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Abstract

The computation of the first complete approxima-
tions of game-theoretic optimal strategies for full-
scale poker is addressed. Several abstraction tech-
niques are combined to represent the game of 2-
player Texas Hold’em, having size �������
	��� , using
closely related models each having size ���������� .
Despite the reduction in size by a factor of 100
billion, the resulting models retain the key prop-
erties and structure of the real game. Linear pro-
gramming solutions to the abstracted game are used
to create substantially improved poker-playing pro-
grams, able to defeat strong human players and be
competitive against world-class opponents.

1 Introduction
Mathematical game theory was introduced by John von Neu-
mann in the 1940s, and has since become one of the founda-
tions of modern economics [von Neumann and Morgenstern,
1944]. Von Neumann used the game of poker as a basic
model for 2-player zero-sum adversarial games, and proved
the first fundamental result, the famous minimax theorem. A
few years later, John Nash added results for � -player non-
cooperative games, for which he later won the Nobel Prize
[Nash, 1950]. Many decision problems can be modeled using
game theory, and it has been employed in a wide variety of
domains in recent years.

Of particular interest is the existence of optimal solutions,
or Nash equilibria. An optimal solution provides a random-
ized mixed strategy, basically a recipe of how to play in each
possible situation. Using this strategy ensures that an agent
will obtain at least the game-theoretic value of the game, re-
gardless of the opponent’s strategy. Unfortunately, finding
exact optimal solutions is limited to relatively small problem
sizes, and is not practical for most real domains.

This paper explores the use of highly abstracted mathemat-
ical models which capture the most essential properties of the
real domain, such that an exact solution to the smaller prob-
lem provides a useful approximation of an optimal strategy
for the real domain. The application domain used is the game
of poker, specifically Texas Hold’em, the most popular form
of casino poker and the poker variant used to determine the
world champion at the annual World Series of Poker.

Due to the computational limitations involved, only simpli-
fied poker variations have been solved in the past (e.g. [Kuhn,
1950; Sakaguchi and Sakai, 1992]). While these are of the-
oretical interest, the same methods are not feasible for real
games, which are too large by many orders of magnitude
([Koller and Pfeffer, 1997]).

[Shi and Littman, 2001] investigated abstraction tech-
niques to reduce the large search space and complexity of the
problem, using a simplified variant of poker. [Takusagawa,
2000] created near-optimal strategies for the play of three
specific Hold’em flops and betting sequences. [Selby, 1999]
computed an optimal solution for the abbreviated game of
preflop Hold’em.

Using new abstraction techniques, we have produced vi-
able “pseudo-optimal” strategies for the game of 2-player
Texas Hold’em. The resulting poker-playing programs have
demonstrated a tremendous improvement in performance.
Whereas the previous best poker programs were easily beaten
by any competent human player, the new programs are capa-
ble of defeating very strong players, and can hold their own
against world-class opposition.

Although some domain-specific knowledge is an asset in
creating accurate reduced-scale models, analogous methods
can be developed for many other imperfect information do-
mains and generalized game trees. We describe a general
method of problem reformulation that permits the indepen-
dent solution of sub-trees by estimating the conditional prob-
abilities needed as input for each computation.

This paper makes the following contributions:

1. Abstraction techniques that can reduce an ��������	���
poker search space to a manageable ���������� , without
losing the most important properties of the game.

2. A poker-playing program that is a major improvement
over previous efforts, and is capable of competing with
world-class opposition.

2 Game Theory
Game theory encompasses all forms of competition between
two or more agents. Unlike chess or checkers, poker is a
game of imperfect information and chance outcomes. It can
be represented with an imperfect information game tree hav-
ing chance nodes and decision nodes, which are grouped into
information sets.
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Since the nodes in this tree are not independent, divide-
and-conquer methods for computing sub-trees (such as the
alpha-beta algorithm) are not applicable. For a more detailed
description of imperfect information game tree structure, see
[Koller and Megiddo, 1992].

A strategy is a set of rules for choosing an action at ev-
ery decision node of the tree. In general, this will be a ran-
domized mixed strategy, which is a probability distribution
over the various alternatives. A player must use the same pol-
icy across all nodes in the same information set, since from
that player’s perspective they are indistinguishable from each
other (differing only in the hidden information component).

The conventional method for solving such a problem is to
convert the descriptive representation, or extensive form, into
a system of linear equations, which is then solved by a lin-
ear programming (LP) system such as the Simplex algorithm.
The optimal solutions are computed simultaneously for all
players, ensuring the best worst-case outcome for each player.

Traditionally, the conversion to normal form was accom-
panied by an exponential blow-up in the size of the prob-
lem, meaning that only very small problem instances could
be solved in practice. [Koller et al., 1994] described an alter-
nate LP representation, called sequence form, which exploits
the common property of perfect recall (wherein all players
know the preceding history of the game), to obtain a system
of equations and unknowns that is only linear in the size of
the game tree. This exponential reduction in representation
has re-opened the possibility of using game-theoretic analy-
sis for many domains. However, since the game tree itself
can be very large, the LP solution method is still limited to
moderate problem sizes (normally less than a billion nodes).

3 Texas Hold’em
A game (or hand) of Texas Hold’em consists of four stages,
each followed by a round of betting:

Preflop: Each player is dealt two private cards face down
(the hole cards).

Flop: Three community cards (shared by all players) are
dealt face up.

Turn: A single community card is dealt face up.
River: A final community card is dealt face up.
After the betting, all active players reveal their hole cards

for the showdown. The player with the best five-card poker
hand formed from their two private cards and the five public
cards wins all the money wagered (ties are possible).

The game starts off with two forced bets (the blinds) put
into the pot. When it is a player’s turn to act, they must ei-
ther bet/raise (increase their investment in the pot), check/call
(match what the opponent has bet or raised), or fold (quit and
surrender all money contributed to the pot).

The best-known non-commercial Texas Hold’em program
is Poki. It has been playing online since 1997 and has earned
an impressive winning record, albeit against generally weak
opposition [Billings et al., 2002]. The system’s abilities
are based on enumeration and simulation techniques, expert
knowledge, and opponent modeling. The program’s weak-
nesses are easily exploited by strong players, especially in
the 2-player game.

Figure 1: Branching factors for Hold’em and abstractions.

4 Abstractions
Texas Hold’em has an easily identifiable structure, alternat-
ing between chance nodes and betting rounds in four distinct
stages. A high-level view of the imperfect information game
tree is shown in Figure 1.

Hold’em can be reformulated to produce similar but much
smaller games. The objective is to reduce the scale of the
problem without severely altering the fundamental structure
of the game, or the resulting optimal strategies. There are
many ways of doing this, varying in the overall reduction and
in the accuracy of the resulting approximation.

Some of the most accurate abstractions include suit equiv-
alence isomorphisms (offering a reduction of at most a factor
of ��������� ), rank equivalence (only under certain conditions),
and rank near-equivalence. The optimal solutions to these ab-
stracted problems will either be exactly the same or will have
a small bounded error, which we refer to as near-optimal so-
lutions. Unfortunately, the abstractions which produce an ex-
act or near-exact reformulation do not produce the very large
reductions required to make full-scale poker tractable.

A common method for controlling the game size is deck
reduction. Using less than the standard 52-card deck greatly
reduces the branching factor at chance nodes. Other methods
include reducing the number of cards in a player’s hand (e.g.
from a 2-card hand to a 1-card hand), and reducing the num-
ber of board cards (e.g. a 1-card flop), as was done by [Shi
and Littman, 2001] for the game of Rhode Island Hold’em.
[Koller and Pfeffer, 1997] used such parameters to generate a
wide variety of tractable games to solve with their Gala sys-
tem.

We have used a number of small and intermediate sized
games, ranging from eight cards (two suits, four ranks) to 24
cards (three suits, eight ranks) for the purpose of studying
abstraction methods, comparing the results with known exact
or near-optimal solutions. However, these smaller games are
not suitable for use as an approximation for Texas Hold’em,
as the underlying structures of the games are different. To
produce good playing strategies for full-scale poker, we look
for abstractions of the real game which do not alter that basic



structure.
The abstraction techniques used in practice are powerful

in terms of reducing the problem size, and subsume those
previously mentioned. However, since they are also much
cruder, we call their solutions pseudo-optimal, to emphasize
that there is no guarantee that the resulting approximations
will be accurate, or even reasonable. Some will be low-risk
propositions, while others will require empirical testing to de-
termine if they have merit.

4.1 Betting round reduction
The standard rules of limit Hold’em allow for a maximum of
four bets per player per round.1 Thus in 2-player limit poker
there are 19 possible betting sequences, of which two do not
occur in practice.2 Of the remaining 17 sequences, 8 end in a
fold (leading to a terminal node in the game tree), and 9 end
in a call (carrying forward to the next chance node). Using� ��������� � , � �	�
��� ,  �	������ , � ��������� , � ����������� ,
and capital letters for the second player, the tree of possible
betting sequences for each round is:

kK kBf kBc kBrF kBrC kBrRf kBrRc kBrRrF kBrRrC
bF bC bRf bRc bRrF bRrC bRrRf bRrRc

We call this local collection of decision nodes a betting
tree, and represent it diagramatically with a triangle.

With betting round reduction, each player is allowed a
maximum of three bets per round, thereby eliminating the last
two sequences in each line. The effective branching factor of
the betting tree is reduced from nine to seven. This does not
appear to have a substantial effect on play, or on the expected
value (EV) for each player. This observation has been verified
experimentally. In contrast, we computed the corresponding
postflop models with a maximum of two bets per player per
round, and found radical changes to the optimal strategies,
strongly suggesting that that level of abstraction is not safe.

4.2 Elimination of betting rounds
Large reductions in the size of a poker game tree can be ob-
tained by elimination of betting rounds. There are several
ways to do this, and they generally have a significant impact
on the nature of the game. First, the game may be truncated,
by eliminating the last round or rounds. In Hold’em, ignor-
ing the last board card and the final betting round produces a
3-round model of the actual 4-round game. The solution to
the 3-round model loses some of the subtlety involved in the
true optimal strategy, but the degradation applies primarily to
advanced tactics on the turn. There is a smaller effect on the
flop strategy, and the strategy for the first betting round may
have no significant changes, since it incorporates all the out-
comes of two future betting rounds. We use this particular
abstraction to define an appropriate strategy for play in the
first round, and thus call it a preflop model (see Figure 2).

1Some rules allow unlimited raises when only two players are
involved. However, occasions with more than three legitimate raises
are relatively rare, and do not greatly alter an optimal strategy.

2Technically, a player may fold even though there is no outstand-
ing bet. This is logically dominated by not folding, and therefore
does not occur in an optimal strategy, and is almost never seen in
practice.

The effect of truncation can be lessened through the use
of expected value leaf nodes. Instead of ending the game
abruptly and awarding the pot to the strongest hand at that
moment, we compute an average conclusion over all possible
chance outcomes. For a 3-round model ending on the turn,
we roll-out all 44 possible river cards, assuming no further
betting (or alternately, assuming one bet per player for the
last round). Each player is awarded a fraction of the pot, cor-
responding to their probability of winning the hand. In a 2-
round preflop model, we roll-out all 990 2-card combinations
of the turn and river.

The most extreme form of truncation results in a 1-round
model, with no foresight of future betting rounds. Since each
future round provides a refinement to the approximation, this
will not reflect a correct strategy for the real game. In par-
ticular, betting plans that extend over more than one round,
such as deferring the raise of a very strong hand, are lost
entirely. Nevertheless, even these simplistic models can be
useful when combined with expected value leaf nodes.

Alex Selby computed an optimal solution for the game of
preflop Hold’em, which consists of only the first betting round
followed by an EV roll-out of the five board cards to deter-
mine the winner [Selby, 1999]. Although there are some se-
rious limitations in the strategy based on this 1-round model,
we have incorporated the Selby preflop system into one of our
programs, PsOpti1, as described later in this section.

In contrast to truncating rounds, we can bypass certain
early stages of the game. We frequently use postflop mod-
els, which ignore the preflop betting round, and use a single
fixed flop of three cards (see Figure 1).

It is natural to consider the idea of independent betting
rounds, where each phase of the game is treated in isolation.
Unfortunately, the betting history from previous rounds will
almost always contain contextual information that is critical
to making appropriate decisions. The probability distribution
over the hands for each player is strongly dependent on the
path that led to that decision point, so it cannot be ignored
without risking a considerable loss of information. However,
the naive independence assumption can be viable in certain
circumstances, and we do implicitly use it in the design of
PsOpti1 to bridge the gap between the 1-round preflop model
and the 3-round postflop model.

Another possible abstraction we explored was merging two
or more rounds into a single round, such as creating a com-
bined 2-card turn/river. However, it is not clear what the ap-
propriate bet size should be for this composite round. In any
case, the solutions for these models (over a full range of possi-
ble bet sizes), all turned out to be substantially different from
their 3-round counterparts, and the method was therefore re-
jected.

4.3 Composition of preflop and postflop models

Although the nodes of an imperfect information game tree are
not independent in general, some decomposition is possible.
For example, the sub-trees resulting from different preflop
betting sequences can no longer have nodes that belong to the



same information set.3 The sub-trees for our postflop models
can be computed in isolation, provided that the appropriate
preconditions are given as input. Unfortunately, knowing the
correct conditional probabilities would normally entail solv-
ing the whole game, so there would be no advantage to the
decomposition.

For simple postflop models, we dispense with the prior
probabilities. For the postflop models used in PsOpti0 and
PsOpti1, we simply ignore the implications of the preflop
betting actions, and assume a uniform distribution over all
possible hands for each player. Different postflop solutions
were computed for initial pot sizes of two, four, six, and eight
bets (corresponding to preflop sequences with zero, one, two,
or three raises, but ignoring which player initially made each
raise). In PsOpti1, the four postflop solutions are simply ap-
pended to the Selby preflop strategy (Figure 2). Although
these simplifying assumptions are technically wrong, the re-
sulting play is still surprisingly effective.

A better way to compose postflop models is to estimate
the conditional probabilities, using the solution to a preflop
model. With a tractable preflop model, we have a means of
estimating an appropriate strategy at the root, and thereby de-
termine the consequent probability distributions.

In PsOpti2, a 3-round preflop model was designed and
solved. The resulting pseudo-optimal strategy for the pre-
flop (which was significantly different from the Selby strat-
egy) was used to determine the corresponding distribution of
hands for each player in each context. This provided the nec-
essary input parameters for each of the seven preflop betting
sequences that carry over to the flop stage. Since each of
these postflop models has been given (an approximation of)
the perfect recall knowledge of the full game, they are fully
compatible with each other, and are properly integrated un-
der the umbrella of the preflop model (Figure 2). In theory,
this should be equivalent to computing the much larger tree,
but it is limited by the accuracy and appropriateness of the
proposed preflop betting model.

4.4 Abstraction by bucketing
The most important method of abstraction for the computa-
tion of our pseudo-optimal strategies is called bucketing. This
is an extension of the natural and intuitive concept that has
been applied many times in previous research (e.g. [Sklansky
and Malmuth, 1994] [Takusagawa, 2000] [Shi and Littman,
2001]). The set of all possible hands is partitioned into equiv-
alence classes (also called buckets or bins). A many-to-one
mapping function determines which hands will be grouped
together. Ideally, the hands should be grouped according to
strategic similarity, meaning that they can all be played in a
similar manner without much loss in EV.

If every hand was played with a particular pure strategy
(ie. only one of the available choices), then a perfect mapping
function would group all hands that follow the same plan, and

3To see this, each decision node of the tree can be labeled with
all the cards known to that player, and the full path that led to that
node. Nodes with identical labels differ only in the hidden informa-
tion, and are therefore in the same information set. Since the betting
history is different for these sub-trees, none of the nodes are inter-
dependent.

Figure 2: Composition of PsOpti1 and PsOpti2.

17 equivalence classes for each player would be sufficient for
each betting round. However, since a mixed strategy may be
indicated for optimal play in some cases, we would like to
group hands that have a similar probability distribution over
action plans.

One obvious but rather crude bucketing function is to group
all hands according to strength (ie. its rank with respect to all
possible hands, or the probability of currently being in the
lead). This can be improved by considering the roll-out of all
future cards, giving an (unweighted) estimate of the chance
of winning the hand.

However, this is only a one-dimensional view of hand
types, in what can be considered to be an � -dimensional
space of strategies, with a vast number of different ways
to classify them. A superior practical method would be to
project the set of all hands onto a two-dimensional space con-
sisting of (roll-out) hand strength and hand potential (sim-
ilar to the hand assessment used in Poki, [Billings et al.,
2002]). Clusters in the resulting scattergram suggest reason-
able groups of hands to be treated similarly.

We eventually settled on a simple compromise. With �
available buckets, we allocate ��� � to roll-out hand strength.
The number of hand types in each class is not uniform; the
classes for the strongest hands are smaller than those for
mediocre and weak hands, allowing for better discrimination
of the smaller fractions of hands that should be raised or re-
raised.

One special bucket is designated for hands that are low in
strength but have high potential, such as good draws to a flush
or straight. This plays an important role in identifying good
hands to use for bluffing (known as semi-bluffs in [Sklansky
and Malmuth, 1994]). Comparing postflop solutions that use
six strength buckets to solutions with five strength plus one
high-potential bucket, we see that most bluffs in the latter are
taken from the special bucket, which is sometimes played in
the same way as the strongest bucket. This confirmed our
expectations that the high-potential bucket would improve the
selection of hands for various betting tactics, and increase the
overall EV.



Figure 3: Transition probabilities (six buckets per player).

The number of buckets that can be used in conjunction with
a 3-round model is very small, typically six or seven for each
player (ie. 36 or 49 pairs of bucket assignments). Obviously
this results in a very coarse-grained abstract game, but it may
not be substantially different from the number of distinctions
an average human player might make. Regardless, it is the
best we can currently do given the computational constraints
of this approach.

The final thing needed to sever the abstract game from the
underlying real game tree are the transition probabilities. The
chance node between the flop and turn represents a particular
card being dealt from the remaining stock of 45 cards. In the
abstract game, there are no cards, only buckets. The effect of
the turn card in the abstract game is to dictate the probability
of moving from one pair of buckets on the flop to any pair of
buckets on the turn. Thus the collection of chance nodes in
the game tree is represented by an � � �

�  to � � �
�  tran-

sition network as shown in Figure 3. For postflop models,
this can be estimated by walking the entire tree, enumerating
all transitions for a small number of characteristic flops. For
preflop models, the full enumeration is more expensive (en-
compassing all

�
��� � ����� ������� � �
	 ���� possible flops), so it

is estimated either by sampling, or by (parallel) enumeration
of a truncated tree.

For a 3-round postflop model, we can comfortably solve
abstract games with up to seven buckets for each player in
each round. Changing the distribution of buckets, such as six
for the flop, seven for the turn, and eight for the river, does
not appear to significantly affect the quality of the solutions,
better or worse.

The final linear programming solution produces a large ta-
ble of mixed strategies (probabilities for fold, call, or raise)
for every reachable scenario in the abstract game. To use this,
the poker-playing program looks for the corresponding situa-
tion based on the same hand strength and potential measures,
and randomly selects an action from the mixed strategy.

The large LP computations typically take less than a day
(using CPLEX with the barrier method), and use up to two
Gigabytes of RAM. Larger problems will exceed available
memory, which is common for large LP systems. Certain
LP techniques such as constraint generation could potentially
extend the range of solvable instances considerably, but this
would probably only allow the use of one or two additional
buckets per player.

5 Experiments

5.1 Testing against computer players

A series of matches between computer programs was con-
ducted, with the results shown in Table 1. Win rates are mea-
sured in small bets per hand (sb/h). Each match was run for at
least 20,000 games (and over 100,000 games in some cases).
The variance per game depends greatly on the styles of the
two players involved, but is typically +/- 6 sb. The standard
deviation for each match outcome is not shown, but is nor-
mally less than +/- 0.03 sb/h.

The “bot players” were:
PsOpti2, composed of a hand-crafted 3-round preflop

model, providing conditional probability distributions to each
of seven 3-round postflop models (Figure 2). All models in
this prototype used six buckets per player per round.

PsOpti1, composed of four 3-round postflop models un-
der the naive uniform distribution assumption, with 7 buck-
ets per player per round. Selby’s optimal solution for preflop
Hold’em is used to play the preflop ([Selby, 1999]).

PsOpti0, composed of a single 3-round postflop model,
wrongly assuming uniform distributions and an initial pot size
of two bets, with seven buckets per player per round. This
program used an always-call policy for the preflop betting
round.

Poki, the University of Alberta poker program. This older
version of Poki was not designed to play the 2-player game,
and can be defeated rather easily, but is a useful benchmark.

Anti-Poki, a rule-based program designed to beat Poki by
exploiting its weaknesses and vulnerabilities in the 2-player
game. Any specific counter-strategy can be even more vul-
nerable to adaptive players.

Aadapti, a relatively simple adaptive player, capable of
slowly learning and exploiting persistent patterns in play.

Always Call, a very weak benchmark strategy.
Always Raise, a very weak benchmark strategy.
It is important to understand that a game-theoretic optimal

player is, in principle, not designed to win. Its purpose is to
not lose. An implicit assumption is that the opponent is also
playing optimally, and nothing can be gained by observing
the opponent for patterns or weaknesses.

In a simple game like RoShamBo (also known as Rock-
Paper-Scissors), playing the optimal strategy ensures a break-
even result, regardless of what the opponent does, and is
therefore insufficient to defeat weak opponents, or to win a
tournament ([Billings, 2000]). Poker is more complex, and
in theory an optimal player can win, but only if the oppo-
nent makes dominated errors. Any time a player makes any
choice that is part of a randomized mixed strategy of some
game-theoretic optimal policy, that decision is not dominated.
In other words, it is possible to play in a highly sub-optimal
manner, but still break even against an optimal player, be-
cause those choices are not strictly dominated.

Since the pseudo-optimal strategies do no opponent model-
ing, there is no guarantee that they will be especially effective
against very bad or highly predictable players. They must rely
only on these fundamental strategic errors, and the margin of
victory might be relatively modest as a result.



No. Program 1 2 3 4 5 6 7 8
1 PsOpti1 X +0.090 +0.091 +0.251 +0.156 +0.047 +0.546 +0.635
2 PsOpti2 -0.090 X +0.069 +0.118 +0.054 +0.045 +0.505 +0.319
3 PsOpti0 -0.091 -0.069 X +0.163 +0.135 +0.001 +0.418 +0.118
4 Aadapti -0.251 -0.118 -0.163 X +0.178 +0.550 +0.905 +2.615
5 Anti-Poki -0.156 -0.054 -0.135 -0.178 X +0.385 +0.143 +0.541
6 Poki -0.047 -0.045 -0.001 -0.550 -0.385 X +0.537 +2.285
7 Always Call -0.546 -0.505 -0.418 -0.905 -0.143 -0.537 X =0.000
8 Always Raise -0.635 -0.319 -0.118 -2.615 -0.541 -2.285 =0.000 X

Table 1: Computer vs computer matches (sb/h).

The critical question is whether such errors are common in
practice. There is no definitive answer to this question yet,
but preliminary evidence suggests that dominated errors oc-
cur often enough to gain a measurable EV advantage over
weaker players, but may not be very common in the play of
very good players.

The first tests of the viability of pseudo-optimal solutions
were done with PsOpti0 playing postflop Hold’em, where
both players agree to simply call in the preflop (thereby
matching the exact pre-conditions for the postflop solution).
In those preliminary tests, a poker master (the first author)
played more than 2000 hands, and was unable to defeat the
pseudo-optimal strategy. In contrast, Poki had been beaten
consistently at a rate of over 0.8 sb/h (which is more than
would be lost by simply folding every hand).

Using the same no-bet preflop policy, PsOpti0 was able to
defeat Poki at a rate of +0.144 sb/h (compared to +0.001 sb/h
for the full game including preflop), and defeated Aadapti at
+0.410 sb/h (compared to +0.163 sb/h for the full game).

All of the pseudo-optimal players play substantially bet-
ter than any previously existing computer programs. Even
PsOpti0, which is not designed to play the full game, earns
enough from the postflop betting rounds to offset the EV
losses from the preflop round (where it never raises good
hands, nor folds bad ones).

It is suspicious that PsOpti1 outperformed PsOpti2, which
in principle should be a better approximation. Subsequent
analysis of the play of PsOpti2 revealed some programming
errors, and also suggested that the bucket assignments for the
preflop model were flawed. This may have resulted in an in-
accurate pseudo-optimal preflop strategy, and consequent im-
balances in the prior distributions used as input for the post-
flop models. We expect that this will be rectified in future
versions, and that the PsOpti2 design will surpass PsOpti1 in
performance.

5.2 Testing against human players
While these results are encouraging, none of the non-pseudo-
optimal computer opponents are better than intermediate
strength at 2-player Texas Hold’em. Therefore, matches were
conducted against human opponents.

More than 100 participants volunteered to play against the
pseudo-optimal players on our public web applet (www.cs.
ualberta.ca/˜games/poker/), including many expe-
rienced players, a few masters, and one world-class player.
The programs provided some fun opposition, and ended up
with a winning record overall. The results are summa-

Player Hands Posn 1 Posn 2 sb/h
Master-1 early 1147 -0.324 +0.360 +0.017
Master-1 late 2880 -0.054 +0.396 +0.170

Experienced-1 803 +0.175 +0.002 +0.088
Experienced-2 1001 -0.166 -0.168 -0.167
Experienced-3 1378 +0.119 -0.016 +0.052
Experienced-4 1086 +0.042 -0.039 +0.002
Intermediate-1 2448 +0.031 +0.203 +0.117

Novice-1 1277 -0.159 -0.154 -0.156
All Opponents 15125 -0.015

Table 2: Human vs PsOpti2 matches.

Player Hands Posn 1 Posn 2 sb/h
thecount 7030 -0.006 +0.103 +0.048
Master-1 2872 +0.141 +0.314 +0.228
Master-2 569 -0.007 +0.035 +0.014
Master-3 425 +0.047 +0.373 +0.209

Experienced-1 4078 -0.058 +0.164 +0.053
Experienced-2 511 +0.152 +0.369 +0.260
Experienced-3 2303 -0.252 +0.128 -0.062
Experienced-5 610 -0.250 -0.229 -0.239
Intermediate-1 16288 -0.145 +0.048 -0.049
Intermediate-2 478 -0.182 +0.402 +0.110

Novice-1 5045 -0.222 -0.010 -0.116
Novice-2 485 -0.255 -0.139 -0.197
Novice-3 1017 -0.369 -0.051 -0.210
Novice-4 583 -0.053 -0.384 -0.219
Novice-5 425 -0.571 -0.296 -0.433

All Opponents 46479 -0.057

Table 3: Human vs PsOpti1 matches.

rized in Table 2 and Table 3. (Master-1 is the first author,
Experienced-1 is the third author).

In most cases, the relatively short length of the match
leaves a high degree of uncertainty in the outcome, limit-
ing how much can be safely concluded. Nevertheless, some
players did appear to have a definite edge, while others were
clearly losing.

A number of interesting observations were made over the
course of these games. It was obvious that most people had a
lot of difficulty learning and adjusting to the computer’s style
of play. In poker, knowing the basic approach of the oppo-
nent is essential, since it will dictate how to properly handle
many situations that arise. Some players wrongly attributed
intelligence where none was present. After losing a 1000-
game match, one experienced player commented “the bot has
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Figure 4: Progress of the “thecount” vs PsOpti1

me figured out now”, indicating that its opponent model was
accurate, when in fact the pseudo-optimal player is oblivious
and does no modeling at all.

It was also evident that these programs do considerably
better in practice than might be expected, due to the emo-
tional frailty of their human opponents. Many players com-
mented that playing against the pseudo-optimal opponent was
an exasperating experience. The bot routinely makes uncon-
ventional plays that confuse and confound humans. Invari-
ably, some of these “bizarre” plays happen to coincide with a
lucky escape, and several of these bad beats in quick succes-
sion will often cause strong emotional reactions (sometimes
referred to as “going on tilt”). The level of play generally
goes down sharply in these circumstances.

This suggests that a perfect game-theoretic optimal poker
player could perhaps beat even the best humans in the long
run, because any EV lost in moments of weakness would
never be regained. However, the win rate for such a program
could still be quite small, giving it only a slight advantage.
Thus it would be unable to exert its superiority convincingly
over the short term, such as the few hundred hands of one
session, or over the course of a world championship tourna-
ment. Since even the best human players are known to have
biases and weaknesses, opponent modeling will almost cer-
tainly be necessary to produce a program that surpasses all
human players.

5.3 Testing against a world-class player
The elite poker expert was Gautam Rao, who is known as
“thecount” or “CountDracula” in the world of popular online
poker rooms. Mr. Rao is the #1 all-time winner in the history
of the oldest online game, by an enormous margin over all
other players, both in total earnings and in dollar-per-hand
rate. His particular specialty is in short-handed games with
five or fewer players. He is recognized as one of the best
players in the world in these games, and is also exceptional
at 2-player Hold’em. Like many top-flight players, he has a
dynamic ultra-aggressive style.

Mr. Rao agreed to play an exhibition match against

PsOpti1, playing more than 7000 hands over the course of
several days. The graph in Figure 4 shows the progression of
the match.

The pseudo-optimal player started with some good fortune,
but lost at a rate of about -0.2 sb/h over the next 2000 hands.
Then there was a sudden reversal, following a series of for-
tuitous outcomes for the program. Although “thecount” is
renown for his mental toughness, an uncommon run of bad
luck can be very frustrating even for the most experienced
players. Mr. Rao believes he played below his best level dur-
ing that stage, which contributed to a dramatic drop where he
lost 300 sb in less than 400 hands. Mr. Rao resumed play the
following day, but was unable to recover the losses, slipping
further to -200 sb after 3700 hands. At this point he stopped
play and did a careful reassessment.

It was clear that his normal style for maximizing income
against typical human opponents was not effective against the
pseudo-optimal player. Whereas human players would nor-
mally succumb to a lot of pressure from aggressive betting,
the bot was willing to call all the way to the showdown with
as little as a Jack or Queen high card. That kind of play would
be folly against most opponents, but is appropriate against an
extremely aggressive opponent. Most human players fail to
make the necessary adjustment under these atypical condi-
tions, but the program has no sense of fear.

Mr. Rao changed his approach to be less aggressive, with
immediate rewards, as shown by the +600 sb increase over
the next 1100 hands (some of which he credited to a good run
of cards). Mr. Rao was able to utilize his knowledge that the
computer player did not do any opponent modeling. Knowing
this allows a human player to systematically probe for weak-
nesses, without any fear of being punished for playing in a
methodical and highly predictable manner, since an oblivious
opponent does not exploit those patterns and biases.

Although he enjoyed much more success in the match from
that point forward, there were still some “adventures”, such as
the sharp decline at 5400 hands. Poker is a game of very high
variance, especially between two opponents with sharp styles,
as can be seen by the dramatic swings over the course of this
match. Although 7000 games may seem like a lot, Mr. Rao’s
victory in this match was still not statistically conclusive.

We now believe that a human poker master can eventu-
ally gain a sizable advantage over these pseudo-optimal pro-
totypes (perhaps +0.20 sb/h or more is sustainable). However,
it requires a good understanding of the design of the program
and its resulting weaknesses. That knowledge is difficult to
learn during normal play, due to the good information hiding
provided by an appropriate mixture of plans and tactics. This
“cloud of confusion” is a natural barrier to opponent learning.
It would be even more difficult to learn against an adaptive
program with good opponent modeling, since any methodical
testing by the human would be easily exploited. This is in
stark contrast to typical human opponents, who can often be
accurately modeled after only a small number of hands.

6 Conclusions and Future Work
The pseudo-optimal players presented in this paper are the
first complete approximations of a game-theoretic optimal
strategy for a full-scale variation of real poker.



Several abstraction techniques were explored, resulting in
the reasonably accurate representation of a large imperfect
information game tree having ��������	��� nodes with a small
collection of models of size ������� �� . Despite these massive
reductions and simplifications, the resulting programs play
respectably. For the first time ever, computer programs are
not completely outclassed by strong human opposition in the
game of 2-player Texas Hold’em.

Useful abstractions included betting tree reductions, trun-
cation of betting rounds combined with EV leaf nodes, and
bypassing betting rounds. A 3-round model anchored at
the root provided a pseudo-optimal strategy for the preflop
round, which in turn provided the proper contextual informa-
tion needed to determine conditional probabilities for post-
flop models. The most powerful abstractions for reducing the
problem size were based on bucketing, a method for parti-
tioning all possible holdings according to strategic similarity.
Although these methods exploit the particular structure of the
Texas Hold’em game tree, the principles are general enough
to be applied to a wide variety of imperfect information do-
mains.

Many refinements and improvements will be made to the
basic techniques in the coming months. Further testing will
also continue, since accurate assessment in a high variance
domain is always difficult.

The next stage of the research will be to apply these tech-
niques to obtain approximations of Nash equilibria for � -
player Texas Hold’em. This promises to be a challenging ex-
tension, since multi-player games have many properties that
do not exist in the 2-player game.

Finally, having reasonable approximations of optimal
strategies does not lessen the importance of good oppo-
nent modeling. Learning against an adaptive adversary in a
stochastic game is a challenging problem, and there will be
many ideas to explore in combining the two different forms
of information. That will likely be the key difference between
a program that can compete with the best, and a program that
surpasses all human players.

Quoting “thecount”:
“You have a very strong program. Once you add
opponent modeling to it, it will kill everyone.”
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