program.c -lctest -o executable

125 “Every shared library has a special name called the ``soname''. The soname has the prefix ``lib'', the name of the
library, the phrase ``.so'', followed by a period and a version number that is incremented whenever the
interface changes”. See, David A. Wheeler, Program Library HowTo , version 1.36, United States, 2010. Page 8.

126 This name convention is required when using ELF ld. It is highly recommended because of other library functions such
as indexing and updating. For more info, See, Wheeler David, Program Library HowTo , version 1.36, 2010

127 Follow the link instructions in order to set the Library Path: http://www.linuxquestions.org/questions/linux-software-
2/how-to-set-ld_library_path-684799/.

128 “In addition, there's the name that the compiler uses when requesting a library, (I'll call it the ``linker name''), which is
simply the soname without any version number” . See, Wheeler David, Program Library HowTo , version 1.36, United
States, 2010. Page 8.

129 See, http://linux.about.com/od/commands/l/blcmdl1_ln.htm.

26

http://linux.about.com/od/commands/l/blcmdl1_ln.htm
http://www.linuxquestions.org/questions/linux-software-2/how-to-set-ld_library_path-684799/
http://www.linuxquestions.org/questions/linux-software-2/how-to-set-ld_library_path-684799/

When the executable runs, it causes the operating system to load the dynamic library

into memory:

 ~# ./executable

If we want to know the dynamic libraries that are linked to the executable, the simplest

way is using the ldd130 command, which shows the shared libraries dependencies:

~# ldd executable

linux-gate.so.1 => (0xb7774000)
libnumbers.so.1 => /usr/lib/libnumbers.so.1 (0xb7757000)
libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb75ae000)
/lib/ld-linux.so.2 (0xb7775000)

We can note that the soname of the dynamic library libnumbers.so.1.0 is printed. For the

purpose of obtaining a deeper analysis of the executable's ELF131 format, and

specifically the dynamic section, we can use the command readelf132 :

~# readelf -d executable

Dynamic section at offset 0xf20 contains 21 entries:
 Tag Type Name/Value
 0x00000001 (NEEDED) Shared library: [libnumbers.so.1]
 0x00000001 (NEEDED) Shared library: [libc.so.6]
…......

This step by step way of generating shared libraries is not practical when building real

projects. It is much better to use an automated build system such as Cmake133.

RESUME

MODIFICATION: The binary executable does not include the dynamic library

130 “print shared library dependencies” . See, http://linux.about.com/library/cmd/blcmdl1_ldd.htm.
131 Executable and Linkable Format. See, http://en.wikipedia.org/wiki/Executable_and_Linkable_Format.
132 “Displays information about ELF files”. See, http://linux.about.com/library/cmd/blcmdl1_readelf.htm.
133 See, http://cmake.org.

27

http://cmake.org/
http://linux.about.com/library/cmd/blcmdl1_readelf.htm
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://linux.about.com/library/cmd/blcmdl1_ldd.htm

libnumbers.so.1.0 functions. Thus, there is not a modification of the library by default.

The only possible modification occurs at the memory address space134, when running the

program.

DEPENDENCY: In technical terms, libnumbers.so.1.0 and program.c are independent.

But at running time, our program.c becomes dependent on the libnumber.so.1.0 dynamic

library. Nevertheless, the executable could also link to other library with similar

functionality, and libnumbers.so.1.0 could also be linked with other programs.

INTERACTION: Program.c interacts with libnumbers.a by making function calls such

as “void number1(int *)”. These function calls remain separate, and the functions are

linked just when the program is invoked, and closed when the process is finished.

TIME OF EXECUTION: Time is the key factor when dealing with dynamic linking.

The time of linking is at runtime135. The program.c is linked to libnumbers.so.1.0 when

the executable is invoked, and not when the program was compiled.

DISTRIBUTION MEDIUM: Because our library and our program don't form a whole

in the executable, they can be distributed separately.

LOCATION: The library and the executable are stored in different sectors in the

storage device. But at running time, they are combined in the memory address space.

2.4. DYNAMIC LOADED LIBRARIES

Dynamic loaded libraries are dynamic libraries, with the peculiarity that they are linked

when loaded, after the startup of a program. This loading/unloading functionality

134 “An address space is a defined range of locations, physical or virtual, in a memory system. The address may be part of
a computer’s main memory or storage system, as well as a location within a network host or secondary memory
system, such as a graphics card”. See, http://www.wisegeek.net/what-is-an-address-space.htm.

135 Runtime can also be referred as the Startup time of the Program. See,
http://stackoverflow.com/questions/846103/runtime-vs-compile-time.

28

http://stackoverflow.com/questions/846103/runtime-vs-compile-time
http://www.wisegeek.net/what-is-an-address-space.htm

normally uses an API136, with the purpose of opening the library, looking for symbols,

and closing the library137. In simple words, they are dynamic libraries with the extra

functionality of running just when the functions are invoked, and not necessarily at

runtime.

Because of this improvement, dynamic loaded libraries are mostly used with plug-ins138

and kernel modules139. Their resources and memory management are considerable more

efficient than general dynamic linked libraries.

To show this process, the previous dynamic shared library libnumbers.so.1.0 will be

linked to a new program, which will have the option of loading the library functions by

an API. With the purpose of doing that, in C we need to use the <dlfn.h> header file, in

order to use the dynamic loading API140.

EXAMPLE

FIRST: Create a program for dynamic loading. Four relevant functions are provided

within the program: dlopen()141, dlerror()142, dlsym()143, and dlclose()144.

dynamic_loading.c
#include <stdio.h>
#include <dlfn.h>

void number1(int *); /*calling function to library “libnumbers.so.1.0”*/
void number2(int *); /*calling function to library “libnumbers.so.1.0”*/

136 Application Programming Interface, See, http://www.techterms.com/definition/api.
137 For more info: See, Wheeler David, Program Library HowTo , version 1.36, United States, 2010. Page 19.
138 “A software plug-in is an add-on for a program that adds functionality to it”. See,

http://www.techterms.com/definition/plugin.
139 “Kernel Modules are pieces of code that can be loaded and unloaded into the kernel upon demand. They extend the

functionality of the kernel without the need to reboot the system”. See,
https://wiki.archlinux.org/index.php/Kernel_modules.

140 Other Programming languages also come with default APIs for loading libraries. E.g. In Java, the ClassLoader abstract
class is responsible for loading classes. See, http://docs.oracle.com/javase/7/docs/api/java/lang/ClassLoader.html.

141 “opens a library and prepares it for use. In C its prototype is: void * dlopen(const char *filename, int flag); ”. See,
Wheeler David, Program Library HowTo , version 1.36, United States, 2010. Page 20.

142 “Errors can be reported by calling dlerror(), which returns a string describing the error from the
last call to dlopen(), dlsym(), or dlclose()”. See, David A. Wheeler, Program Library HowTo , version 1.36,
United States, 2010. Page 21.

143 “The main routine for using a DL library is dlsym(3), which looks up the value of a symbol in a given (opened) library.
This function is defined as: void * dlsym(void *handle, char *symbol); ”. See, Wheeler David, Program Library HowTo
, version 1.36, United States, 2010. Page 21.

144 “The converse of dlopen() is dlclose(), which closes a DL library”. See, Wheeler David, Program Library HowTo,
version 1.36, United States, 2010. Page 22.

29

http://docs.oracle.com/javase/7/docs/api/java/lang/ClassLoader.html
https://wiki.archlinux.org/index.php/Kernel_modules
http://www.techterms.com/definition/plugin
http://www.techterms.com/definition/api

main (int argc, char **argv)
{
void *load;
double (*func)(int *);
char *error;
int a; int b;

load=dlopen(“'/usr/lib/libnumbers.so.1.0”), RTLD_LAZY); /*dlopen opens the library. RTLD_LAZY145 */
if(! Load)
{
 fprintf(stderror, “%s\n”, dlerror());
exit(1);
}

func = dlsym(load, “numbers1”); /*dlsym makes possible using the library.Here we
 call the function numbers1*/

if ((error = dlerror()) != NULL) /*It could also be numbers2, or both*/
{
 fprint(stderror, “%s\n”, error);
exit(1);
}
(*func)(&a);
printf(“number1=%d\n”, a);
dlclose(load); /*dclose() closes a library*/
return 0;
}

SECOND: Compile this program:

 ~# gcc -rdynamic -o executable dynamic_loading.c -ldl

As we can see, the functions number1 or number2 can be loaded when required by the

program.

 RESUME

MODIFICATION: The binary executable does not include the libnumbers.so.1.0

components. Thus, there is not a modification of the library by default. The only

possible modification is at the computer memory space when loading the functions of

the library.

DEPENDENCY: The library libnumbers.so.1.0 is independent of the executable. There

145 “In dlopen(), the value of flag must be either RTLD_LAZY, meaning ``resolve undefined symbols as code from
the dynamic library is executed'', or RTLD_NOW, meaning ``resolve all undefined symbols before dlopen()
returns and fail if this cannot be done''. For more info see, Wheeler David, Program Library HowTo , version
1.36, United States, 2010. Page 20-21.

30

are two functions inside the library: number1 and number2. When we call any of these

functions, the library is linked to the executable, but if they are not called, they are not

linked. Nevertheless, because one of the typical use of this kind of libraries is in a plug-

in infrastructure, we should consider that usually plug-ins are programmed for the

purpose of enhancing the functionality of a program, so they can be considered program

dependent. Thus, a plug-in might need the program, but the program not necessarily.

INTERACTION: Dynamic_loading.c interacts with libnumbers.a by making function

calls such as “void number1(int *)”. These function calls remain separate, and the

functions are binded just when the function is loaded, and closed when the function is

unloaded. The function calls are made when requested, so they don't link to the library

by default.

TIME OF LINKING: Linking time is loading time. If just a part of the functions

included in the library are loaded, it is not precise to assume that all the library is linked

as a whole.

DISTRIBUTION MEDIUM: Our library and our program are different, so they can be

distributed separately.

LOCATION: The library and the executable are stored in different sectors in the

storage device. But at running time, they are combined inside the computer memory

address space, when the functions of the library are loaded.

2.5. COMBINING LIBRARIES AND BUILDING PROJECTS

In a real scenario, static and dynamic libraries are often combined when building a

project. This combination might present a real license challenge when choosing between

using other libraries or creating new ones. Open source projects are developed by many

contributors, and the license compatibility between dynamic libraries might become a

31

very difficult task146. In the world of FOSS147 Software, several building tools exist

towards the project construction. One of the most popular project builder tool

combinations are Make and Cmake.

(1) Make. “Make is a tool which controls the generation of executables and other non-

source files of a program from the program's source files”148. This means that a Makefile

will build and install a program in one step, but programming a make file can be

considered somehow difficult by some users. In practice, makefiles are generated

automatically by other building tools, such as Cmake.

(2) Cmake. “Is a cross-platform, open source build system. CMake is a family of tools

designed to build, test and package software. CMake is used to control the software

compilation process using simple platform and compiler independent configuration

files. CMake generates native makefiles and workspaces that can be used in the

compiler environment of your choice”149.

In our days with Cmake, building programs from its source has become an easy task.

We can easily combine static and dynamic libraries to conform a single executable.

Cmake generates all needed makefiles in Unix and GNU systems, but it can also build

projects for other platforms such as Windows.

EXAMPLE

FIRST: Write a Cmakelists.txt file which creates and link static and dynamic libraries:

 CmakeLists.txt

cmake_minimum_required (VERSION 2.6)
project (numbers)

146 If you want to get an idea about the number of shared libraries and licenses that have to co-exist within the project
distribution, see https://launchpad.net/ubuntu/quantal/+source/supercollider/+copyright.

147 See, https://en.wikipedia.org/wiki/Free_and_open-source_software.
148 See, http://www.gnu.org/software/make/.
149 For more details see, http://cmake.org.

32

http://cmake.org/
http://www.gnu.org/software/make/
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://launchpad.net/ubuntu/quantal/+source/supercollider/+copyright

add_library (staticgroup STATIC number1.c number2.c) //Create a Static library
add_library (dynamicgroup SHARED number3.c number4.c) //Create a Dynamic Shared Library
add_executable (executable program.c) //Generate executable
target_link_libraries(prog staticgroup) //Link Static Library to executable
target_link_libraries(prog numbersdynamic) //Link Dynamic Shared Library to executable

With this small CmakeLists.txt file we can replace all the command line processes

described in the previous chapters. Cmake can create as many libraries as necessary, and

link them all to our final executable.

SECOND: We invoke cmake and then we run the automatically generated Makefile:

 ~# cmake ../

THIRD: Run the makefile.

~# make

Because of Cmake, all the necessary flags and options are automatically generated and

written into the Makefile. The prefix and suffix of the libraries are generated by default.

The staticgroup library is renamed to libstaticgroup.a and the dynamicgroup library is

renamed to libdynamicgroup.so150.

RESUME

Building projects are just the practical part of how program libraries are linked with

executables in a real scenario. Therefore, the analysis criteria would depend on the type

of program libraries that are linked to the executable.

2.6. OBJECT ORIENTED PROGRAMMING

Object Oriented Programming can be defined as “a programming methodology based

on objects, instead of just functions and procedures. These objects are organized into

classes, which allow individual objects to be group together”151. Some important

150 In this example, there is not needing of using soname or linker name for the dynamic library. The update and indexing
features are not essential when creating auxiliary extensions, or plug-ins.

151 See, http://techterms.com/definition/oop.

33

http://techterms.com/definition/oop

features of OOP languages are inheritance152, and polymorphism153.

Regarding the field of linking program libraries, OOP languages have some relevant

differences that might change the way that we interpret them. Until now, some simple

examples based on the C basics of static and dynamic linking. But now it is time to

unleash some of the main differences of OOP languages. In contemporary software,

some of the most relevant OOP languages are C++ and Java.

The C++ programming language: “is a programming language that was built off the

C language. The syntax of C++ is nearly identical to C, but it has object-oriented

features, which allow the programmer to create objects within the code”154. It comes

from 1983155, and it is widely used in all kinds of applications. The success of c++ is

bound to the possibility of using C programs with an object oriented programming

orientation. In the following example we can get the flavor of a c++ program156:

Polygons.cpp

#include <iostream>
using namespace std;

class Polygons { //main class
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 };

152 “In object-oriented programming (OOP), inheritance is a way to establish Is-a relationships between objects. In
classical inheritance where objects are defined by classes, classes can inherit attributes and behavior from pre-existing
classes called baseclasses, superclasses, or parent classes. The resulting classes are known as derived classes,
subclasses, or child classes”. https://en.wikipedia.org/wiki/Inheritance_%28object-oriented_programming%29. For a
complete inheritance description, see: Eckel Bruce, Thinking in Java 4th edition, page 21- 23.

153 “Subtype polymorphism, often referred to as simply polymorphism in the context of object-oriented programming, is
the ability to create a variable, a function, or an object that has more than one form”. See,
https://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming. For a complete polymorphism
description, see: Eckel Bruce, Thinking in Java 4th edition, page 21- 23.

154 See, http://www.techterms.com/definition/cplusplus.
155 C++ was developed by Bjarne Stroustup since 1979 at Bell Labs. See, https://en.wikipedia.org/wiki/C%2B%2B.
156 A highly recommended C++ introductory book is: Eckel Bruce, Thinking in C++ vol1, New Jersey, Prentice Hall Inc,

2000.

34

https://en.wikipedia.org/wiki/C%2B%2B
http://www.techterms.com/definition/cplusplus
https://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

class Rectangle: public Polygons { //Rectangle is a derived class of Polygons
 public:
 int area ()
 { return (width * height); }
 };

class Triangle: public Polygons { //Triangle is a derived class of Polygons
 public:
 int area ()
 { return (width * height / 2); }
 };

int main () {
 Rectangle rectangle;
 Triangle triangle;

 rectangle.set_values(2,3); //The rectangle class uses the Polygon's
 triangle.set_values(2,3);
 cout << rectangle.area() << endl;
 cout << triangle.area() << endl;

 return 0;
}

In this simple example, the object main class is Polygons, and the derived classes are

Rectangle and Triangle. The method157 .set_values(2,3) calls the set_values(int a, int b)

function of the Polygons class, and has the task of setting the values of the arguments int

a, and int b. Rectangle and Triangle are derived from Polygons, therefore they inherit

the Polygons class methods. We can always create as many derived classes as we need

of the Polygons class, and of the Rectangle and Triangle classes.

The Java programming language: “Java is a programming language and computing

platform first released by Sun Microsystems in 1995. There are lots of applications and

websites that will not work unless you have Java installed, and more are created every

day. Java is fast, secure, and reliable. From laptops to datacenters, game consoles to

scientific supercomputers, cell phones to the Internet, Java is everywhere!”158. Java

157 “In object oriented programming, a method is a subroutine (or procedure) associated with a class. Methods define the
behavior to be exhibited by instances of the associated class at program run time”. See,
http://en.wikipedia.org/wiki/Method_%28computer_programming%29.

158 See, http://www.java.com/en/download/faq/whatis_java.xml.

35

http://www.java.com/en/download/faq/whatis_java.xml
http://en.wikipedia.org/wiki/Method_(computer_programming)

brought a new programming environment which has some important differences with

his predecessors159. Java has two relevant characteristics which are different from other

OOP languages:

(1) Is platform and device independent. There is not a compilation of executable code

for a particular machine. Instead, Java uses the Java byte code160, a special format which

can be understood in all platforms. This byte code format contains the instructions of a

Java program, which will be executed by the Java virtual machine161 . In simple words,

Java byte code is platform independent, as it can be understood by all operating systems

and even hardware devices162.

(2) All libraries are dynamically linked in Java. The Java virtual machine executes

the Java byte code instructions at run time163. The JVM contains the standard Java

libraries164, and they are dynamic loaded libraries. This means that instead of link a

complete program before execution, the classes and interfaces165 are linked and loaded

during the execution of the program166.

EXAMPLE

FIRST: This example shows most Object Oriented Programming features in Java:

159 Such as C++. or Smalltalk.
160 “Java bytecode is the form of instructions that the Java virtual machine executes”. See,

http://en.wikipedia.org/wiki/Java_bytecode.
161 “is a virtual machine that can execute Java byte code. It is the code execution component of the Java platform”. See,

http://en.wikipedia.org/wiki/Java_virtual_machine.
162 However, “only the interpreter and a few native libraries need to be ported to get Java to run on a new computer or

operating system”. See, http://wiki.answers.com/Q/Why_java_is_platform_independent.
163 Nevertheless, there are mechanisms for including files to run in a specific machine. See,

http://www.ehow.com/info_12216358_java-static-linking.html.
164 The Java Class Library extends the programmer options. “The Java Class Library (JCL) is a set of dynamically

loadable libraries that Java applications can call at run time”. See,
http://en.wikipedia.org/wiki/Java_Class_Library#Licensing

165 “An interface is not a class. Writing an interface is similar to writing a class, but they are two different concepts. A
class describes the attributes and behaviors of an object. An interface contains behaviors that a class implements”. See,
http://www.tutorialspoint.com/java/java_interfaces.htm.

166 See, Drossopoulou, Eisenbach, Manifestations of Java Dynamic Linking – an approximate understanding at source
language level-, Imperial College, London, 2002.

36

http://www.tutorialspoint.com/java/java_interfaces.htm
http://en.wikipedia.org/wiki/Java_Class_Library#Licensing
http://www.ehow.com/info_12216358_java-static-linking.html
http://wiki.answers.com/Q/Why_java_is_platform_independent
http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Java_bytecode

polygons.java

import java.util.*;
 import java.math.*;

 interface GetPolygons //We use an Interface
{

public float width = 4;
public float height = 3;
public void get();
}

 class GetRectangle implements GetPolygons //class GetRectangle implements Getpolygons
{

public void get()
{
 System.out.println("Rectangle is :" + (4 * 3));
 }
}

 class GetTriangle implements GetPolygons //class GetTriangle implements GetPolygons
{

public void get()
{
 System.out.println("Triangle is :" + (4*3)/2);
 }
}

 abstract class Formula /* This abstract class167 is included with the purpose
 of showing polymorphism features */
{

private GetPolygons getPolygons;
public Formula()
{
}
public void setGetPolygons (GetPolygons polygons)
{

getPolygons = polygons;
}

public void get(){
getPolygons.get();
}

}

 class Rectangle extends Formula //class Rectangle is derived from Formula
{
 public Rectangle()
 {
 setGetPolygons(new GetRectangle());
 }
}

 class Triangle extends Formula //class Triangle is derived from Formula
{
 public Triangle()
 {

167 “An abstract class is a class that is declared abstract it may or may not include abstract methods. Abstract classes
cannot be instantiated, but they can be subclassed”. See, http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html.

37

http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

 setGetPolygons(new GetTriangle());
 }
}

class GetThemAll //This class will get executed by the Java virtual machine
{

public static void main (String[] args)
{

 Rectangle rectangle = new Rectangle();
 Triangle triangle = new Triangle();

 rectangle.get();
 triangle.get();

 }
}

SECOND: Use the Java compiler javac168, in other to obtain the java byte code of all

classes:

~# javac polygons.java

THIRD: Execute the Java byte code of the class GetThemAll, and all classes get linked

at run time:

~# java GetThemAll

Rectangle is : 12
Triangle is : 6

As we have seen, Object Oriented Programming presents new challenges because of their

inheritance nature. Also consider that the process of linking libraries is different in the Java

language.

 RESUME

168 “javac (pronounced "java-see", or often "javack") is the primary Java compiler, included in the Java development Kit
(JDK) from Oracle Corporation. See, http://en.wikipedia.org/wiki/Javac.

38

http://en.wikipedia.org/wiki/Javac

MODIFICATION: There is an inherited condition, former classes are modified into

derived classes, with the purpose of extending their functionality.

DEPENDENCY: Derived classes are dependent on former classes.

INTERACTION: Derived classes interact with former classes by using the former

class methods.

TIME OF EXECUTION: Depends if the libraries are static or dynamic. In the case of

the Java language, libraries are dynamically loaded.

DISTRIBUTION MEDIUM: Derived classes and former classes could be distributed

separately. But that is not usual, considering that there are official distributions either for

the proprietary world, or the FOSS world.

LOCATION: They might be stored in different sectors in the storage device. But when

the derived classes are loaded into memory169, the methods and variables of the former

class will be instantly loaded as well, so they would share the same location in the

computer memory address space.

2.7. NETWORK SOFTWARE

In our days, network software systems are very common. Software can be

interconnected because of special types of software components called pipes170 and

sockets171. The difference between both is that pipes send unidirectional communication,

while sockets are bi-directional, therefore, more suitable for network communication.

Sockets functions are often included in standard libraries such as the <sys/socket.h>

169 They could be loaded into memory at run time(if shared libraries), or at the loading time (if dynamic loaded libraries).
170 “A pipe is a communication device that permits unidirectional communication”. See, Mitchell, Oldham, Samuel,

Advanced Linux Programming, New Riders Publishing, United States, 2001. Page 110.
171 “A socket is a bidirectional communication device that can be used to communicate with
another process on the same machine or with a process running on other machines”. See, See, Mitchell, Oldham, Samuel,

Advanced Linux Programming, New Riders Publishing, United States, 2001. Page 116.

39

header file contained in the GNU C Library172, the C++ Sockets Library173, or the Java

Sockets Library174.

EXAMPLE

A well known GPL licensed computer program for network analysis is Wireshark175, and

it uses the default X Windows system for GNU/Linux named Xorg176. They are different

processes which are communicated by shared memory segments177.

FIRST: Check the shared memory segments with the ipcs178 command:

~# ipcs -m
0x00000000 229381 root 600 393216 2 dest
0x00000000 262150 root 600 393216 2 dest
…

SECOND: Check the processes which are connected to the memory segment ID 229381

with lsof179 and grep180:

~# lsof | grep 229381
Xorg 1102 root DEL REG 0,4 229381 /SYSV00000000
wireshark 3518 root DEL REG 0,4 229381 /SYSV00000000
….

When two programs are interconnected, each one has a different process181, but they are

connected by the shared memory segments. Shared libraries once loaded, can be mapped

172 “Any Unix-like operating system needs a C library: the library which defines the ``system calls'' and other basic
facilities such as open, malloc, printf, exit...”. See, http://www.gnu.org/software/libc/.

173 See, http://www.trumphurst.com/cpplibs2.html.
174 See, http://docs.oracle.com/javase/1.5.0/docs/api/java/net/Socket.html.
175 “Wireshark is the world's foremost network protocol analyzer. It lets you capture and interactively browse the traffic

running on a computer network”. See, http://www.wireshark.org/about.html.
176 “Xorg is the public, open-source implementation of the X window system version 11”. See,

https://wiki.archlinux.org/index.php/Xorg.
177 A very comprehensive post about shared memory segments can be found at: http://www.orafaq.com/node/8.
178 “Shared Memory is an efficeint means of passing data between programs. One program will create a memory portion

which other processes (if permitted) can access”. See, http://www.cs.cf.ac.uk/Dave/C/node27.html.
179 “list open files” . See, http://linux.about.com/library/cmd/blcmdl8_lsof.htm.
180 “searches one or more input files for lines containing a match to a specified pattern”. See,

http://www.gnu.org/software/grep/.
181 “A running instance of a program is called a process”. See, Mitchell, Oldham, Samuel, Advanced Linux

Programming, New Riders Publishing, 2001. Page 45.

40

http://www.gnu.org/software/grep/
http://linux.about.com/library/cmd/blcmdl8_lsof.htm
http://www.cs.cf.ac.uk/Dave/C/node27.html
http://www.orafaq.com/node/8
https://wiki.archlinux.org/index.php/Xorg
http://www.wireshark.org/about.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/net/Socket.html
http://www.trumphurst.com/cpplibs2.html
http://www.gnu.org/software/libc/

into different processes. This is possible using a copy-on-right182 technique. Thus, the

shared library instead of been copied many times, is just pointing to the new processes.

In the network, the connection is done via sockets, because of their bidirectional

communication properties. Contemporary software is based on two models of

communication: The Client Server model, and the Peer to Peer model.

(1) The Client Server model. This model is the most widely used in inter-process

communications. In simple terms, there are two processes running. The client process

requests the connection to the server process. In networking the situation does not

change, the client host requests the connection to the server host, and the server host

accepts or denies the connection.

For example, when using the HTTP183 protocol on the Internet, if you connect from your

computer to a Web Site, you are the client, and your requested Web Site is the Server.

Very common connection oriented programs such as Netcat184, or Open SSH185, follow

this model. In technical terms, this connection is possible because of the Client Host and

Server Host sockets.

(2) The Peer to Peer Model. In this model all peers are expected to be server and client

at the same time. The sockets of a host connect to the sockets of other host in both

directions, as a requester and as a listener. For example, when using file sharing

software such as Bit Torrent186. All hosts running a Bit Torrent client are able to

182 “Copy-on-write stems from the understanding that when multiple separate tasks use identical copies of the same
information (i.e., data stored in computer memory or disk storage), it is not necessary to create separate copies of that
information for each process, instead they can all be given pointers to the same resource”. See,
http://en.wikipedia.org/wiki/Copy-on-write.

183 “Stands for "HyperText Transfer Protocol." This is the protocol used to transfer data over the World Wide Web”. See,
http://www.techterms.com/definition/http.

184 “Netcat is a featured networking utility which reads and writes data across network connections, using the TCP/IP
protocol”. See, http://netcat.sourceforge.net/.

185 “OpenSSH encrypts all traffic (including passwords) to effectively eliminate eavesdropping, connection hijacking, and
other attacks. Additionally, OpenSSH provides secure tunneling capabilities and several authentication methods, and
supports all SSH protocol versions”. See, http://www.openssh.org/.

186 “ is a protocol that supports the practice of peer to peer file sharing and is used for distributing large amounts of data
over the Internet”. See, http://en.wikipedia.org/wiki/BitTorrent.

41

http://en.wikipedia.org/wiki/BitTorrent
http://www.openssh.org/
http://netcat.sourceforge.net/
http://www.techterms.com/definition/http
http://en.wikipedia.org/wiki/Copy-on-write

download files from other hosts, and seed other hosts with their own files. All these

services are coordinated by a Bit Torrent tracker, which helps the hosts to synchronize

between each other, with the purpose of exchanging files. All hosts are connected using

sockets.

This model has become very popular in the last ten years. Very popular P2P software is

Skype187, or Tor188.

RESUME

MODIFICATION: Generally, there is not modification because the client's process and

the server's process have different executables. Nevertheless, if the dynamic library of a

host is linked to another host, and there is only one process running, the context is

different. This might be the case of a program linking to a library in the network.

DEPENDENCY: In the client server model, the Client host depends on the Server host.

In the P2P model, all the peers are interdependent. Depends on who is seeding and who

is receiving the packets.

INTERACTION: They interact their processes with their sockets, pipes or via shared

memory segments.

TIME OF EXECUTION: The client and server programs are running on different

hosts. The libraries and executables of both are normally linked separately.

DISTRIBUTION MEDIUM: Programs and libraries can be distributed separately.

LOCATION: The Hosts might be located in different places, at different computer

networks. But when the programs are connected, they generate different processes,

therefore, they are allocated at different places if they are in different volumes..

187 “The service allows users to communicate with peers by voice using a microphone, video by using a webcam, and
instant messaging over the Internet”. See, http://en.wikipedia.org/wiki/Skype.

188 “Tor is free software and an open network that helps you defend against a form of network surveillance that threatens
personal freedom and privacy, confidential business activities and relationships, and state security known as traffic
analysis”. See, https://www.torproject.org/.

42

https://www.torproject.org/
http://en.wikipedia.org/wiki/Skype

2.8. COMPUTER MEMORY SPACE

The Memory is a physical group of RAM chips. “It determines the size and number of

programs that can be run at the same time, as well as the amount of data that can be

processed instantly”189. This means that all programs when loaded, generate a process in

the memory space.

There are two kinds of computer memory:

(1) RAM Memory. “(Random Access Memory) The main memory in a computer,

smartphone or tablet. It is used as a temporary workspace to execute instructions that

process the data”190. Normally physical memory and RAM memory are referred as the

same. When the programs are loaded, they generate a process which allocates memory

physical space in the RAM. It can be Dynamic191 or Static192.

(2) Virtual Memory. “Virtual memory allows multiple programs to load in memory at

the same time, virtual memory uses the hard disk to temporarily hold what was in real

memory”193. Virtual memory is often referred as swap or cache memory. It optimizes

memory management because it uses the hard drive space to record the memory

contents into page segments194. In Linux based systems, it is often recommended using a

special partition called the swap partition195, in order to manage the hard drive space for

the virtual memory.

 Processes run independently of each other, so when an executable is loaded, it generates

a process which is dynamically allocated into a virtual memory system, allowing the

189 See, http://www.pcmag.com/encyclopedia_term/0,1237,t=memory&i=46756,00.asp.
190 See, http://www.pcmag.com/encyclopedia_term/0,1237,t=RAM&i=50159,00.asp.
191 “The most common type of computer memory. Dynamic RAM (DRAM, D-RAM) chips are very dense because they use

only one transistor and one storage capacitor for each bit”. Copied from
http://www.pcmag.com/encyclopedia/term/42192/dynamic-ram.

192 “A fast memory technology that requires power to hold its content. Static RAM (SRAM, S-RAM) is used for high-speed
registers, caches and relatively small memory banks such as a frame buffer on a display adapter”. Copied from
http://www.pcmag.com/encyclopedia/term/52041/static-ram.

193 See, http://www.pcmag.com/encyclopedia_term/0,1237,t=virtual+memory&i=53929,00.asp.
194 Generally, Segments of 4kb
195 See, http://www.linux.org/article/view/swap-partition.

43

http://www.linux.org/article/view/swap-partition
http://www.pcmag.com/encyclopedia_term/0,1237,t=virtual+memory&i=53929,00.asp
http://www.pcmag.com/encyclopedia/term/52041/static-ram
http://www.pcmag.com/encyclopedia/term/42192/dynamic-ram
http://www.pcmag.com/encyclopedia_term/0,1237,t=RAM&i=50159,00.asp
http://www.pcmag.com/encyclopedia_term/0,1237,t=memory&i=46756,00.asp

separation of the processes. The virtual address space contains blocks of memory

addresses. Typically, memory addresses are 32-bit mode or 64-bit mode. These virtual

addresses are mapped into physical memory by the page segments196.

EXAMPLE

When the program links to the dynamic libraries, they share the same computer process

in the computer memory address space. For example, when using a program such as the

text editor Gedit197, Gedit links to dynamic shared libraries such as libXau.so.6.0.0198,

libdbus-1.so.3.5.8199, and so forth. When Gedit is executed, it links to the dynamic

libraries, and they form a single process200:

FIRST: Run the gedit executable.

~# ./gedit //run the gedit executable

SECOND: Find dynamic libraries dependencies from the ELF201 binary format with

readelf:

~# readelf -d gedit

0x00000001 (NEEDED) Shared library: [libgedit-private.so.0]
 0x00000001 (NEEDED) Shared library: [libX11.so.6]

…..................

THIRD: Find open files with lsof202, and filter the Gedit process within the shared

libraries with grep203.

196 For a detailed and easy description of Memory Allocation, See this blog: http://duartes.org/gustavo/blog/post/anatomy-
of-a-program-in-memory.

197 “gedit is the official text editor of the GNOME desktop environment”. See, http://projects.gnome.org/gedit/.
198 See, http://www.linuxfromscratch.org/blfs/view/svn/x/libXau.html.
199 See, http://dbus-cplusplus.sourceforge.net/.
200 “A process is an executing (i.e., running) instance of a program. Each process is guaranteed a unique PID, which is

always a non-negative integer”. See, http://www.linfo.org/pid.html.
201 The Executable and Link format is in charge of doing the Linking between the Executable and the dynamic libraries.

See, http://www.linux-mips.org/wiki/ELF.
202 For more information about Open Files and processes, See, http://www.ibm.com/developerworks/aix/library/au-

lsof.html.
203 “searches one or more input files for lines containing a match to a specified pattern”. See,

44

http://www.ibm.com/developerworks/aix/library/au-lsof.html
http://www.ibm.com/developerworks/aix/library/au-lsof.html
http://www.linux-mips.org/wiki/ELF
http://www.linfo.org/pid.html
http://dbus-cplusplus.sourceforge.net/
http://www.linuxfromscratch.org/blfs/view/svn/x/libXau.html
http://projects.gnome.org/gedit/
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory

~# lsof | grep gedit

gedit 2639 luisenriquez mem REG 8,4 774568 16911158 /usr/lib/libgedit-private.so.0.0.0
gedit 2639 luisenriquez mem REG 8,4 1254264 16912828 /usr/lib/i386-linux-gnu/libX11.so.6.3.0

 …...................

As we can see, both dynamic linked libraries share the 2639 process within the Gedit

process.

At the physical memory level, the ELF204 binary format is in charge of linking the shared

libraries. The bits allocated in the process can also can be found inside the data

structures205 of the computer physical memory. The data structures in the memory are a

bit stream206 representation of all processes loaded into the memory.

When dynamic libraries are loaded into the memory, they are mapped to all the

processes which require them. The process is temporary, and it will be deleted as soon

as the device turns off. Nevertheless, a bit stream image207 of the physical memory can

help as proof of the existence of any computer process that was loaded at a certain

time. In a bit stream image is possible to find the bits corresponding to ELF formats, in

order to establish dynamic linking between shared libraries and executables.

 In Unix environments, the dd208 command can be used for obtaining a bit-stream copy

of the memory:

~$ dd if=/dev/fmem of=/home/ram.dd bs=512 count=4194304 /*Copy the first 4194304 sectors of the
 physical memory*/

The ELF file data structures and the shared libraries can be found in the bit stream

http://www.gnu.org/software/grep/.
204 The Executable and Link format is in charge of doing the Linking between the Executable and the dynamic libraries.

See, http://www.linux-mips.org/wiki/ELF.
205 “Data structures are generally based on the ability of a computer to fetch and store data at any place in its memory,

specified by an address—a bit string that can be itself stored in memory and manipulated by the program”. See,
http://en.wikipedia.org/wiki/Data_structure.

206 “bit stream is a time series or sequence of bits. A bytestream is a series of bytes, typically of 8 bits each, and can be
regarded as a special case of a bitstream”. See, https://en.wikipedia.org/wiki/Bitstream.

207 “A bit-stream image is a sector-by-sector / bit-by-bit copy of a hard drive”. See, http://www.computer-
forensics.net/FAQs/what-is-a-bit-stream-image.html

208 “convert and copy a file”. See, http://linux.about.com/od/commands/l/blcmdl1_dd.htm.

45

http://linux.about.com/od/commands/l/blcmdl1_dd.htm
http://www.computer-forensics.net/FAQs/what-is-a-bit-stream-image.html
http://www.computer-forensics.net/FAQs/what-is-a-bit-stream-image.html
https://en.wikipedia.org/wiki/Bitstream
http://en.wikipedia.org/wiki/Data_structure
http://www.linux-mips.org/wiki/ELF
http://www.gnu.org/software/grep/

image, with the aid of a hexadecimal editor such as xxd209:

~# dd if=/ram.dd skip=1516466 count=1 | xxd

0000020: 0000 0000 0100 0000 6c69 6267 6564 6974 libgedit
0000030: 2d70 7269 7661 7465 2e73 6f2e 302e 302e -private.so.0.0.
0000040: 3000 0000 0000 0000 0000 0000 0000 0000 0...............

~# dd if=/ram.dd skip=1517293 count=1 | xxd

0000020: 0000 0000 0100 0000 6c69 6258 3131 2e73 libX11.s
0000030: 6f2e 362e 332e 3000 0000 0000 0000 0000 o.6.3.0.........

~# dd if=/ram.dd skip=1810688 count=1 | xxd

0000000: 7f45 4c46 0101 0100 0000 0000 0000 0000 .ELF............
0000010: 0300 0300 0100 0000 14e4 ffff 3400 0000 4...
0000020: 9404 0000 0000 0000 3400 2000 0400 2800 4. ...(. ...

RESUME

The running process is temporal, and it will be deleted as soon as the process is killed or

the computer is turned off. The computer memory address space is the place where the

executable links to the program libraries. It is possible to obtain a copy of the physical

memory with the purpose of proving that program libraries and executables shared data

structures at the physical memory level.

2.9. VOLUMES, PARTITIONS AND MULTIDISKS

Very often, hard drive and volume are referred as synonyms, but in fact they mean

different things. A hard drive is a storage medium with a certain capacity measured in

bytes, which are divided into sectors210. A volume is a single logical storage area within a

single file system. At the volume level, the information is stored is blocks211 or

clusters212. blocks and clusters are groups of sectors.

209 “xxd creates a hex dump of a given file or standard input”. See, http://linux.about.com/library/cmd/blcmdl1_xxd.htm
210 “is the smallest addressable storage unit in the hard disk and is typically 512 bytes. Each sector is given an address,

starting at 1 for each track”. See, Brian Carrier, File system analysis, Addison Wesley Professional, United States,
2005. Page 31.

211 “The Unix communities employ the term block to refer to a sector or group of sectors”. See,
http://en.wikipedia.org/wiki/Cylinder-head-sector.

212 “Clusters are allocation units for data on various windows file systems (FAT, NTFS, etc.)”. See,

46

http://en.wikipedia.org/wiki/Cylinder-head-sector
http://linux.about.com/library/cmd/blcmdl1_xxd.htm

It is possible to have many volumes on a hard drive, and it is also possible to have many

hard drives in a volume. We have many volumes in a hard drive, when the hard drive

has different partitions on it. We could have a partition running Windows with a NTFS213

file system, a second one running Ubuntu, with Ext3214 file system, a third one with a

swap partition215, a fourth one running Mac OSX with a hfsplus216 file system, and so

forth. Every partition is a volume.

We could also have many hard drives in a volume, when the partition uses several

devices, for different reasons such as improving performance and storage capacity. Very

common multi-disk volumes are RAIDS217 and Disk Spanning218.

RESUME

An executable links to dynamic libraries and form a process in the computer memory

space. But these components normally need to be stored in the same volume. If they are

located in different volumes, a Networking system must be applied, such as the client -

server model, or the P2P model.

http://en.wikipedia.org/wiki/Cylinder-head-sector.
213 “The New Technologies File System (NTFS) was designed by Microsoft and is the default file
system for Microsoft Windows” . See, Brian Carrier, File system analysis, Addison Wesley Professional, United States,
2005.
214 “are the default file systems for many distributions of the Linux operating system”. See, Brian Carrier, File system

analysis, Addison Wesley Professional, United States, 2005.
215 See, http://www.linux.org/article/view/swap-partition.
216 HFS Plus or HFS+ is a file system developed by Apple Inc. to replace their Hierarchical File System (HFS) as the

primary file system used in Macintosh computers (or other systems running MacOS).
217 “RAID stands for Redundant Arrays of Inexpensive Disks and is commonly used in high-

performance systems or in critical systems”. See, Carrier Brian, File system analysis, Addison Wesley Professional,
United States, 2005. Pages 111-116.

218 “Disk spanning makes multiple disks appear to be one large disk”. See, Carrier Brian, File system analysis, Addison
Wesley Professional, United States, 2005. Pages 117-120.

47

http://www.linux.org/article/view/swap-partition
http://en.wikipedia.org/wiki/Cylinder-head-sector

CHAPTER THREE: THE GPL FAQ INTERPRETATION OF
LINKED LIBRARIES

The field of linked libraries is still an obscure and not well understood GPL area. The

GPL license goes far beyond the provisions of traditional copyright law, and this

challenge is very positive, because is contributing to the evolution of copyright law. Due

to the complexity of the subject, the FSF interprets the GPL license with the purpose of

helping developers, lawyers, and users, to understand the meaning of all GPL

provisions.

However, it is certainly difficult to interpret a generic-purpose license just in one

direction, and especially the GPL, because of the copyleft viral effect. A generic-purpose

license is a copyright license, with the difficult task of being interpreted by different

applicable laws, in different jurisdictions, and different law families219.

The FSF interpretations are contained in the GPL FAQ220. They should be understood as

the interpretations of the copyright license writer, who provides the option of using the

GPL license to the copyright holders. However, this interpretation must also be

understood inside the boundaries of copyright national laws, and international copyright

conventions.

An important issue to consider, is that the GPL FAQ makes a distinction between static

and dynamic libraries in some of their interpretations. They expose some different

technical situations regarding the particular conditions of both. For that reason, the type

of linking becomes relevant in this chapter, even if such distinction does not exist in

national copyright laws, or international copyright conventions.

219 For example, consider that in the USA, a copyright license is also considered a contract. See,
http://www.law.washington.edu/lta/swp/law/contractvlicense.html.
220 See, http://www.gnu.org/licenses/gpl-faq.html.

48

http://www.gnu.org/licenses/gpl-faq.html
http://www.law.washington.edu/lta/swp/law/contractvlicense.html

The purpose of this chapter is to analyze the GPL FAQ interpretations of linking

program libraries and derivative works, following five criteria221 from the previous

chapter: modification, dependency, interaction, distribution medium, and location. These

criteria is very valuable because it splits the GPL license copyleft restrictions into

specific categories, and the confrontation of such categories inside a copyright law

context. This confrontation creates several paradigms.

3.1. MODIFICATION

The Modification criterion in the GPL license determines if the original works have

been modified or copied into another work.

GPL v2: “You may modify your copy or copies of the Program or any portion of it, thus

forming a work based on the Program...”222. Modification is a general requirement for

creating a derivative work.

A cause condition is established: “You must cause any work that you distribute or

publish, that in whole or in part contains or is derived from the Program or any part

thereof, to be licensed as a whole...”223.

However, identifiable sections of a work which are not derived works would not have to

follow the license: “...If identifiable sections of that work are not derived from the

Program, and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those sections when you

distribute them as separate works”224.

GPL v3: “To “modify” a work means to copy from or adapt all or part of the work in a

fashion requiring copyright permission, other than the making of an exact copy. The

resulting work is called a “modified version” of the earlier work or a work “based on”

221 The time of execution criterion was useful in order to make a difference between static libraries, dynamic linked
libraries and dynamic loaded libraries. However, the analysis of the other five criteria will be directly applied to the
GPL FAQ interpretations, assuming such time of execution differences.

222 See, GPL v2 section2 paragraph 1. Available at http://www.gnu.org/licenses/gpl-2.0.html.
223 See, GPL v2, section 2, paragraph 1.b, available at, http://www.gnu.org/licenses/gpl-2.0.html.
224 See, GPL v2, section 2, paragraph 2, available at http://www.gnu.org/licenses/gpl-2.0.html.

49

http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html

the earlier work225”.

Under this modify definition, to copy from also generates a modified version, if it is not

an exact copy.

GPL FAQ:

“If the modules are included in the same executable file, they are definitely combined in

one program. If modules are designed to run linked together in a shared address space,

that almost surely means combining them into one program”226.

The dynamic libraries and the executable are combined into a single process. They also

share the same memory address space.

In respect of Object Oriented Programming:“Subclassing is creating a derivative work.

Therefore, the terms of the GPL affect the whole program where you create a subclass

of a GPL'ed class”227. This interpretation covers all the object oriented programming

cases.

 ANALYSIS

The modification criterion can be applied under two scenarios: The process228 as a

modified work of the dynamic libraries, and the object oriented programming as an

exception to the general programming language perspective.

(1) The Process as modified work. In static linked libraries, the modified work is

clearly the executable, because it contains the source code, and the static library

components. In dynamic linked libraries, the executable does not contain the library

functions, just an expectation to be linked. Until then, these instructions remain as

undefined symbols. Therefore, the equivalent will be a process running at the computer

225 See, GPL v3 section 0.
226 See, http://www.gnu.org/licenses/gpl-faq.html#MereAggregation.
227 See, http://http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#TOCOOPLang.
228 “A process is an executing (i.e., running) instance of a program. Each process is guaranteed a unique PID, which is

always a non-negative integer”. See, http://www.linfo.org/pid.html.

50

http://www.linfo.org/pid.html
http://www.linfo.org/program.html
http://http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#TOCOOPLang
http://www.gnu.org/licenses/gpl-faq.html#MereAggregation

memory address space229. This process is temporary, and it will disappear as soon as the

device is turned off230.

The process is a running instance of a program. If the process is considered a modified

work, a very controversial paradigm emerges: Who creates the modified work? The

answer is, the user. Then, if the user does not distribute the modified version, and uses

the program for private purposes, there wouldn't be a copyleft infringement, or at least

under this criterion. The GNU disposes: “The GPL does not require you to release your

modified version, or any part of it. You are free to make modifications and use them

privately, without ever releasing them”231. This means that the user would not be the

infringer, because he is allowed to make modifications and run them privately. If the

user redistributes the program and the libraries, they won't be linked, so the cycle

repeats and repeats.

Nevertheless, the developer who violates the GPL provisions in this way could also be

considered as an indirect responsible of the copyright infringement. In some

jurisdictions such as the United States, secondary liability232 might apply because of the

the contribution and facilitation for committing infringement233. The panorama is still

unclear, and there are not legal precedents of secondary liability in the field of linking

libraries and the GPL license.

Finally, we should question if the process is a derivative work, or is the program itself.

Technically, the process is an instance of the program. Legally, there is not distinction

between the program and the process. The process is the instance where the executable

gets completed. Therefore, the executable of the program linked to dynamic libraries,

only exists as a temporary process.

229 This temporary location of the process will be analyzed in the location criteria, in chapter 3.5.
230 All details were already described in the Chapter 2.8 of this work.
231 See, http://www.gnu.org/licenses/gpl-faq.html#GPLRequireSourcePostedPublic.
232 This facilitation for others infringement is also known as Contributory liability. A well known case is Gershwin

Publishing Corp. v Columbia Artists Management, Inc. 443_F.2d_1159(2d Cir. 1971).
233 Liability is generally determined by national laws.

51

http://www.gnu.org/licenses/gpl-faq.html#GPLRequireSourcePostedPublic

(2) Object Oriented Programming. The FSF interpretation about OOP languages is

straightforward, sub-classing is not allowed. A new paradigm emerges when we

consider that all source files in some OOP languages are derived from one object

class234. Then, all programs would have to follow the programming language license.

In terms of the Berne Convention, if programming languages don't have an expression,

they might not be subject of copyright protection. In addition, class methods could also

be part of Application Programming Interfaces. It is not clear yet if using APIs is or not

considered as fair use exception235.

3.2. DEPENDENCY

The dependency criterion on the GPL license determines if the libraries are dependent

on the program, or the program depends on the libraries.

GPL v2: “If identifiable sections of that work ... are not derived from the Program, and

can be reasonably considered independent... Then this License, and its terms, do not

apply to those sections when you distribute them as separate works”236.

GPL V3: “A compilation of a covered work with other separate and independent works

... is called an aggregate”237.

But, What is considerably independent? The license does not provide such definition.

GPL FAQ: The interpretation provides a dependency criterion: “If your program

depends on a non-free library to do a certain job, it cannot do that job in the Free

World. If it depends on a non-free library to run at all, it cannot be part of a free

234 In most OOP Languages such as Super Collider, all classes are derived from one object class. See,
http://supercollider.sourceforge.net/.

235 An important legal precedent which involves the GPL license, application programming interfaces, and fair use is
Oracle v Google. This case will be deeply analyzed in chapter 4.3 of this work.

236 See, GPL v2 section 2, paragraph 2.
237 See, GPL v3 section 5, paragraph 2. Available at http://www.gnu.org/licenses/gpl.html.

52

http://www.gnu.org/licenses/gpl.html
http://supercollider.sourceforge.net/

operating system such as GNU; it is entirely off limits to the Free World”238. This

provision certainly determines that in case of any dependency, the GPL license is not

negotiable. It does not matter if it is part of a certain job, or about all the program

functionality.

If the libraries are GPL, the interpretation is the same: Q:“If a library is released under

the GPL (not the LGPL), does that mean that any software which uses it has to be under

the GPL or a GPL-compatible license?” A:“Yes, because the software as it is actually

run includes the library”239.

ANALYSIS

The dependency criterion can be applied over two scenarios:

(1) When a GPL Program depends on a non-free Library. When a new software

project is built, it becomes crucial to determine which libraries are useful for providing

the required functionalities. When non free libraries are needed, the copyright holder of

those libraries can still give his permission to use them. In such case, there is not

copyright infringement.

If those libraries are used by the copyright holder of a GPL licensed program, a new

paradigm emerges: The infringement comes from the copyright holder who uses these

non-free libraries for his GPL licensed program. That is not possible under most

copyright laws because he already got the permission for using them. For avoiding such

cases, the GPL FAQ adds the following:

“If the program is already written using the non-free library, perhaps it is too late to
change the decision. You may as well release the program as it stands, rather than not
release it. But please mention in the README that the need for the non-free library is a
drawback, and suggest the task of changing the program so that it does the same job
without the non-free library”240.

This panorama gets more complicated if we consider that contemporary software

238 See, http://www.gnu.org/licenses/gpl-faq.html#FSWithNFLibs. Paragraph 1.
239 See, http://www.gnu.org/licenses/gpl-faq.html#IfLibraryIsGPL.
240 Copied from: http://www.gnu.org/licenses/gpl-faq.html#FSWithNFLibs , paragraph 2.

53

http://www.gnu.org/licenses/gpl-faq.html#FSWithNFLibs
http://www.gnu.org/licenses/gpl-faq.html#IfLibraryIsGPL
http://www.gnu.org/licenses/gpl-faq.html#FSWithNFLibs

normally depends on many shared libraries. Those shared libraries might also be

interdependent with other libraries. The inter-libraries dependencies241 might also be

hidden to the final developer of a program, so he could just not be aware of their license

compatibilities242 .

Also consider that most shared libraries are downloaded via default packaging systems

such as DPKG243 or RPM244. In such case, the developer and the packet distributor might

not have the premeditation of committing copyleft infringement245.

(2) When a non-free library depends on a GPL Program.

This is the scenario of plug-ins. There are many programs in which the plug-ins provide

the program functionalities. The plug-ins are generally dependent on the program, and

loaded when their functionality is required. But in many cases the plug-ins might also

contain different types of code246. These different types of code are dependent as a

Whole on the GPL program in order to function, but some of the files won't directly link

to the Program. This is a very common case of famous Content Management Systems247

such as Wordpress248, or Drupal249. Under the dependency criteria, all the files should

follow the GPL license, but in reality that is not a suitable solution. This paradigm could

be solved through the application of a split GPL license250.

241 “An inter-library dependency is one in which a library depends on other libraries. For example, if the libtool library
libhello uses the cos function, then it has an inter-library dependency on libm, the math library that implements cos”.
See, http://www.gnu.org/software/libtool/manual/html_node/Inter_002dlibrary-dependencies.html.

242 A detailed description on libraries interdependencies is available at:
http://www.gnu.org/software/libtool/manual/html_node/Inter_002dlibrary-dependencies.html.

243 “Packet manager for Debian”. See, http://linux.die.net/man/1/dpkg.
244 “RPM package manager”. See, http://linux.die.net/man/8/rpm.
245 In Romano-Germanic law systems, the Intention is a general requirement for establishing liability.
246 E.g. A wordpress plug-in. A Wordpress plug-in usually contains PHP code, CSS code, HTML code. See,

https://codex.wordpress.org/Writing_a_Plugin.
247 “A content management system (CMS) is a system used to manage the content of a Web site”. See,

http://searchsoa.techtarget.com/definition/content-management-system.
248 “WordPress is web software you can use to create a beautiful website or blog. We like to say that WordPress is both free

and priceless at the same time”. See, http://wordpress.org/.
249 “Drupal is an open source content management platform powering millions of websites and applications”. See,

http://drupal.org/.
250 This information is expanded in the Wordpress v Thesis case, described in chapter 4.2 of this work.

54

http://drupal.org/
http://wordpress.org/
http://searchsoa.techtarget.com/definition/content-management-system
https://codex.wordpress.org/Writing_a_Plugin
http://linux.die.net/man/8/rpm
http://linux.die.net/man/1/dpkg
http://www.gnu.org/software/libtool/manual/html_node/Inter_002dlibrary-dependencies.html
http://www.gnu.org/software/libtool/manual/html_node/Inter_002dlibrary-dependencies.html

3.3. INTERACTION

The interaction criterion consists of how to the program's executable connects to the

shared libraries.

GPL v2: “If identifiable sections of that work are not derived from the Program, and

can be reasonably considered independent and separate works in themselves ...”251. The

program libraries and the program might be seen as separate works by themselves. The

key would be to determine if they just interact through allowed function calls.

GPL v3: “A compilation of a covered work with other separate and independent works,

which are not by their nature extensions of the covered work, and which are not

combined with it such as to form a larger program, in or on a volume of a storage or

distribution medium, is called an “aggregate”...”252 .

GPL v3 adds the combination. If interaction is considered a combination, then this

provision clearly forbids interaction in the terms of linking.

GPL FAQ: “If the program dynamically links plug-ins, and they make function calls to

each other and share data structures, we believe they form a single program, which

must be treated as an extension of both the main program and the plug-ins...”253.

“Combining two modules means connecting them together so that they form a single

larger program. If either part is covered by the GPL, the whole combination must also

be released under the GPL—if you can't, or won't, do that, you may not combine

them...”254. The program links to the dynamic libraries by making function calls. Thus,

the copyleft is triggered under these interpretations.

But there are exceptions: “If the program uses fork and exec to invoke plug-ins, then the

251 See, GPL v2 section 2, paragraph 2.
252 See, GPL v3 section 5. paragraph 2.
253 See, http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins. Paragraph 2.
254 See, http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins.

55

http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins
http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins

plug-ins are separate programs, so the license for the main program makes no

requirements for them...”255. The fork() and exec() are common system calls in Unix

environments. These system calls are used with the purpose of spawning and executing

new programs256.

There is also a borderline interpretation of interaction: “If the program dynamically

links plug-ins, but the communication between them is limited to invoking the ‘main’

function of the plug-in with some options and waiting for it to return, that is a

borderline case”257. Plug-ins might be programmed in different ways, and for different

purposes. The main function might be the activation function, or the loading function.

But there is a lot of uncertainty around this borderline case.

Also consider that network software interacts through sockets. Function calls are sent

and received by the peers or hosts. If the GPL FAQ interpretation only applies to

dynamic libraries, we should be aware that dynamic libraries could also be linked in the

network. The GPL FAQ interpretation is different in network cases:

“By contrast, pipes, sockets and command-line arguments are communication
mechanisms normally used between two separate programs. So when they are used for
communication, the modules normally are separate programs. But if the semantics of
the communication are intimate enough, exchanging complex internal data structures,
that too could be a basis to consider the two parts as combined into a larger
program”258.

ANALYSIS

Some paradigms emerge in relation to the interaction criterion: the paradigm of libraries

as computer programs, and the paradigm of function calls and interoperability.

(1) Libraries as Computer Programs. Dynamic libraries can also be considered as

255 See, http://www.gnu.org/licenses/gpl-faq.html#GPLPluginsInNF. Paragraph 1.
256 An easy tutorial about system calls with the Linux kernel is available at: http://www.tuxradar.com/content/how-linux-

kernel-works.
257 See, http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins. Paragraph 3.
258 See, http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#TOCMereAggregation. Paragraph 4.

56

http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#TOCMereAggregation
http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins
http://www.tuxradar.com/content/how-linux-kernel-works
http://www.tuxradar.com/content/how-linux-kernel-works
http://www.gnu.org/licenses/gpl-faq.html#GPLPluginsInNF

computer programs, or a collection of programs. They don't fuse their contents with

another computer program into an executable. Some definitions consider them as

programs: “A dynamic link library (DLL) is a collection of small programs, any of

which can be called when needed by a larger program that is running in the

computer”259.

As we can see, the question here is whether dynamic libraries are considered as

computer programs, or not. Technically, they are programs or collections of programs

designed with the purpose of extending the functionality of other programs. Legally,

they can also be understood as computer programs. The European Directive 2009/24/EC

establishes: “A computer program shall be protected if it is original in the sense that it

is the author's own intellectual creation. No other criteria shall be applied to determine

its eligibility for protection”260.

Following this provision, there is not a legal difference between a dynamic library and a

computer program. Thus, they interact as two different computer programs. Also, there

is not such difference in the GPL license. The GPL v3 defines the program as: “The

Program refers to any copyrightable work licensed under this License...”261. The

difference between programs and libraries was made only through the GPL FAQ

interpretation. The LGPL license made such distinction, and wisely included combined

works in its provisions. Adding combined works into the derived works provisions

would be a good solution for the interaction paradigms in the GPL license262.

(2) Function calls and Interoperability. The GPL FAQ interpretation accepts normal

communication via sockets and pipes for the purpose of program interactivity263. But it

also allows the possibility of normal communication for dynamic linking:

“Where's the line between two separate programs, and one program with two parts?

259 See, http://searchwinit.techtarget.com/definition/dynamic-link-library.
260 Art 1.3 Directive 2009/24/EC on the legal protection of computer programs.
261 See, GPL v3, section 0. Definitions. Available at http://www.gnu.org/licenses/gpl.html.
262 See, LGPL license v3, section 0. Definitions. Available at http://www.gnu.org/licenses/lgpl.html
263 See, http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#TOCMereAggregation. Paragraph 5.

57

http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#TOCMereAggregation
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/gpl.html
http://searchwinit.techtarget.com/definition/dynamic-link-library

This is a legal question, which ultimately judges will decide. We believe that a proper
criterion depends both on the mechanism of communication (exec, pipes, rpc, function
calls within a shared address space, etc.) and the semantics of the communication (what
kinds of information are interchanged)”264.

The plug-ins are usually loaded by an Application Programming Interface265 built within

the Program. These APIs provide all the needed elements in order to connect a plug-in.

The plug-in will be ready to link to the program at runtime or loading time, by the

API266. If the API does not invoke the plug-in by default, the user has to load the plug-in.

A dynamic library, or a plug-in which links dynamically, usually brings some specific

functions to the program. Therefore, the main function of a dynamic library is its

purpose, and the function calls are just connectors which behave similar to sockets or

pipes, because they act as interfaces, and allow communication between executables and

dynamic libraries located elsewhere at run time or loading time.

Program libraries interaction is a common feature, and legally, it is not clear why

program libraries must be treated in a different manner than computer programs. The

European Directive 2009/24/EC stands: “...The parts of the program which provide for

such interconnection and interaction between elements of software and hardware are

generally known as interfaces. This functional interconnection and interaction is

generally known as interoperability”267.

Nevertheless, developer communities seem to accept that plug-ins of GPLed programs

must be licensed under the GPL license. For example, this is the license statement that

Wordpress recommends to plug-in developers: “It is customary to follow the standard

header with information about licensing for the Plugin. Most Plugins use the GPL2

license used by WordPress or a license compatible with the GPL2”268.

264 See, http://www.gnu.org/licenses/gpl-faq.html#MereAggregation. Paragraph 2.
265 “An API is a set of commands, functions, and protocols which programmers can use when building software for a

specific operating systems”. See, http://www.techterms.com/definition/api.
266 This API is set by the Program for the plug-ins development, in a similar way than an Operative System offers APIs for

developing Computer programs.
267 See, Recital 10 of the directive 2009/24/EC.
268 See, https://codex.wordpress.org/Writing_a_Plugin.

58

https://codex.wordpress.org/Writing_a_Plugin
http://www.techterms.com/definition/api
http://www.gnu.org/licenses/gpl-faq.html#MereAggregation

3.4. DISTRIBUTION MEDIUM

The distribution medium criterion determines if the dynamic libraries and the computer

program are forced to be licensed under the GPL license, in the case that they are

distributed in the same distribution medium. This criterion is not about the general

distribution obligations of the GPL license such as distribution of the source code, or

license distribution269.

GPL v2: “Mere aggregation of another work not based on the Program with the

Program (or with a work based on the Program) on a volume of a storage or

distribution medium does not bring the other work under the scope of this License”270.

Distribution mediums are physical devices such as DVDs271 or CDs272, or in case of

direct downloading, the equivalent is compressed packages such as ZIP273 or TAR274.

GPL v3: “A compilation of a covered work with other separate and independent works,

which are not by their nature extensions of the covered work, and which are not

combined with it such as to form a larger program, in or on a volume of a storage or

distribution medium, is called an “aggregate”...275”

The GPL v3 follows the GPL v2 distribution medium perspective. A distribution

medium is not an important criteria for dynamic libraries if they are considered

aggregate works.

GPL FAQ: “Mere aggregation of two programs means putting them side by side on the

269 The distribution general terms are not directly related to dynamic linked libraries. Distribution terms in GPL have a
huge scope, and that is the reason they will not be confronted in this work.

270 See, GPL v2 section 2, paragraph 4.
271 See, http://en.wikipedia.org/wiki/DVD.
272 See, http://en.wikipedia.org/wiki/CD.
273 “A zip file (.zip) is a "zipped" or compressed file”. See, http://www.techterms.com/definition/zip.
274 “The Tar program provides the ability to create tar archives, as well as various other kinds of manipulation”. See,

http://www.gnu.org/software/tar/.
275 See, GPL v3 section 5 paragraph 2.

59

http://www.gnu.org/software/tar/
http://www.techterms.com/definition/zip
http://en.wikipedia.org/wiki/CD
http://en.wikipedia.org/wiki/DVD

same CD-ROM or hard disk. We use this term in the case where they are separate

programs, not parts of a single program. In this case, if one of the programs is covered

by the GPL, it has no effect on the other program...”

The GPL license makes it very clear. Mere aggregation is not combination.

ANALYSIS

The distribution medium criterion analyzed in the light of the GPL license does not

present any controversy.

3.5. LOCATION (ALLOCATION)

The location criterion consists in determining if the dynamic libraries and the program

are located at the same storage device or computer memory address space.

GPL v2: “...mere aggregation of another work not based on the Program with the

Program (or with a work based on the Program) on a volume of a storage or

distribution medium does not bring the other work under the scope of this License276”.

Under this provision, the volume of a storage is not relevant. But nothing is said about

the computer memory address space.

GPL v3: “A compilation of a covered work with other separate and independent works,

which are not by their nature extensions of the covered work, and which are not

combined with it such as to form a larger program, in or on a volume of a storage or

distribution medium, is called an “aggregate”...277”.

Again in the GPL v3, nothing is said about the computer memory address space.

GNU FAQ: “If the program dynamically links plug-ins, and they make function calls to

276 See, GPL v2 section 2 paragraph 4.
277 See, GPL v3 section 5 par. 2.

60

each other and share data structures, we believe they form a single program”278.

“Using shared memory to communicate with complex data structures is pretty much

equivalent to dynamic linking279”.

The data structures280 of the computer memory space can be obtained, and read bit by

bit281, as it was previously indicated282.

ANALYSIS

The location criteria can be associated with a permanent storage location or to a

memory space temporary allocation. The storage location does not present any

controversy, considering that the GPL license literally rejects it. If we consider that the

process is a modified work of the libraries linked to the program, the computer memory

space perspective gets very important because is the location where the process resides.

An important paradigm emerges at this point: how can we prove that an executable and

some dynamic libraries were located in the computer memory address space after the

computer is turned off? A procedure such as getting a bit stream image of the physical

memory, will help to preserve the contents of the physical memory for future analysis283.

Nevertheless, the analysis at the data structure level requires a good technical

expertise284, in special the analysis of bit-streams of shared memory segments285.

278 See, http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins . Paragraph 2.
279 See, http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins . Paragraph 4.
280 “Data structures are generally based on the ability of a computer to fetch and store data at any place in its memory,

specified by an address—a bit string that can be itself stored in memory and manipulated by the program”. See,
http://en.wikipedia.org/wiki/Data_structure.

281 In order to do that, a bit-stream image acquisition is needed. Then, the image can be loaded in an proper computer
Forensics environment.

282 All related information was already describe in chapter 2.8.
283 A brief example on how to find linked libraries inside data structures was already exposed in chapter 2.8.
284 There is a short technical description about shared memory segments in chapter 2.7. There is a technical description on

ELF formats and data structures in chapters 2.3 and 2.8. However, getting deeper into these highly technical issues is
out of the scope of this work.

285 “A shared memory is an extra piece of memory that is attached to some address spaces for their owners to use. As a
result, all of these processes share the same memory segment and have access to it”. See,
http://www.csl.mtu.edu/cs4411.ck/www/NOTES/process/shm/what-is-shm.html.

61

http://www.csl.mtu.edu/cs4411.ck/www/NOTES/process/shm/what-is-shm.html
http://en.wikipedia.org/wiki/Data_structure
http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins
http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins

However, even if we can get a digital proof that a copyleft infringement happened in the

memory of a computer, such infringement is not happening any more once the computer

has been turned off, or the processes have been killed286.

As a chapter conclusion, it is important to remark the importance of these criteria in

order to determine under which circumstances the copyleft might be triggered in relation

to linked libraries. The paradigms emerged from some criteria such as modification,

dependency and interaction, get more relevance in legal confrontations, due to the

complexity of interpreting copyleft restrictions in a particular copyright law context.

Some of these criteria are complementary regarding specific paradigms. That is the case

of the modification and location criteria in relation to the process as modified work287

paradigm. The fact that the process is the modified work, which resides temporarily in

the computer memory address space, is the sum of the modification and location criteria.

Another case is the close relation between the dependency and interaction criteria in

relation to function calls and interoperability288 paradigm. The fact that function calls

can be seen as mere connectors, grant their use in terms of interoperability, despite of

the dependency relations between the program libraries and executables. These

paradigms could be solved if the GPL would include in the future the combined works

provisions as in the LGPL license.

Now, How to apply these criteria? In the absence of legal precedents, community

disputes can be used with the purpose of understanding better these technical and legal

issues of the GPL license interpretation. That is the purpose of the next chapter.

286 Indeed, this location paradigm is complementary to the modification paradigm the process as the derivative work. See,
chapter 3.1(1) of this work.

287 See, chapter 3.1(1) of this work.
288 See, chapter 3.3(2) of this work.

62

CHAPTER FOUR: LINKING LIBRARIES CONTROVERSIES

The GPL license is still the most popular FOSS license. Many controversies have

emerged around the GPL license and linking program libraries inside the Software

developing projects. There is a constant war concerning the GPL license and the

copyleft, in such a way, that the open source software world seems to be divided into

two sides: copyleft supporters and copyleft detractors.

Despite the philosophical difference between free software and open source software289,

in practice, the copyleft creates a barrier in the field of derivative works between FOSS

licenses. As we have already seen, the GPL is a strong copyleft license which forces the

derivative works to follow the GPL license. But in the field of linking libraries, the

situation is still unclear, due to the absence of case law, and a general lack of legal

knowledge among developer communities.

Nevertheless, developer controversies have been happening in the last years, and

certainly, many legal disputes are beginning to emerge in the field. Controversies are

important for the future development of the GPL license because they provide different

kinds of interpretations, and solutions adapted to real scenarios. The purpose of this

chapter is to briefly discuss some of those controversies and legal disputes, and to

analyze them in the light of copyright law, and the GPL FAQ interpretations of the GPL

license.

4.1. THE SOLUTION: PERMISSION OF THE COPYRIGHT HOLDER

The copyright holder has the right to decide what to do with his work. But when shared

libraries are used to provide some sort of functionality or dependency, it is necessary to

obtain the permission for using those libraries by the correspondent copyright holder.

289 Such difference is explained by Richard Stallman. See, http://www.gnu.org/philosophy/open-source-misses-the-
point.html.

63

http://www.gnu.org/philosophy/open-source-misses-the-point.html
http://www.gnu.org/philosophy/open-source-misses-the-point.html

This principle is not only applied to non-free libraries, because free libraries can also

restrict their use due to the viral effect of copyleft.

For solving these issues, the GPL FAQ provides: “If you want your program to link

against a library not covered by the system library exception, you need to provide

permission to do that”290. This permission is not necessary when the library's license

permits their use by default. This is the case of FOSS licenses with no copyleft such as

the Apache License291, or the BSD License292.

The GPL license is a strong copyleft license which falls into the public licenses case: It

is a generic purpose license that is not written by the copyright holder. Nevertheless the

copyright holder can grant the permission to use his libraries, through writing an

exception. Thus, the permission of the copyright holder is a necessary solution, when

the copyright holder wants to allow others to use his GPL licensed libraries without the

copyleft restrictions.

But, why would someone license their libraries under GPL if he prefers that libraries

can be used for any purpose?, the weaker copyleft LGPL might be more suitable in such

case, or non copyleft licenses. The answer is that conflicted issues can appear after

distribution, and a license has not retroactive effects. It is possible to change license for

future version releases, but not for past versions when they have been already distributed

within the software293.

As changing the GPL license for particular purposes is not an option, particular

exceptions and permissions to the license must be distributed within the license. Many

developer controversies have been avoided by using copyright holder exceptions. Some

290 See, http://www.gnu.org/licenses/gpl-faq.html#GPLIncompatibleLibs.
291 See, http://www.apache.org/licenses/LICENSE-2.0.
292 See, http://www.linfo.org/bsdlicense.html.
293 An interesting case is when the GNU changed their GNU Free Document license version 1.3, with the purpose of

getting compatibility with the Creative Commons Share alike license adopted by Wikipedia. See,
http://www.gnu.org/licenses/fdl-1.3.html, section 11.

64

http://www.gnu.org/licenses/fdl-1.3.html
http://www.linfo.org/bsdlicense.html
http://www.apache.org/licenses/LICENSE-2.0
http://www.gnu.org/licenses/gpl-faq.html#GPLIncompatibleLibs

of the most relevant in relation to the GPL license are:

(1) General Permission of the Copyright Holder: Android v Linux.

An important controversy in the Internet communities has been the Google's decision

about licensing the Android OS under the Apache 2.0 License294. Android is a Linux-

based Operating system developed by Android Inc295. Android Inc was supported and

then bought by Google Inc. It was released in 2007 in cooperation with the Open

Handset Alliance296. Android has become a huge success, and its portability makes it

suitable for smartphones, tables, net-books, and even smart TVs. The Android system is

used today in more than 150 million devices.

Linux is a kernel developed by Linus Torvalds297 in 1991. The Linux kernel was released

under the GPL v2 license. In the beginning, the Linux kernel was adapted for working

with the GNU Operating system, forming the well-known GNU/Linux. Since then,

Linux has gained an enormous popularity in many areas such as web servers, host

servers, supercomputers, and in the last ten years, it has become very popular in

personal computers.

Controversy: The dispute emerged because the Android OS was licensed under the

Apache 2.0 license in 2008. For many free software supporters, Android had to be

licensed under the GPL v2 license because it uses the Linux kernel. Another topic of

discussion was if the Android OS should still be considered free software, especially

because the freedom definition of Free Software Foundation was challenged by the

Android developer team:

“Android is about freedom and choice. The purpose of Android is to promote openness
in the mobile world, but we don't believe it's possible to predict or dictate all the uses to
which people will want to put our software. So, while we encourage everyone to make
devices that are open and modifiable we don't believe it is our place to force them to do
so...”298.

294 See, http://www.apache.org/licenses/LICENSE-2.0.htm.
295 See, http://elinux.org/Android_History.
296 See, http://openhandsetalliance.com .
297 See, http://en.wikipedia.org/wiki/Linus_Torvalds.
298 Ref: http://source.android.com/source/licenses.html.

65

http://source.android.com/source/licenses.html
http://en.wikipedia.org/wiki/Linus_Torvalds
http://openhandsetalliance.com/
http://elinux.org/Android_History
http://www.apache.org/licenses/LICENSE-2.0.html

Despite this different definition of freedom, the Linux kernel comes with the GPL v2

license, and a general permission by Linus Torvalds.

The permission of Linus Torvalds. The copyright holder of The Linux kernel gives his

permission to use his kernel in a note distributed within the GPL v2 license:

“NOTE! This copyright does not cover user programs that use kernel services by
normal system calls – this is merely considered normal use of the kernel, and does not
fall under the heading of derived works. Also note that the GPL below is copyrighted
by the Free Software Foundation, but the instance of code that it refers to (the Linux
kernel) is copyrighted by me and others who actually wrote it”299.

This permission applies to normal system calls. Then, the controversy turned around if

the Android OS and the Linux kernel just interact by normal system calls:

Normal Interaction. The kernel uses system calls with the purpose of providing and

abstraction of the hardware. Examples of normal system calls are fork(), exec(), wait(),

open(), read(),close(), socket(), and so forth. These system calls operate in the kernel

space, and interact with the computer programs at the user space300.

Google replaced all the GNU core libraries by its own Google libraries. The well-known

GNU C library was replaced by the Android Bionic C library301, released under the BSD

license. Thus, the only GPL code in Android is the Linux kernel.

The GNU position is not different: “Google has complied with the requirements of the

GNU General Public License for Linux302, but the Apache license on the rest of Android

does not require source release”. This means that the Linux kernel remains licensed

under the GPL v2 License, and the Android OS was free to be licensed under other

299 See, http://kernel.org/pub/linux/kernel/COPYING.
300 A very easy introduction to the Linux kernel is available at: http://tuxradar.com/content/how-linux-kernel-works. For a

complete guide about the Linux kernel, see: Hartman Greg Kroat, Linux kernel in a nutshell, O'reailly, United States,
2007.

301 See, http://en.wikipedia.org/wiki/Bionic_%28software%29.
302 For a complete Richard Stallman review about Android, See, https://www.gnu.org/philosophy/android-and-users-

freedom.html.

66

https://www.gnu.org/philosophy/android-and-users-freedom.html
https://www.gnu.org/philosophy/android-and-users-freedom.html
http://en.wikipedia.org/wiki/Bionic_(software)
http://tuxradar.com/content/how-linux-kernel-works
http://kernel.org/pub/linux/kernel/COPYING

licenses.

ANALYSIS

Following these arguments, it is clear enough that an operating system such as Android

does not need to follow the GPL v2 license of the Linux Kernel. But, what would

happen if Linus Torvalds had not included his permission within the GPL v2 license?

Can an operating system be considered a derivative work of the kernel? The relevant

criteria for determining if Android commits GPL infringement would be dependency,

and interaction:

Dependency: Android depends on the Linux kernel functionalities, and the Linux kernel

depends on the Android OS. But Android needs the Linux kernel considering that it has

not been used with other kernels yet. However, the Linux kernel does not need Android,

as it is used other operating systems such as the GNU/Linux.

Interaction: The Linux kernel is a modular kernel. The modules provide the kernel

functionality, and they are dynamically loaded into the kernel. As we have seen, under

the GPL v2 the interaction is a criterion for establishing a derivative work, but this case

falls into the GPL FAQ interpretation: “If the program uses fork and exec to invoke

plug-ins, then the plug-ins are separate programs, so the license for the main program

makes no requirements for them...”303.

In this controversy, the Linus Torvalds permission allows the Android team, or any other

developer, to use the Linux kernel. Without such permission, the dependency and

interaction criteria become controversial, and the only solution would be to test is the

Android OS works with other kernels, and check all android libraries and source code to

confirm that is not binded to the Linux kernel in more than normal function calls.

303 See, http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins.

67

http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins

(2) Particular Permission for FOSS Software: MySQL v PHP

 PHP is a “widely-used general-purpose scripting language that is especially suited for

Web development and can be embedded into HTML”304. PHP is owned by the Zend305

Company, and is licensed under the PHP license306, a non copyleft license.

MySQL is “the world's most popular open source database”307. MySQL was originally

developed by MySQL AB308, then was bought by Sun Microsystems309 in 2008310, and

finally acquired by Oracle311 in 2010312. MySQL is licensed under the GPL v2 license.

PHP and MySQL are widely used and distributed together in distributions such as the

LAMP313 server, and Apache based Web server with PHP and MySQL.

Controversy: The dispute emerged when MySQL AB decided to switch their libraries

from the LGPL license to the GPL license in 2004. The PHP developers decided to

disable the extension for MySQL libraries in PHP5. The huge PHP and MySQL Web

developer community was very disappointed with this license conflicting issue. If PHP

was not able to operate with MySQL, the result would be very negative for the open

source community.

This change also affected other enterprises such as Red Hat Enterprise Linux314, one of

the leading Linux based companies. Red Hat as other companies were forced to use the

previous versions of MySQL, or change MySQL for other databases within their

distributions. Red Hat spokeswoman mentioned: “Our core competency is not to service

and support a database"315.

304 Copied from, http://php.net/.
305 See, http://www.zend.com/en/.
306 See, http://www.php.net/license/3_01.txt.
307 Copied from, http://www.mysql.com/.
308 See, http://en.wikipedia.org/wiki/MySQL_AB.
309 See, http://en.wikipedia.org/wiki/Sun_Microsystems.
310 See, http://www.mysql.com/news-and-events/sun-to-acquire-mysql.html.
311 See, http://www.oracle.com/index.html.
312 For a complete story about this sale, see: http://smoothspan.wordpress.com/2009/04/20/oracle-buys-mysql-java-and-

some-other-stuff-now-what/.
313 See, http://www.lamphowto.com/.
314 See, http://www.redhat.com/.
315 A complete report can be found at: http://www.redhat.com/archives/taroon-list/2004-March/msg00234.html.

68

http://www.redhat.com/archives/taroon-list/2004-March/msg00234.html
http://www.redhat.com/
http://www.lamphowto.com/
http://smoothspan.wordpress.com/2009/04/20/oracle-buys-mysql-java-and-some-other-stuff-now-what/
http://smoothspan.wordpress.com/2009/04/20/oracle-buys-mysql-java-and-some-other-stuff-now-what/
http://www.oracle.com/index.html
http://www.mysql.com/news-and-events/sun-to-acquire-mysql.html
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/MySQL_AB
http://www.mysql.com/
http://www.php.net/license/3_01.txt
http://www.zend.com/en/
http://php.net/

The FOSS license exception: To solve this license conflict, a solution emerged from

MySQL AB. They released a GPL license exception, permitting the use of MySQL with

the non GPL'ed software. The exception was called a FLOSS316 license exception317, and

allowed the use of the MySQL client libraries for FLOSS software development, even if

the FLOSS license is not compatible with the GPL v2 license. This license was then

adopted by Oracle, with the name of the FOSS license exception.

There is a very interesting innovation to in this exception: It is only for FOSS software.

The exception defines derivative works and FOSS applications: “"Derivative Work"

means a derivative work, as defined under applicable copyright law, formed entirely

from the Program and one or more FOSS Applications”. "FOSS Application" means a

free and open source software application distributed subject to a license listed in the

section below titled "FOSS License List”318.

At the end of the FOSS license exception, there is a list of all FOSS licenses that are

included within the exception. The most relevant FOSS licenses are included, such as

the PHP license319, the Apache Software License320, the BSD license321, the MIT

license322, the EPL license323, amongst others.

ANALYSIS

The FOSS license exception shows a different way to deal with the copyleft. Oracle, the

copyright holder, included a permission for well-known FOSS licenses. Clearly, the

intention is to deny the interaction of MySQL with proprietary software, in order to keep

316 “Free and open source software”. See, http://en.wikipedia.org/wiki/Free_and_open_source_software.
317 See, http://www.mysql.com/about/legal/licensing/foss-exception/.
318 The complete Oracle's FOSS license is in section 3 of the FOSS library exception, available at:

http://www.mysql.com/about/legal/licensing/foss-exception/.
319 See, http://php.net/license/index.php.
320 See, http://www.apache.org/licenses/.
321 See, http://www.linfo.org/bsdlicense.html.
322 See, http://www.linfo.org/mitlicense.html.
323 See, http://php.net/license/index.php.

69

http://php.net/license/index.php
http://www.linfo.org/mitlicense.html
http://www.linfo.org/bsdlicense.html
http://www.apache.org/licenses/
http://php.net/license/index.php
http://www.mysql.com/about/legal/licensing/foss-exception/
http://www.mysql.com/about/legal/licensing/foss-exception/
http://en.wikipedia.org/wiki/Free_and_open_source_software

it inside the free and open source world. Within the list, there are FOSS licenses with

strong copyleft licenses, and non-copyleft licenses.

What would be the scenario if the MySQL exception has not been released? The

panorama would get more difficult as the GPL derivative work restrictions will apply, in

particular under the modification, dependency, and interaction criteria. PHP interacts

permanently with MySQL by making function calls after connection such as:

<?php
mysqli_connect(host,username,password,dbname);
?>

and the processes are automatically generated:

 ~# sudo lsof | grep apache2

apache2 2035 www-data mem REG 8,4 8315616 17039512
/usr/lib/apache2/modules/libphp5.so

apache2 2035 www-data mem REG 8,4 121552 17043590
/usr/lib/php5/20090626+lfs/mysqli.so

~# sudo lsof | grep mysql

mysqld 1115 mysql 10u IPv4 10082 0t0 TCP localhost:mysql (LISTEN)

…........

Modification: A web server and a database normally generate different processes. In

the graphic we can see that the processes are different.

Dependency: PHP is dependent on a Database in order to function properly, but not

necessarily MySQL. PHP could still connect to other databases such as PostgreSQL324.

 Following the dependency criterion, PHP does not exclusively need MySQL.

Interaction: The function mysql_connect() in PHP permits to send the user data to the

MySQL database. But connecting two processes might be equal to normal interaction

324 See, http://www.postgresql.org/.

70

http://www.postgresql.org/

between two different computer programs. We are in the border line case.

In conclusion, even following the GPL FAQ interpretations of the GPL license, it is

unlikely to have a copyright infringement in this particular case.

The FOSS license exception was necessary in order to avoid dealing with speculations

about GPL infringement. All these restrictions would have been affected the popularity

of MySQL client libraries, but the logic prevailed. The FOSS license exception

constitutes another important solution based on the copyright holder's permission, which

adds new important features. But it is limited only for FOSS software.

4.2. WITHOUT THE PERMISSION OF THE COPYRIGHT HOLDER

 As we have seen in the previous cases, the permission of the copyright holder is by far

the best solution to the GPL license dynamic libraries controversies. But when the

copyright holder has not given his permission, the scenario radically changes.

Despite the lack of relevant legal precedents, many disputes have happened inside

developer communities concerning the dynamic linked libraries paradigms. For the GPL

supporters, “copyleft is a general method for making a program (or other work) free,

and requiring all modified and extended versions of the program to be free as well”325.

On the other hand, the meaning of freedom has been highly questioned by other open

source communities, and other philosophies have emerged such as the copyfree326.

The copyleft is not always clear, and the solutions for GPL controversies just appear

when controversies emerge. In the field of linked libraries, some developer communities

disputes have provided practical solutions that will have to be considered by the Judges

in the near future. Some of them are described next.

325 See, http://www.gnu.org/copyleft/copyleft.html.
326 See, http://www.wikivs.com/wiki/Copyfree_vs_Copyleft.

71

http://www.wikivs.com/wiki/Copyfree_vs_Copyleft
http://www.gnu.org/copyleft/copyleft.html

(1) The Split License Solution: Wordpress v Thesis

Wordpress can be defined as: “a free Content Management System based in PHP and

MySQL”327. It appeared in 2003, and since then has become the most popular blogging

tool in the world. But in the last years it has also become a very popular CMS 328 for

developing Web Sites. Wordpress operates in a plug-in architecture, and plug-ins provide

all extra features such as themes329, language translators, spam blockers330, and so forth.

Wordpress is licensed under the GPL v2 (or later) license.

Thesis331 is a premium Wordpress template theme created by Chris Pearson, co-founder

of a design company called DYITthemes332. The Thesis theme became very popular after

its appearance in 2008, and became a monetary success. But his creator did not release

the plug-in under the GPL v2 license. A Wordpress theme plug-in is often distributed as

a collection of PHP333 code, CSS334 code, HTML335 code, and media content.

Controversy: The controversy turned up in 2010, after an interview at the program

Mixergy336. The thesis creator openly referred to the Thesis monetary success, and

mentioned:“...should have been at least partially free and open source software”337.

Matt Mullenweg338 co-founder of Wordpress, immediately reacted in twitter against

Thesis. He considered that Wordpress users should not use Thesis, because it was

infringing GPL v2 license: "We write software that empowers and protects the freedoms

of users, it's our Bill of Rights. People should respect that”339.

327 See, http://en.wikipedia.org/wiki/WordPress.
328 Content Management System.
329 A Wordpress theme provides a design template for the WebSite. Thesis is one of them. See, http://diythemes.com/.
330 They block all undesired comments and emails. A very popular one is Akismet. See, http://akismet.com/.
331 See, http://diythemes.com/.
332 See, http://diythemes.com/.
333 “Hypertextor Processor”. See, http://php.net/.
334 “Cascading Style Sheets”. See, http://www.w3.org/Style/CSS/.
335 “Hyper Text Markup Language”. See, http://www.w3schools.com/html/.
336 See, See, http://mixergy.com/goto/welcome/.
337 See, http://mashable.com/2010/07/22/thesis-relents/.
338 See, http://en.wikipedia.org/wiki/Matt_Mullenweg.
339 See, http://mashable.com/2010/07/22/thesis-relents/.

72

http://mashable.com/2010/07/22/thesis-relents/
http://en.wikipedia.org/wiki/Matt_Mullenweg
http://mashable.com/2010/07/22/thesis-relents/
http://mixergy.com/goto/welcome/
http://www.w3schools.com/html/
http://www.w3.org/Style/CSS/
http://php.net/
http://diythemes.com/
http://diythemes.com/
http://akismet.com/
http://diythemes.com/
http://en.wikipedia.org/wiki/WordPress

Both parts were confronted in live connected by skype, and transmitted by mixergy. The

interview was a battle of arguments in both directions. Matt Mullenweg mentioned:

“Thesis has stated publicly that they believe in a different interpretation of the GPL. The

GPL doesn’t apply to them. That Wordpress license doesn’t apply and they don’t need to

follow it. That’s obviously harmful to the Wordpress community and I would love them to

join and be GPL”340.

The position of Wordpress was to denounce the copyright infringement of Thesis, but

proposed a solution by inviting Thesis to join the GPL community. For him, Thesis was

violating the GPL Derivative work's obligations. Mullenweg proposed that at least the

PHP code must be licensed under the GPL v2 license.

Pearson from Thesis, replied: “Thesis has over 27,000 users, many of whom were not

introduced to wordPress except through Thesis … a superior functionality to that which

is offered by the platform without Thesis”341. For Pearson, Thesis brings a lot of good

things to Wordpress, it was the preferred Wordpress theme, and brings people into

Wordpress. Certainly, this was not a legal argument.

Mullenweg replied: “It’s just that anyone violating the license is disrespectful to

thousands of people that built wordpress and all of the other businesses that have

respect for wordpress license”. The arguments kept going in both directions. After some

minutes Pearson came out with a good argument: “an attorney in Florida has published

an article called “Why the GPL Does Not Apply to Premium wordpress Themes”342. He

cited a couple of court cases as precedents, one involving Nintendo and the other

involving the Sega genesis console. And, Mullenweg replied: “...the Nintendo case, or

whatever, which I think was from the 1980s or 1990s, has nothing to do with GPL...”343.

Finally, Brian Pearson decided to adopt Mullenweg suggestion, and adopted a Split GPL

340 See, http://mixergy.com/chris-pearson-matt-mullenweg/.
341 See, http://mixergy.com/chris-pearson-matt-mullenweg/.
342 See, http://perpetualbeta.com/release/2009/11/why-the-gpl-does-not-apply-to-premium-wordpress-themes/.
343 See, http://mixergy.com/chris-pearson-matt-mullenweg/.

73

http://mixergy.com/chris-pearson-matt-mullenweg/
http://perpetualbeta.com/release/2009/11/why-the-gpl-does-not-apply-to-premium-wordpress-themes/
http://mixergy.com/chris-pearson-matt-mullenweg/
http://mixergy.com/chris-pearson-matt-mullenweg/

license for Thesis. The PHP code was released under the GPL v2 license, but the

graphics, the CSS and the HTML code remained under a proprietary license.

ANALYSIS

The Wordpress v Thesis dispute didn't become a court case. However, the split license

solution provides an interesting panorama to discuss. First, Wordpress did not want to

make a GPL exception for Thesis. Wordpress provides a precondition for plug-in

developers: “It is customary to follow the standard header with information about

licensing for the Plugin. Most Plugins use the GPL2 license used by wordPress or a

license compatible with the GPL2”344.

Wordpress intention seems to be that plug-ins must be licensed under the GPL2 license

as a Whole. The final solution was to split the plug-in, and use the GPL2 license only to

the PHP linked to the Application Programming Interface in the Wordpress platform.

Independent PHP code, and another types of code such as the CSS and HTML code

would not follow the GPL2 license.

What would happened if Thesis refused to adopt the GPL license? The relevant criteria

would be modification, dependency and interaction.

Modification: A Wordpress plug-in is programmed by using the Wordpress plug-in API.

Therefore, there is a modified work because Wordpress PHP classes and methods are

used, copied or modified in order to create the plug-in. The GPL v2 establishes:“You

must cause any work that you distribute or publish, that in whole or in part contains or

is derived from the Program or any part thereof, to be licensed as a whole...”345.

Dependency: Wordpress plug-ins are dependent on Wordpress in order to function.

Plug-ins generally are dependent on the program, and this case is not an exception. Two

344 See, https://codex.wordpress.org/Writing_a_Plugin.
345 See, GPL v2, section 2, paragraph 1.b, available at, http://www.gnu.org/licenses/gpl-2.0.html.

74

http://www.gnu.org/licenses/gpl-2.0.html
https://codex.wordpress.org/Writing_a_Plugin

non GPL cases of American Courts were mentioned by Pearson during the controversy,

both about dependency:

- Midway Mfg. Co. v. Artic International346. This was a dispute in the video games

arena, and comes from 1982. The plaintiff Midway Mfg. sued Artic International for

copyright infringement in two of his proprietary games: Pacman and Galaxian. The

defendant Artic International developed a set of Rom chips which improved the speed

and performance of the games. The Court ruled in favor of the plaintiff considering that

the copy of the images projected by the device were enough criteria to consider it as a

derivative work, in the meaning of artistic works.

- Lewis Galoob Toys, Inc. v. Nintendo of America, Inc347. The defendant Lewis Galoob

Toys created a special hardware add-on with the purpose of enhancing the Nintendo

systems for video games. The court considered that the hardware add-on did not

incorporate the protected work. This last case could be found convenient for the defense

of thesis, but it was not a GPL case, and was not a hardware case.

Interaction: Thesis contained PHP, CSS and HTML code. The CSS and HTML code

interact with the PHP code. But just some PHP code from thesis interacts with some

PHP code in Wordpress. Following the Interaction criteria, the GNU interprets: “If the

program dynamically links plug-ins, but the communication between them is limited to

invoking the ‘main’ function of the plug-in with some options and waiting for it to return

that is a borderline case”348. Under the Interaction criteria, this case might be a

borderline case, and a Judge could also interpret it as fair use, or not subject of copyright

protection.

In conclusion, in this particular case, the copyleft would be triggered by applying the

modification and dependency criteria.

Apparently Wordpress won the dispute. But the split license solution was not harmful to

Thesis, considering that the graphics, the CSS and the HTML code are a

346 See, 547 F. Supp. 999 (N.D. Ill. 1982)
347 See, 964 F.2d 965 (9th Cir. 1992)
348 See, http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins. Paragraph 3.

75

http://www.gnu.org/licenses/gpl-faq.html#NFUseGPLPlugins
http://en.wikipedia.org/wiki/United_States_District_Court_for_the_Northern_District_of_Illinois
http://en.wikipedia.org/wiki/Case_citation

complementary scheme, but they are the real economic value of Thesis. So in the end,

Pearson did not lose, Thesis still gets economical revenue, and is still one the preferred

Themes by the Wordpress community. The split license solution is very accurate,

because just concern to the code that is actually, linked.

(2) Complete License Change: Hyper-V v Linux Drivers

This controversy emerged in 2009 when Microsoft decided to release 20000 lines of

code under the GPL license. This code consisted of many Linux drivers released as

Linux Integration Component Drivers349. A particularly controversial one was a network

driver in a virtual server and cloud platform called Hyper-V350. Hyper-V driver was

created using GPL libraries, and linked to proprietary code.

Controversy: Steven Hemminger leader of an open source network vendor called

Vyatta351, congratulated Microsoft for releasing the Hyper-V network driver for the

Linux kernel. However, he discovered that the driver352 was infringing GPL v2 licensed

libraries. He told this infringement to A. Greg Kroah Hartman, executive of Novell, and

he informed Microsoft about the GPL alleged infringement.

Mr. Hartman then informed Sam Ram a Microsoft executive about the alleged

infringement. After a few days Microsoft changed the license to the GPL v2, for

business reasons, based on Ramji's353 declaration:

“Microsoft's decision was not based on any perceived obligations tied to the GPLv2
license. For business reasons and for customers, we determined it was beneficial to
release the drivers to the kernel community under the GPLv2 license through a process
that involved working closely with Greg Kroah-Hartman, who helped us understand the
community norms and licensing options surrounding the drivers”354.

349 See, http://www.microsoft.com/en-us/download/details.aspx?id=28188.
350 See, http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx.
351 “Vyatta manufactures software-based virtual router, virtual firewall and VPN products for Internet Protocol networks

(IPv4 and IPv6)”.See, http://en.wikipedia.org/wiki/Vyatta and http://www.vyatta.org/node/5683.
352 “In computing, a device driver is a computer program that operates or controls a particular type of device that is

attached to a computer”. See, http://en.wikipedia.org/wiki/Device_driver.
353 See, http://blogs.technet.com/b/port25/archive/2009/07/23/releasing-the-linux-integration-component-drivers.aspx.
354 See, http://blogs.technet.com/b/port25/archive/2009/07/23/releasing-the-linux-integration-component-drivers.aspx.

76

http://blogs.technet.com/b/port25/archive/2009/07/23/releasing-the-linux-integration-component-drivers.aspx
http://blogs.technet.com/b/port25/archive/2009/07/23/releasing-the-linux-integration-component-drivers.aspx
http://en.wikipedia.org/wiki/Device_driver
http://www.vyatta.org/node/5683
http://en.wikipedia.org/wiki/Vyatta
http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=28188

The problem was solved in a private manner, and the alleged temporal GPL

infringement was rectified. The drivers were licensed under the GPL v2 license, and

then included in the Linux kernel releases.

ANALYSIS

The dispute was gently solved, despite some delays, the lack of maintenance, and many

doubts about Microsoft reasons355, it seems that both parts agreed a common benefit.

But this small controversy generated an immediate reaction in the FOSS community,

especially considering that the principal actor was Microsoft. Microsoft admitted to the

community that used a considerable amount of Linux code, so they accept to license

them under the GPL v2356.

What would happen if Microsoft decided not to use the GPL v2 license for the drivers?.

The modification, and dependency criteria are enough in order to answer:

Modification: The GPL FAQ interprets “Q: Linux (the kernel in the GNU/Linux

operating system) is distributed under GNU GPL version 2. Does distributing a nonfree

driver meant to link with Linux violate the GPL? A:Yes, this is a violation, because

effectively this makes a larger combined work. The fact that the user is expected to put

the pieces together does not really change anything”357.

Following this interpretation, there is a combined work. If the kernel drivers get fused

with the kernel, so they definitely create a modified work. Linux components were

already fused into the drivers.

Dependency: The kernel drivers were dependent on the Linux kernel.

In this case, the copyleft would be triggered by applying the modification and

dependency criteria, again.

355 It seems that the delivery took very long. See, http://www.networkworld.com/news/2011/071811-microsoft-hyperv-
linux.html.

356 See, http://www.kroah.com/log/linux/microsoft-linux-hyper-v-drivers.html.
357 See, http://www.gnu.org/licenses/gpl-faq.html#NonfreeDriverKernelLinux.

77

http://www.gnu.org/licenses/gpl-faq.html#NonfreeDriverKernelLinux
http://www.kroah.com/log/linux/microsoft-linux-hyper-v-drivers.html
http://www.networkworld.com/news/2011/071811-microsoft-hyperv-linux.html
http://www.networkworld.com/news/2011/071811-microsoft-hyperv-linux.html

There is not doubt that Microsoft took the right decision. This case is somehow easy to

solve due to the use of Linux components for creating the kernel drivers, and because

the drivers become part of the kernel. Considering that Microsoft recognize the GPL

license provisions in this driver's case, it seems that the open source communities have

taken for granted that device drivers must follow the kernel's license.

4.3. COURT CASES: NON COPYRIGHT SUBJECT AND FAIR USE

A work is no subject of copyright when does not fulfill the requirements for being

considered as such. The WIPO treaty stands: “Copyright protection extends to

expressions and not to ideas, procedures, methods of operation or mathematical

concepts as such”358. The interpretation about what is or not a subject of copyright can

differ in different laws359.

Fair use is a general copyright exception in the US law. However, there are other

relevant fair use exceptions in other jurisdictions and legal systems360. The GPL FAQ

interprets fair use in the following terms:

“Fair use is use that is allowed without any special permission. Since you don't need
the developers' permission for such use, you can do it regardless of what the developers
said about it—in the license or elsewhere, whether that license be the GNU GPL or any
other free software license. Note, however, that there is no world-wide principle of fair
use; what kinds of use are considered “fair” varies from country to country”361.

Fair use legally means that the user doesn't need to require the permission of the

copyright holder. Common fair uses in the US are such as reproduction for private

purposes, teaching and illustration, criticism, citations, parody, amongst others. In

European Union law, fair use exceptions are not harmonized, but the most common are:

private copy or other private use, parody, quotation, use of a work for scientific or

teaching purposes, news reporting, library privileges, needs of the administration of

358 See, WIPO art 2. Available at http://www.wipo.int/treaties/en/ip/wct/trtdocs_wo033.html#P136_19843.
359 See, Chapter 1.3 of this work.
360 As recommended lecture for fair use in Europe, see: Hugenholtz, Senftleben, Fair use in Europe. In search of

flexibbilities, Universiteit Amsterdam, The Netherlands, 2011.
361 See, http://www.gnu.org/licenses/gpl-faq.html#GPLFairUse.

78

http://www.gnu.org/licenses/gpl-faq.html#GPLFairUse
http://www.wipo.int/treaties/en/ip/wct/trtdocs_wo033.html#P136_19843

justice and public policy362.

Fair use exceptions might apply to many areas of law, included copyright law363.

(1) Oracle v Google

This case provides an important legal precedent for the use of program libraries, at least

in US law. Java is a powerful Object Oriented Programming language, initially

developed by Sun Microsystems from 1990, but acquired by Oracle in 2010364. Java's

popularity is huge among developers, and Java is a meaningful component of most

contemporary software. Java and most of its dependencies migrated to the GPL v2

license between 2006 and 2007. When Oracle merged with Sun Microsystems, Java

continued with the GPL v2 license. But some Java's Application Programming

Interfaces come with specifications.

Understanding the dispute. Java is a powerful programming language which uses a

virtual environment called the Java virtual machine with the purpose of running Java on

different operating systems. Java is not a compiling programming language such as C,

and is not an interpreter programming language such as Lisp. Better said: “The

designers of Java chose to use a combination of compilation and interpretation.

Programs written in Java are compiled into machine language, but it is a machine

language for a computer that doesn’t really exist. This so-called “virtual” computer is

known as the Java virtual machine”365.

Java comes with sets of class libraries for doing different kinds of jobs. Programmers

can use the Application Programming Interfaces in order to get access to those class

libraries366. A very popular Java project between Open Source developers is the Open

JDK project which is distributed with the ClassPath exception and the GPL v2 license.

362 See,Dusollier Severine, Fair Use by design in the European Copyright Directive of 2001: An Empty Promise,
University of Namur, Belgium, 2003. Page 3.

363 See, Hugenholtz, Senftleben, Fair Use in Europe. In search of flexibilities,Universiteit Amsterdam, The Netherlands,
2011.

364 See, http://news.cnet.com/8301-30685_3-20000019-264.html.
365 Copied from: Eck David, Introduction to Programming using Java, Hobart and William Smith Colleges, 1996.
366 For example, through this link there is a description of Java APIs in Java 6: http://docs.oracle.com/javase/6/docs/api/.

79

http://docs.oracle.com/javase/6/docs/api/
http://news.cnet.com/8301-30685_3-20000019-264.html

But the package involved on the dispute was the Java ME phone platform development,

better known as the project PhoneMe367, which does not come with the classPath

exception. This fact makes this case relevant as a GPL legal precedent. This GPL v2

license issue was an inconvenient for Android's business model, so apparently they used

the syntax of some Java APIs, and used the Java virtual machine techniques, but with

their own virtual machine called the Dalvik368, and wrote their own class libraries.

Controversy: The case was divided by the Judge in three parts: (1) The copyright

infringement (2) patent infringement (3) Damages claim. In this work, only the

copyright infringement part369 will be analyzed.

Oracle was claiming copyright infringement over 37 Java's API packages, copying their

method names and headers, and the API's structure and sequence370. The Google

defensive argument was that they used Java because it is a free and open solution, and

they did not copy literally the software code contained in the Java API packages,

instead, Google wrote their own implementations. Considering these facts, Google

argued that this was a fair use case.

The Judge came up with a very interesting solution. He could confirm that some of the

Java's APIs code was copied, so Oracle was right. But the infringement applies only to 9

lines of code that were literally copied related to a Java function of 3179 lines called

Range Check371, and developed by some former Oracle programmers who today work

for Google372. These lines were deleted of Android in 2011, when Google discovered

them inside the code. So there was a very small, and perhaps accidental copy. But there

367 “Java ME phone platform development”. See, http://java.net/projects/phoneme.
368 See, http://en.wikipedia.org/wiki/Dalvik_%28software%29.
369 See, United States District Court for the northern district of California, Case3:10-cv-03561-WHA , Page 2, lines 10-17.
370 The amount of damages was considered by Oracle of nearly $6 billion. See, http://www.groklaw.net/article.php?

story=20120218041255197.
371 As to certain small snippets of code, “the jury found only one was infringing, namely, the nine lines of code called
rangeCheck” . See, United States District Court for the northern district of California, Case3:10-cv-03561-WHA , Page 3,
lines 2-3.
372 “In 2009, Dr. Bloch worked on Google’s Android project for approximately one year. While working on the Android

team, Dr. Bloch also contributed Timsort and ComparableTimsort to the Android platform. Thus, the nine-line
rangeCheck function was copied into Google’s Android. This was how the infringement happened to occur”. See,
United States District Court for the northern district of California, , Case3:10-cv-03561-WHA, Page 13, lines 18-24.

80

http://www.groklaw.net/article.php?story=20120218041255197
http://www.groklaw.net/article.php?story=20120218041255197
http://en.wikipedia.org/wiki/Dalvik_(software)
http://java.net/projects/phoneme

was not a causal nexus between the copied code, and the alleged infringement.

The exchange of arguments between Oracle's lawyer and the Judge was very interesting.

The plaintiff Oracle argued: “I still think it's possible to demonstrate a nexus by showing

that speed was very important to Google in getting Android out, and by copying they

accelerated that”373.

And the Judge replied:

“I have done, and still do, a significant amount of programming in other languages. I've
written blocks of code like rangeCheck a hundred times before. I could do it, you could
do it. The idea that someone would copy that when they could do it themselves just as
fast, it was an accident. There's no way you could say that was speeding them along to
the marketplace. You're one of the best lawyers in America, how could you even make
that kind of argument?”374.

Following the interpretation criteria of the United States copyright Act, 9 lines from

3179 were not a substantial proportion. But the plaintiff replied:

“I want to come back to rangeCheck". And the Judge said: “RangeCheck! All it does is

make sure the numbers you're inputting are within a range, and gives them some sort of

exceptional treatment... a high school student could do it”375. In respect to those 9 lines

of code, the code in Range Check also did not have a considerable market effect,

therefore, there was not a causal nexus between the alleged six billion dollars, and those

9 lines of code.

 About the header and method names, the jury found they were not subject of copyright

protection under US Copyright law: “Copyright law does not protect names, titles, or

short phrases or expressions. Even if a name, title, or short phrase is novel or distinctive

or lends itself to a play on words, it cannot be protected by copyright”376.

About the structure of the API's, the resolution was:

 “Each command calls into action a pre-assigned function. The overall name tree, of
course, has creative elements but it is also a precise command structure — a

373 See, http://www.i-programmer.info/news/193-android/4224-oracle-v-google-judge-is-a-programmer.html.
374 See, http://www.i-programmer.info/news/193-android/4224-oracle-v-google-judge-is-a-programmer.html.
375 See, http://www.i-programmer.info/news/193-android/4224-oracle-v-google-judge-is-a-programmer.html.
376 U.S. Copyright Office, Circular 34; see 37 C.F.R. 202.1(a).

81

http://www.i-programmer.info/news/193-android/4224-oracle-v-google-judge-is-a-programmer.html
http://www.i-programmer.info/news/193-android/4224-oracle-v-google-judge-is-a-programmer.html
http://www.i-programmer.info/news/193-android/4224-oracle-v-google-judge-is-a-programmer.html

utilitarian and functional set of symbols, each to carry out a pre-assigned function. This
command structure is a system or method of operation under Section 102(b) of the
Copyright Act and, therefore, cannot be copyrighted Duplication of the command
structure is necessary for interoperability”377.

The Judge found that the method and header names, and the particular API's structures

and sequences are not subject of copyright protection, but he did not establish a general

legal precedent, as he clearly wrote in his conclusion:

“This order does not hold that Java API packages are free for all to use without license.
It does not hold that the structure, sequence and organization of all computer
programs may be stolen. Rather, it holds on the specific facts of this case, the particular
elements replicated by Google were free for all to use under the Copyright Act.
Therefore, Oracle’s claim based on Google’s copying of the 37 API packages, including
their structure, sequence and organization is DISMISSED...”378.

ANALYSIS

The Judge considered that the method names and the APIs structures sued by Oracle

were not subject of copyright in this particular case. The controversial 9 lines of the

RangeCheck function were not enough due to their procedural content, and the very

small amount of code that they represent in comparison to the 3179 lines of code of the

API packages.

This case is relevant for various reasons regarding the interpretation of the GPL license:

(1) The free version of the Java programming language called Open JDK is licensed

under the GPL v2 license with the classPath exception379. But the Phoneme project did

not include a classPath exception. However, the Judge did not even mention the GPL v2

license. There was a big expectation about other legal issues, in special if the use of

APIs must be considered as fair use, as Google argued.

(2) Application Programming Interfaces extend the functionality of OOP languages,

otherwise they are useless. As the statements of findings in this case mentioned: “An

377 See, United States District Court for the northern district of California, Case3:10-cv-03561-WHA , Page 4, lines 7-11.
378 See, United States District Court for the northern district of California, Case3:10-cv-03561-WHA , Page 41, lines 6-11.

Decision was issued the 12.05.2012.
379 See, http://openjdk.java.net/legal/gplv2+ce.html.

82

http://openjdk.java.net/legal/gplv2+ce.html

API is like a library. Each package is like a bookshelf in the library. Each class is like a

book on the shelf. Each method is like a how-to-do-it chapter in a book. Go to the right

shelf, select the right book, and open it to the chapter that covers the work you need”380.

But in the end, the Judge did not solve if the use of APIs should be considered fair use.

He specified that this is a particular interpretation based on the facts of this case,

therefore, it should not be applied as general rule.

This case has an important relevance for future GPL disputes, because the solution is

proportional. There were 9 lines of code of potential copyright infringement, but those

lines were just not relevant enough. This case makes very clear that interpreting the law

is a competence of Judges.

The GPL FAQ interpretations are somehow important because they show what did the

license writer meant with the GPL license. They can be taken as a guide for developers

and users. But they do not mention principles such as proportionality, or flexibility.

Those principles are somehow avoided, and delegated to the Courts.

(2) SAS v WPL

This is not a GPL related case, but it provides a legal precedent in Europe. In order to

complement the Oracle v Google analysis, it will be briefly discussed. Statistical

Analysis System(SAS)381 is the leading business analytic software the market. It is

maintained by SAS Institute Inc. World Programming System(WPS)382 is a similar

statistical program developed by World Programming Limited.

A statistical Analysis System provides automatic processes for the analysis of data sets.

It performs functions such as calculation of central tendency, frequency distribution,

380 See, United States District Court for the northern district of California, Case3:10-cv-03561-WHA , Page 5, lines 16-23.
381 See, http://www.sas.com/.
382 See, http://www.teamwpc.co.uk/products/wps.

83

http://www.teamwpc.co.uk/products/wps
http://www.sas.com/

and association383. Statistical Software such as SAS permits processing massive

amounts of data, and use it for practical purposes.

Controversy: SAS sued WPS for copyright infringement384. They claimed that WPS

acquired copies of the learning edition of SAS with the purpose of developing a similar

Software System due to the high demand in the market. WPS studied the functioning of

the SAS software, but did not copy any part of the source code. SAS sued WPS in the

High Court in the United Kingdom. The charge was a copyright infringement of WPS

for copying SAS manuals and components.

The Court resolved in favor of WPS because the program functionality is not subject of

copyright protection based on the scope of the Directive 2009/24/EC. The fact that WPS

copied SAS functionality was not an infringement, just the expression that comes out of

that functionality would be subject of protection. The expression could consist about

copying and transforming the source code of SAS, for creating a new program.

The Directive rules: “A computer program shall be protected if it is original in the sense

that it is the author's own intellectual creation. No other criteria shall be applied to

determine its eligibility for protection”385.

But there is a restriction: “Ideas and principles which underlie any element of a

computer program, including those which underlie its interfaces, are not protected by

copyright under this Directive”386.

ANALYSIS

This is the precedent that leaves this case: “The functionality of a computer program or

programming language is not subject of copyright”387. WPL copied the functionality of

SAS, but did not copy the source code.

383 See, http://www.wisegeek.com/what-is-a-statistical-analysis-system.htm
384 See, ECJ_C406_10.
385 See, Directive 2009/24/EC on the legal protection of computer programs.
386 See, Art 1.2 Directive 2009/24/EC on the legal protection of computer programs.
387 See, Court of Justice of the European Union, Case C-406/10, Press release No 53/12, 2012.

84

http://www.wisegeek.com/what-is-a-statistical-analysis-system.htm

If we compare this case to the Oracle v Google case, they have similarities and

differences. They are similar because both decided in favor of the defendant due to the

non copyright condition of the alleged source code. But the difference is that Google

actually copied and used the Java APIs. WPL did not have access to the SAS source

code, they just studied how the program functions.

As a chapter conclusion, we must consider that if programming languages and their

APIs are not subject of copyright protection, then in many cases, dynamic linked

libraries disputes may become irrelevant. Unfortunately, the GPL license must be

interpreted inside the boundaries of copyright law, and if Judges do not consider the

GPL FAQ interpretations as appropriates, there is nothing to do about it.

4.4. AND THE FUTURE...

Free Software started as a dream in the eighties, and we are living that dream today.

Many of us have received a huge benefit from this dream, especially in terms of free

knowledge and development. This is why we should find other perspectives about how

to interpret derivative works in the GPL license.

Many interpretation issues has been evolved in the last decade. Ten years ago Lawrence

Rosen said: “Many users of open-source software are frightened by the term “derivative

works. They worry they might accidentally create derivative works and put their own

proprietary software under an open-source license”388. There was already an awareness

about the technical difficulties of the GPL interpretation of derivative works in a

copyright law context.

In the other side for authors such as Eben Moglen, he mentioned in 2001 that Free
Software was just an unsual concept for contemporary society :

388 Rosen Lawrence, Derivative works, Linux journal, 2003. See, http://www.linuxjournal.com/article/6366.

85

http://www.linuxjournal.com/article/6366

“Because free software is an unorthodox concept in contemporary society, people tend
to assume that such an atypical goal must be pursued using unusually ingenious, and
therefore fragile, legal machinery. But the assumption is faulty. The goal of the Free
Software Foundation in designing and publishing the GPL, is unfortunately unusual:
we're reshaping how programs are made in order to give everyone the right to
understand, repair, improve, and redistribute the best-quality software on earth”389.

But today, there is a general conscience that the technical and legal problems concerning

the old copyright law framework and emerging legal challenges, have to be solved, as

Malcolm Bain wrote in respect of the work of the European Legal Network of Lawyers:

“More practically, the Document is a work in progress, and we need more examples

and/or diagrams that can help understand the technical issues involved (using header

file data, published APIs, etc.) - something that might even be used as a model for

presenting and arguing a case either between parties or before the courts”390.

In my opinion, even if the GPL FAQ interpretation is sometimes considered not flexible,

and not always harmonized with copyright laws, it is also showing to the copyright

world that the peculiarities of the software have to be treated in a more suitable manner.

It is time to stop treating software as literary works, because they are not the same. In

contemporary software, computer programs are never independent, they are built on top

of programming languages, using application programming interfaces, and linked with

shared libraries in order to adopt functionalities. All these features are beyond the scope

of literary works.

There are paradigms to be solved, and some of them have been confronted here. But

despite these paradigms, we can testify how the GPL license is expanding

copyright law conceptions regarding software. In the end, the GPL license is making a

huge contribution to the evolution of copyright law, and that is infinitely valuable.

389 See, http://www.gnu.org/philosophy/enforcing-gpl.html.
390 This work is called “Software Interactions and the GNU General Public License” and is available at

http://www.ifosslr.org/ifosslr/article/view/44/74.

86

http://www.ifosslr.org/ifosslr/article/view/44/74
http://www.gnu.org/philosophy/enforcing-gpl.html

 CONCLUSIONS

1. Copyright law must be updated. The GPL license shows how outdated is copyright

law. The Berne Convention inspired most copyrights laws around the planet, but

emerging new environments such as software, are in particular, free software, are far

beyond the Berne Convention regulations.

2. Software and literary works are not the same. Contemporary software presents

different paradigms in relation to linking program libraries, and the GPL FAQ

interpretation interprets something that copyright law only regulates from a very generic

perspective. Copyright laws should include Combined works into their derivative work

provisions regarding software, and stop regulating Software as literary works, because

they are not the same391.

3. The copyleft has a purpose for derivative works. In contemporary software,

licenses with strong copyleft such as the GPL, have created a barrier in the field of

derivative works. The GPL follows the GNU project philosophy of free software in

concordance with the four basic free software freedoms392. This philosophy appeared

when all software was proprietary. The biggest strength of the GPL license is still its

free as freedom perspective, and if many developers still choose the GPL license, is

because they want to. Developers can always choose a non copyleft license, or other

philosophy such as the copyfree393.

4. Program libraries are a particular category. Program libraries should have a

special legal treatment in the field of derivative works. They provide functionality and to

fulfill that purpose, they need to link with computer programs394. They are computer

391 See, chapter 4.4: “And the future...”.
392 See, chapter 1.4 of this work: “Brief GNU and GPL history”.
393 See, chapter 4.2:“Without the permission of the copyright holder”.
394 See, chapter 2.1: “Program libraries”.

87

program components, and programs by themselves395. The GPL criteria for establishing

libraries as derivative works turn around modification, dependency, interaction,

distribution medium and location396.

5. The GPL license is not focused in program libraries. The GPL FAQ interpretation

might be considered too strict by some developers. Certainly, the GPL license is not

focused on program libraries. That was the reason why the GNU project created the

LGPL license397.

6. The Copyright Holder can make his own exceptions. Under copyright laws, the

solution is always in the hands of the copyright holders. Many exceptions have been

made such as the classPath exception398, the Oracle FOSS license exception399, or the

Linux kernel permission400. The text of generic purpose licenses such as GPL cannot be

changed, but it is possible to add permissions and exceptions with an extra clause, and

distribute this clause within the GPL license.

7. The problem is license compatibility. Developers can find very difficult the task of

using dynamic libraries because of the license compatibility. A program can use many

dynamic libraries, and all of them have to be compatible. The final purpose of the Free

Software Foundation is to separate as much as possible the free software world from the

proprietary software world401. In the end, copyright holders decide.

8. The GPL code should concern only GPL code. A plug-in or a dynamic library is

not always a whole. A library might content tons of object code, and other non linked

code. These codes might be developed and licensed by different authors. If the library is

linked to a GPL licensed program, then just the linked object code should be concerned

395 See, chapter 3.3.(1): “Libraries as computer programs”.
396 See, chapter 3: “The GPL FAQ interpretation of linked libraries”.
397 See, chapter 1.7(1): “Lesser GNU General Public License”.
398 See, chapter 1.7(3): “The GNU classPath exception”.
399 See, chapter 4.1(2): “Particular permission for FOSS software: MySQL v PHP”.
400 See, chapter 4.1.(1): “General permission of the copyright holder: Android v Linux”.
401 See, chapter 1.4: “Brief GNU and GPL history”.

88

about the GPL, and not all the package because that situation might result unfair for

other developers. The GPL split solution402 is a good approach.

9. Dynamic libraries and Executables don't form a whole.

If Dynamic libraries are not included in the executable, the only possible derivative

work is a process allocated in the computer memory space403. This process will be

launched at runtime or loading time by the user, not by the developer. In such case, there

might be a legal bug in the GPL license because if the user generally runs the program

for private purposes, it would be a matter of interpretation to determine is a real copyleft

infringement404 is possible. This uncertainty might be solved by the Copyright holder

through making clear if he allows or not dynamic linking.

10. Interaction is granted by copyright law. Linking libraries is the process of

connecting computer programs with dynamic libraries by making function calls. With

dynamic libraries, this interaction is similar than the interaction between separate

computer programs by sockets405. If applicable copyright law does not make a difference

between computer programs and computer libraries, normal function calls might still be

considered under the interoperability software permissions.

11. Legal exceptions can invalidate GPL provisions. Each legal system follows its

own criteria for determining situations such as which works are subject or not of

copyright protection406. Fair uses and public policies might also be important in terms of

proportionality and logical sense407. Developers should be aware that the GPL FAQ

interpretation is not the final word, and the GPL license can be interpreted in different

ways408.

402 See, chapter 4.2(1): “Wordpress v Thesis”.
403 See, chapter 2.8: “Computer Memory Address Space”.
404 See, chapter 3.1(1): “The process as modified work”.
405 See, chapter 3.3(2): “ Function calls and interoperability”.
406 See, chapter 1.3: “National copyright laws”.
407 See, chapter 4.3: “Non copyright subject and fair use”.
408 See, chapter 4.3: “Court cases: Non copyright subject and fair use”.

89

12. Application Programming Interfaces are libraries. APIs are fundamental in

Object Oriented Programming, and they are libraries409. If APIs are not considered as

subject of copyright protection, then most OOP dynamic linking controversies might

become irrelevant410.

13. More legal precedents are needed. Until now, most of the controversies concerning

the use of dynamic linked libraries have been resolved inside the communities, through

online confrontations, or just by default. Nevertheless, as Court cases are beginning to

appear, the tendency is that they will exponentially increase in the near future. Those

precedents are certainly needed for deploying a more concrete line to follow towards the

GPL license in the field of derivative works.

409 See, chapter 2.6: “Object Oriented Programming”.
410 See, chapter 4.3(1): “Oracle v Google”.

90

BIBLIOGRAPHY

BOOKS, LEGAL TEXTS AND ACADEMIC WORKS:

• Aquilina, Casey, Maley, Malware Forensics, Syngress publishing Inc, United States, 2008.

• Bain Malcolm, Software interaction and the GNU General Public License, International Free and Open Source

Software Law Review, Barcelona, 2010.

• Bovet, Cesati, Understanding the Linux Kernel 3rd edition, O'reilly, United States, 2006.

• Carrier Brian, File System Analysis, Addison Weshley Professional, United States, 2005.

• Detterman Lothar, Dangerous Liaisons – Software combinations as derivative works?, Berklee Technology Law

journal, United States, 2006.

• Drossopoulou, Eisenbach, Manifestations of Java Dynamic Linking – an approximate understanding at source

language level-, Imperial College, London, 2002.

• Dusollier Severine, Fair Use by design in the European Copyright Directive of 2001: An Empty Promise,

University of Namur, Belgium, 2003.

• Eck David, Introduction to Programming using Java, Hobart and William Smith Colleges, 1996.

• Eckel Bruce, Thinking in C++ vol1, United States, Prentice Hall Inc, 2000.

• Eckel Bruce, Thinking in Java fourth edition, United States, Prentice Hall Inc, 2006.

• Enriquez Luis, “Android” and the GPL license: Is the Linux-adaptation by Google still free software?, University

of Hanover, Germany, 2012.

• European Court of Justice, ECJ_C406_10 , SAS v WPL, Luxembourg, 2012.

• European Parlament and the Council of the European Union, Directive 2001/29/EC on the harmonisation of

certain aspects of copyright and related rights in the information society , Official Journal of the European

Communities, 2001.

• European Parlament and the Council of the European Union, Directive 2009/24/EC on the legal protection of

computer programs , Official Journal of the European Communities, 2009.

• Free Software Foundation, GPL FAQ, http://www.gnu.org/licenses/gpl-faq.

• Free Software Foundation, Shared library support for GNU, Free Software Foundation, United States, 1996.

• Free Software Foundation, GNU General Public License v2, United States, 1991. http://www.gnu.org/licenses/gpl-

2.0.html

• Free Software Foundation, GNU ClassPath exception, United States, 2006.

http://www.gnu.org/software/classpath/license.html

• Free Software Foundation, GNU General Public License v3, United States, 2007.

http://www.gnu.org/licenses/gpl.html

91

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/software/classpath/license.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-faq

• Free Software Foundation, GNU Lesser General Public License v3, United States, 2007.

http://www.gnu.org/licenses/lgpl.html

• Garren Scott, Copyright Protection of Computer Software: History, Politics, and Technology, Massachusetts

Institute of Technology, United States, 1991.

• German Bundestag, Urheberrechtsgesetz – UrhG, Germany, 1965, amended in 1998.

• Hartman Greg Kroat, Linux kernel in a nutshell, O'reailly, United States, 2007.

• Hugenholtz, Senftleben, Fair use in Europe. In search of flexibilities, Universiteit Amsterdam, The Netherlands,

2011.

• Jaeger Till, Kommerzielle Applikationen für Open Source Software und deutsches Urheberrecht , Ifross, Stuttgart,

2008.

• Kleiman Dave, The official CHFI Exam 312-49 study guide, Syngress Publishing, United States, 2007.

• Laurent Philippe, Free and Open Source Software Licensing: a reference for the reconstruction of “virtual

commons”?, University of Namur, Belgium, 2010.

• Oracle, Oracle's FOSS license exception, United States, http://www.mysql.com/about/legal/licensing/foss-

exception/ , 2009.

• Parlement Français, Code de la proprieté intellectuelle, France, 1992.

• Phillips Douglas, The Software license unveiled, Oxford University Press, New York, 2009.

• Rosen, Lawrence, Open Source Licensing Software Freedom and Intellectual Property Law , Prentice Hall, United

states, 2004.

• Salzman, Burian, Pomerantz, The Linux Kernel Module Programming guide, Peter Jay Salzman, 2001.

• Sedgewick Robert, Algorithms in C, Addison-Wesley Publishing, United States, 1990.

• United States 94th congress, US copyrigth act of 1976: title 17, United States, 1976.

• United States District Court for the northern district of California, Case3:10-cv-03561-WHA, United States, 2012.

• Van den Branden, Coughlan, Jaeger, The International Free and Open source Book, Open source Press, Germany,

2011.

• Van Holst Walter, Copyleft, -right and the case law on APIs on both sides of the Atlantic, International Free and

Open Source Software Law Review, Netherlands, 2013.

• Vostokov Dmitri, Memory Dump Analysis Anthology volumen 1, Open task, Ireland, 2008.

BLOGS AND TUTORIALS:

• Duarte Gustavo, Anatomy of a program in memory, http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-

memory.Free Software Foundation, libraries-dependencies,

http://www.gnu.org/software/libtool/manual/html_node/Inter_002dlibrary-dependencies.html.Honeynet Project,

Open Source Licensing Madness, http://www.honeynet.org/node/879.

92

http://www.honeynet.org/node/879
http://www.gnu.org/software/libtool/manual/html_node/Inter_002dlibrary-dependencies.html
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory
http://www.mysql.com/about/legal/licensing/foss-exception/
http://www.mysql.com/about/legal/licensing/foss-exception/
http://www.gnu.org/licenses/lgpl.html

• Gee Sue, Oracle v Google Judge is a Programmer!, http://www.i-programmer.info/news/193-android/4224-oracle-

v-google-judge-is-a-programmer.html.

• Kerrisk Michael, Dynamic linking and derivative works,

http://lwn.net/SubscriberLink/548216/07d6e8ede242237c/.

• Cnet.com, MySQL addresses open-source license problem, 2004, http://news.cnet.com/2100-7344_3-

5173014.html?tag=nefd_top.

• Linus Torvalds, Linux kernel permission, https://www.kernel.org/pub/linux/kernel/COPYING.

• Linux tutorials, static, Shared dynamic and loadable linux libraries,

http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html .

• Linux Howtos, Sockets tutorial, http://www.linuxhowtos.org/C_C++/socket.htm.

• Mixergy, Would Wordpress sue the maker of Thesis, a leading Wordpress theme?, with Chris Pearson and Matt

Mullenweg, 2010, http://mixergy.com/chris-pearson-matt-mullenweg/.

• Network world, Microsoft struggles to get Hyper-V drivers in Linux kernel, 2011,

http://www.networkworld.com/news/2011/071811-microsoft-hyperv-linux.html.

• O'Dell Jolie, Wordpress theme Thesis maker backs down, adopts GPL, 2010,

http://mashable.com/2010/07/22/thesis-relents/.

• Ramji Sam, Releasing the Linux integration component drivers, 2009,

http://blogs.technet.com/b/port25/archive/2009/07/23/releasing-the-linux-integration- component-drivers.aspx .

• Rosen Lawrence, Derivative works, Linux journal, 2003. See, http://www.linuxjournal.com/article/6366.

• Stallman Richard, What is Copyleft?, 1996, http://www.gnu.org/copyleft/copyleft.html.

• Stallman Richard, Why Open source misses the point of Free Software, 2007,

http://www.gnu.org/philosophy/open-source-misses-the-point.html.

• TuxRadar Linux, How the Linux kernel works, 2009, http://tuxradar.com/content/how-linux-kernel-works.

• University of Washington school of Law, The GPL and Derivative Works,

http://www.law.washington.edu/lta/swp/Law/derivative.html.

• University of Washington school of Law, Contracts or licenses: Does it matter?,

http://www.law.washington.edu/lta/swp/Law/contractvlicense.html.

• Wikivs, Copyfree v Copyleft, http://www.wikivs.com/wiki/Copyfree_vs_Copyleft.

93

http://www.wikivs.com/wiki/Copyfree_vs_Copyleft
http://www.law.washington.edu/lta/swp/Law/contractvlicense.html
http://www.law.washington.edu/lta/swp/Law/derivative.html
http://tuxradar.com/content/how-linux-kernel-works
http://www.gnu.org/philosophy/open-source-misses-the-point.html
http://www.gnu.org/copyleft/copyleft.html
http://www.linuxjournal.com/article/6366
http://blogs.technet.com/b/port25/archive/2009/07/23/releasing-the-linux-integration-component-drivers.aspx
http://blogs.technet.com/b/port25/archive/2009/07/23/releasing-the-linux-integration-component-drivers.aspx
http://mashable.com/2010/07/22/thesis-relents/
http://www.networkworld.com/news/2011/071811-microsoft-hyperv-linux.html
http://mixergy.com/chris-pearson-matt-mullenweg/
http://www.linuxhowtos.org/C_C++/socket.htm
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html
https://www.kernel.org/pub/linux/kernel/COPYING
http://news.cnet.com/2100-7344_3-5173014.html?tag=nefd_top
http://news.cnet.com/2100-7344_3-5173014.html?tag=nefd_top
http://lwn.net/SubscriberLink/548216/07d6e8ede242237c/
http://www.i-programmer.info/news/193-android/4224-oracle-v-google-judge-is-a-programmer.html
http://www.i-programmer.info/news/193-android/4224-oracle-v-google-judge-is-a-programmer.html

LIST OF ABBREVIATIONS

Abbreviation Meaning Page

WIPO World Intellectual Property Organization 1

GNU GNU's not Unix 9

GCC GNU Compiler Collection 9

GDB GNU Debugger 9

FSF Free Software Foundation 9

FOSS Free and Open Source Software 11

DRM Digital Rights Management 12

LGPL Lesser General Public License 17

API Application Programming Interface 29

JVM Java Virtual Machine 39

HTTP Hyper Text Transfer Protocol 41

P2P Peer to Peer 42

RAM Random Access Memory 43

ELF Executable and Link Format 45

NTFS New Technologies File System 47

FAQ Frequently Asked Questions 48

OOP Object Oriented Programming 51

PHP PHP Hypertext Preprocessor 69

SQL Structured Query Language 69

FLOSS Free Libre and Open Source Software 70

94

 ABOUT THE AUTHOR

Luis Enríquez. Copyright, Copyleft and Media lawyer. I did my formal education in

Information Technology and Intellectual property Law(LLM - Leibniz Universität

Hannover – Germany), International Economic Law(LLM - Univesidad Andina Simón

Bolívar – Ecuador), Digital Forensics and Ethical Hacking(CHFI && CEH -

ECCouncil), Algorithm Composition and Sonology(Royal Conservatoire – The Netherlands)… And

my informal education in file sharing sites and Internet Forums for the last 15 years.

As a FOSS lawyer and a computer security researcher, my passion is to work directly with

software developers and digital artists, talking in their 'hi-tech' language and solving their legal

problems. In the other hand, I also work with lawyers, talking in their 'legal' language, and solving their

technical problems. Don't hesitate to contact me:

email: luisenriquez@geek4nongeeks.com luisenriquez@fosslawyers.org

95

mailto:luisenriquez@fosslawyers.org
mailto:luisenriquez@geek4nongeeks.com

